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Workshop From Lie Algebras to Quantum Groups

Helena Albuquerque* Samuel Lopes' Joana Teles*

Foreword

This workshop brought together leading specialists in the topics of Lie algebras, quantum
groups and related areas. It aimed to present the latest developments in these areas as well
as to stimulate the interaction between young researchers and established specialists.

We remark on the significant role that, for the last decades, the theory of algebras has
played in the development of some areas of physics, and conversely, the importance that the
growth of physics has had in the implementation of new algebraic structures. In fact, with the
development of physics, more complex algebraic structures have arisen and the mathematical
structures that were used to explain certain physical phenomena became insufficient. For
example, there are two structures of considerable importance in contemporary mathematical
research that are deeply connected to the theory of Lie algebras: Lie superalgebras and
quantum groups.

The new supersymmetry theories that appeared in the 80’s presented, within the same
structure, particles that satisfied commutation relations and others that satisfied anti-commu-
tation relations. The algebras that existed up until then did not exhibit such a structure, and
that led to the emergence of a new mathematical structure: Lie superalgebras. The genesis of
quantum groups is quite similar. Introduced independently by Drinfel’d and Jimbo in 1985,
quantum groups appeared in connection with a quantum mechanical problem in statistical
mechanics: the quantum Yang-Baxter equation. It was realized then that quantum groups had
far-reaching applications in theoretical physics (e.g. conformal and quantum field theories),
knot theory, and virtually all other areas of mathematics. The notion of a quantum group is
also closely related to the study of integrable dynamical systems, from which the concept of

a Poisson-Lie group emerged, and to the classical Weyl-Moyal quantization.
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From Clifford algebras to Cayley algebras

Helena Albuquerque*

1 Introduction

In this paper I present some of the main results on the theory of quasiassociative algebras
that were published untill June 2006, in a study developed in collaboration with Shahn Majid,
Alberto Elduque, José Pérez-Izquierdo and A.P. Santana. It is a kind of structure that has
begin to be studied by the author and S. Majid in 1999 in the context of the theory of
cathegories of quasi-Hopf algebras and comodules [6] that generalizes the known theory of
associative algebras. Octonions appears in [6] as an algebra in the monoidal cathegory of
G-graded vector spaces. At the algebraic point of view this theory presents new examples of
a kind of quasilinear algebra that deals with a set of matrices endowed with a non associative
multiplication. In [6] the notion of a dual quasi-Hopf algebra was obtained dualizing Drinfeld’s
axioms.

A dual quasibialgebra is a (H, A, €, ¢$) where the coproduct A : H — H ® H and counit
€ : H — k form a coalgebra and are multiplicative with respect to a ‘product’ H @ H — H.

Besides, H is associative up to‘conjugation’ by ¢ in the sense

> aqy - (bay - c)dlage): by c@) = Y dlaqy, bay, cay)(ae) - be) - @) (1)

for all a,b,c € H where Ah = ) h(;) @ h(g) is a notation and ¢ is a unital 3-cocycle in the

sense
> o(ba d(1))9(aqy. b)), di2))o(ae), by, ¢3)) =
) ¢(a<1 ,ba),C(l)d(l)W(a@)b( 2),€(2), 4(2));

for all a,b,c,d € H, and ¢(a,0,b) = e(a)e(b) for all a,b € H. Also ¢ is convolution-invertible

in the algebra of maps H®? — k, i.e. that there exists ¢! : H®3 — k such that

e(a)e(b)e(c)

(2)

> d(aqay, bay, cay)o™! (a(z),b(z),C( )) =
=Y ¢ a), by, cay)dlag), by ¢2)

*Departamento de Matemadtica, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal.
E-mail:lena@mat .uc.pt. Supported by CMUC-FCT.

3)




for all a,b,c € H. A dual quasibialgebra is a dual quasi-Hopf algebra if there is a linear map
S : H — H and linear functionals «, 8 : H — k such that

>_(Saqy)apyalap)) = la(a), 3 apySas)Blaw) = 15(a),
2525(&(1 Say, aesy)Blag))alapy) = €(a), (4)
>0~ H(Saqy, ag), Sag))alae Blaw)) = €(a)

for alla € H.
H is called dual quasitriangular if there is a convolution-invertible map R : H ® H — k
such that

R(a-bc) =Y o(cq), W) R(a@), @) (as), c@), b)) R(b), cay)dlawy, buy, ),
(5)
R(a,b- c) = (©)
> 7 by ¢y, ar)) Rlag), ¢2))d(bay, ags), ¢(3)) R(agay, b)) ¢ (ag)» beays ca)
Zb Ra@),be) = > Rlaq), bu)ae) - be) (7)

for all a,b,c € H.

A corepresentation or comodule under a coalgebra means vector space V and a map
B:V —V ®H obeying (id® A)o 3= (®id) o A and (id ® €) o § = id.

If F is any convolution-invertible map, F': H ® H — k obeying F'(a,0) = F(0,a) = €(a)
for all @ € H (a 2-cochain) and H is a dual quasi-Hopf algebra then so is Hr with the new
product .g, ¢p, Rp,ap, BF given by

a-pb = Y F Yaq),ba)ae) b(z F(a (3)75(3))
¢r(a,b,c) = > F~ (b(l 0(1 VE a1y, bayc))dla), bs), ¢3)) F(ag)bay, ¢y Fagy, b))
ap(a) = 3 F(Sa(l 3))a(a 2))
(a) = X F Haqy, Sag))Blag))
)

3
> FT (b(l aqy)R(ae), b)) F(ag), b))
(8)
for all a,b,c € H. This is the dual version of the twisting operation or ‘gauge equivalence’
of Drinfeld, so called because it does not change the category of comodules up to monoidal
equivalence.

So the notion of comodule quasialgebra with the approach described in [6] is,

Definition 1.1. A G-graded algebra A is quasiassociative if is a G-graded vector space A =
Dgeq Ay that satisfies
(ab)c = (;5(&, 6, E)a(bc), VaeAl—l,beA&ceAaa (9)

for any invertible group cocycle ¢ : G Xx G x G — K* with

d(zy, z,t)p(x,y, 2t)
Pz, yz,t)

¢(x7 y? Z)¢(y7 Z7 t) = ) ¢(x7 07 y) = 17V':U7 y7 z7t 6 G' (10)



(= Ap is an associative algebra and A, is an Ap- bimodule, Vg € G)

Examples of quasiassociative algebras are KpG algebras: KpG is the same vector space
as the group algebra K G but with a different product a.b = F(a,b)ab,V, pe, where F is a
2-cochain on G. For this class of algebras the cocycle ¢ depends on F,

F(z,y)F(zy,2)

AoV 2 = oy ) e

z,y,z € G (11)

_ Flzw)
F(y,z)
important role in the study of these algebras because it measures the commutativity.

and measures the associativity of the algebra. Also the map R(z,y) , T,y € G has an

2 Examples of KpG algebras

In this section we exemplify some results that we have proved in [4,7]. Some known classes of
KrG algebras were studied and were characterized by the properties of the cochain F. For
example, we have studied some conexions between alternative KrG algebras and composition

algebras,

Theorem 2.1. krpG is an alternative algebra if and only if for all x,y € G we have,

¢~ Ny, x,2z) + R(z, )¢~ (z,y,2) = 1+ R(z,y)

(12)
(z,y,2) + R(z,9)9(x, 2,y) = 1+ R(z,y).

In this case, ¢(x,x,y) = ¢(z,y,y) = ¢(x,y,z) =1

Theorem 2.2. If G ~ (Z3)" then the Euclidean norm quadratic function defined by q(x) =1
for all € G makes krG a composition algebra if and only if F?(x,y) = 1 for all x,y € G
and F(z,z2)F(y,yz) + F(x,yz)F(y,xz) =0 for all x,y,z € G with x # y.

Theorem 2.3. If o(x) = F(x,x)x for all x € G is a strong involution, and F? = 1, then the
following are equivalent,

i) krG is an alternative algebra,

it) kpG is a composition algebra.

Cayley Dickson Process was studied also in [6], and it was proved that after applying
this process to a KpG algebra we obtain another K ;G algebra related to the first one which

properties are predictable. In fact,

Theorem 2.4. Let G be a finite abelian group, F' a cochain on it (kpG is a G-graded quasial-
gebra). For any s : G — k* with s(e) = 1 we define G = G x Zy and on it the cochain F and

function s,



F(x,y) = F(2,y), F(z,vy) = s(z)F(2,y),
F(vz,y) = F(y,z), F(vz,vy) = as(@)Fy, ),
5(z) = s(x),s5(ve) = =1 for all x,y € G.

Here x = (z,€) and vr = (v,v) denote elements of G, where Zy = {e,v} with product

1/226.

If o(x) = s(z)z is a strong involution, then kG is the algebra obtained from Cayley-
Dickson process applied to kpG.

We conclude that if G = (Z2)" and F = (—1)/ then the standard Cayley-Dickson process
has G = (Z5)"*! and F = (—1)/. Using the notation & = (z1,--- ,2,) € (Z2)" where
z; € {0,1} we have

—

f((f, xn—i—l)a (ga yn—i-l)) = f(f7 y)(l - xn—i—l) + f(?ja f)-Z'n—i-l + yn—i-lf(fy :i:) + Tn4+1Yn+1-
Theorem 2.5.

(i) The ‘complex number’ algebra has this form with G = Zs, f(x,y) = zy,x,y € Zy where
we identify G as the additive group Zs but also make use of its product.

(i) The quaternion algebra is of this form with
G =7y x Zo, f(Z,9) = x1y1 + (z1 + 22)y2
where & = (z1,x9) € G is a vector notation.
(iii) The octonion algebra is of this form with

G =2y x Zy x Za, f(Z,§) = Y _ wiy; + 12273 + 119273 + 2122Y3.
1<j

(iv) The 16-onion algebra is of this form with
é:ZQXZQXZQXZQ

and

gl

() =D wyi+ Y. mwye+ Y, TEY A+ Y TlYkda.
i<j itj £kt distinct 1,5,k iEj Ak

Now consider a n dimensional vector space V over a field K with characteristic not 2.
Define in V' a nondegenerate quadratic form q . We know that there is an orthogonal basis
{e1,--+ ,en} of V with q(e;) = ¢; for some ¢g; # 0. The Clifford algebra C(V,q), is the
associative algebra generated by 1 and {e;} with the relations e? =gq;.1,e;e5+eje; = 0,Vi # j.
The dimension of C'(V, q) is 2" and it has a canonical basis {e;, ---e;,[1 < iy <ig--- <) <

In [9] we have studied Clifford Algebras as quasialgebras KrpG and some of their repre-

sentations,



Theorem 2.6. The algebra kpZy can be identified with C(V,q), where F € Z*(G,k) is

Ziﬂiyj n
defined by F(x,y) = (—=1)7<¢ quiyi where © = (z1,---x,) € ZY and twists kG into a
i=1
cotriangular Hopf algebra with R(z,y) = (—1)P@PW+2Y ywhere p(z) = Yo xi and x -y is the
dot product of Zs-valued vectors.

C(V,q) is a superalgebra considering the Z; graduation induced by the map o(e,) =
(—1)P®)e, extended linearly.

Theorem 2.7. C(VaW,qdp) ~ C(V,q) ® C(W,p) as super algebras.

(This result is known in the classical theory but with our approach is easier to prove. It
is clear from the form of F that F((x, '), (y,y)) = F(x,y)F (', )(—=1)?*)r®) where {e,}
is a basis of V and {e,/} of W with the multiplication defined in the algebra product by
(a@c)(b®d)=a -b®c-d(—1)rrd))

We now use the above convenient description of Clifford algebras to express a ‘doubling
process’ similar to the Cayley Dickson process. Let A be a finite-dimensional algebra with
identity 1 and o an involutive automorphism of A. For any fixed element ¢ € k* there is a

new algebra of twice the dimension, A = A @ Av, which multiplication is given by
(a+bv)-(c+dv)=a-c+qb-o(d)+ (a-d+b-0o(c))v,
and with a new involutive automorphism,
d(a+vb) = o(a) — o(b)v.

We will say that A is obtained from A by Clifford process.

Theorem 2.8. Let G be a finite Abelian group and F a cochain as above. So krpG is a G-
graded quasialgebra and for any s : G — k* with s(e) = 1 and any q € k*, define G = G x Zy
and

F(a,yv) = F(z,y) = F(z,y),

F(av,y) = s(y)F(z,y), F(zv,yv) = ¢s(y) F(z,y),
5(z) = s(x), §(xv) = —s(x) for all x,y € G.

Here © = (x,e) and xv = (x,71) where n with n? = e is the generator of the Zy. If o(e,) =
s(z)e, is an involutive automorphism then kG is the Clifford process applied to krG.



Theorem 2.9. For any s : G — k* and q € k* as above the kpG given by the generalised
Clifford process has associator and braiding
o(z,yv, 2) = d(z,y, 20) = d(x,yv, 2v) = ¢(z,y, 2),

) =¢ TV, Yyv, z) = ay ZU) = IV, Yyv,zv) = xr zZ S(yZ)
gb(:w,y,z) —qb( » Yvu, ) qb( Y, ) qb( YU, ) ¢( Y )s(y)S(Z)

R(z,y) = R(z,y), R(zv,y) = s(y)R(z,y)
D _ R(l’, y)

Rao, yo) = Riz,y)"Y)

s(z)

Theorem 2.10. If s defines an involutive automorphism o then

1. kpG is alternative iff kpG is alternative and for all x,y,z € G, either ¢(z,y,2) =1 or
s(z) =s(y) =s(2) =1.

2. kpG is associative iff kpG is associative.
If F and s have the form F(z,y) = (=1)/@%) s(z) = (=1)¢®), ¢ = (=1)¢ for some Z,-

valued functions f, £ and ( € Z5 then the generalised Clifford process yields the same form with
G = Z;L+1 and f((l', xn-i—l)a (y7 yn-i—l)) = f(x, y)—i_(yn-i-lg—'_g(y))xn-i-lu g(l’, xn—i—l) - §($)+xn+1

Theorem 2.11. Starting with C(r,s) the Clifford process with ¢ = 1 yields C(r +1,s). With
q = —1 it gives C(r,s +1). Hence any C(m,n) with m > r,n > s can be obtained from

successive applications of the Clifford process from C(r,s).

So as an immediate consequence of the last theorem we can say that starting with C'(0,0) =
k and iterating the Clifford process with a choice of ¢; = (—1)% at each step, we arrive at the
standard C(V, q) and the standard automorphism o(e,) = (—1)?®)e,.

Besides we must note that the Clifford Process is a twisting tensor product A = A ®,
C(k,q) where C(k,q) = k[v] with the relation v? = ¢, and va = o(a)v for all a € A.

3 Quasirepresentations and quasilinear algebra

In [9] we have extended Clifford process also to representations proving that,



Theorem 3.1. If W is an irreducible representation of A not isomorphic to W, defined by

the action of o(a) then W = W @ W, is an irreducible representation m of A obtained via the

0 1
mm=<q0>,

a 0
m(a) = ( 0 o(a) )

are the action on W @& W in block form (here m(a) is the explicit action of a in the direct sum

Clifford process with q. Here

representation W & Wy ). If W, W, are isomorphic then W itself is an irreducible representa-

tion of A for a suitable value of q.
More generaly we have defined an action of a quasialgebra in [6],

Theorem 3.2. A representation or ‘action’ of a G-graded quasialgebra A is a G-graded vector
space V' and a degree-preserving map o : AQV — V such that (ab) ov = ¢(|al, |b], |v|)a o (bo

v),1ov =v on elements of homogeneous degree. Here |a ov| = |al|v].

Theorem 3.3. Let |i| € G fori=1,---,n be a choice of grading function. Then the usual
n X n matrices M, with the new product
(il [k| ", k(4] )

i i ak
(0 s = 2y a1 "

form a G-graded quasialgebra M, 4, where |E;7| = |i||j|™* € G is the degree of the usual basis
element of M,,. An action of a G-graded quasialgebra A in the n-dimensional vector space

with grading |i| is equivalent to an algebra map p: A — M, 4.

Several properties of quasilinear algebra can be proved using this class of matrices with
a “quasi-associative” multiplication. For example we can study a quasi-LU decomposition
for some matrix X € M, 4:(Note that this study generalizes the known LU decomposition
of a matrix in the usual associative algebra of square matrices n x n.) We began studying

elementary “quasi-matrices” and “quasi-elementary” operations and we can conclude that,

Theorem 3.4. Let X € M, 4. There are quasi-permutation matrices Py, j,, P, jys s Py jys
—1

an upper triangular matriz U and a lower triangular matriz L with l; = ¢(i~1, 4,571 such
that Py, j, (P 5 (- (Piy j, X)) = LU



4 Division quasialgebras

In [7] we have studied cocycles and some properties of quasialgebras graded over the ciclic
group Z,. Using the definition of a 3-cocycle in a group G we proved that a Zs-graded
quasialgebra is either an associative superalgebra or an antiassociative superalgebra (aaq-
algebra) with cocycle defined by,¢(x,y, z) = (—1)**,Va,y, 2, € Zs.

In Z3 every cocycle has the form

w e
111 = a, Q112 = B, P121 = —, P122 = &, Pa11 = ——,
wao I} Ow
w
P12 = QW, P21 = ——, P20 = o
for some a, f € K* with w a cubic root of the unity. Here ¢(1,1,1) = ¢111, etc. is a shorthand.

Definition 4.1. The quasiassociative algebra A = ©yeqAy is said to be a quasiassociative
division algebra if it is unital (1 € Ag) and any nonzero homogeneous element has a right and

L and

a left inverse. Given such an algebra we denote the right inverse of 0 # u € Ay by u™
the left inverse by uzl. Notice that, since Ag is a division associative algebra, the left and

right inverses of any nonzero element of Ay coincide.

For any nonzero u € Ay, the elements w~! and uzl are in A_;, and we have ul =

_ _ h,—h,— -1 —
o(—g,9, —g)uLl. For 0 #u € Ay and 0 # w € Ay, we have (uw)™! = Mw Lyt

It is easy to prove that for division quasiassociative algebra, the null part Ag is a division
associative algebra and A, is an Ag-bimodule satisfying A, = Aguy = ugAp, for any nonzero

ug € Ay, any g € G.

In [5] we have studied division antiassociative algebras and characterized antiassociative
algebras with semisimple (artinian) even part and odd part that is a unital bimodule for the

even part.

Theorem 4.1. Given a division (associative) algebra D, o an automorphism of D such that
there is an element a € D* with 0® = 1, : d — ada™' and with o(a) = —a, on the direct sum

of two copies of D: A = D @ Du (here u is just a marking device), define the multiplication
(do + dyu)(eg + e1u) = (dpeg + dyo(eq)a) + (dper + dio(eg))u. (13)

Then with Ag = D and A1 = Du, this is easily seen to be a division aaq-algebra. We
will denote by < D,o,a > the division aaq-algebra A described before. The aaq-algebras

< D,o,a > exhaust, up to isomorphism, the division aaq-algebras with nonzero odd part.

10



In general, it was proved in [2] that,

Theorem 4.2. Let D be a division associative algebra over K, G a finite abelian group and
¢:GxGxG— K* a cocycle. Suppose that for each g,h,l € G, there are automorphisms

g of D and non zero elements cqp of D satisfying

Vgt = Contgincy ), (14)

and
CgnCathi = D(g, b, )hg(cni)egnti (15)
In the direct sum of |G| copies of D, A = @®geDuy (uy is a marking device with ug = 1),

consider the multiplication defined by

di(daug) = (didy)ug
(diug)dy = (dibg(da))ug (16)
(diug)(doup) = (d1vg(d2)cg,n)tgshs

for di,dy € D and g,h € G. Then with Ag = D and Ay = Dugy,A is a quasiassociative
G-graded division algebra. Conversely, every quasiassociative G graded division algebra can

be obtained this way.

As an interesting particular case of division quasialgebras we have studied the alternative
ones in [4]. We called strictly alternative algebras the alternative algebras that are not

associative.

Theorem 4.3. There are no strictly alternative division quasialgebras over fields of charac-

teristic 2.

Let A = @geq Ay be a strictly alternative division quasialgebra. Then G/N = Zy X Zy x Z
where N ={x € A: (z,A, A) =0}.

In [4] we have proved that any strictly alternative division quasialgebra over a field of
characteristic different from 2 can be obtained by a sort of “graded Cayley-Dickson doubling

process” built from the associative division algebra Ay = @genAy.

Definition 4.2. Let K be a field, G an abelian group and N < S < T < G a chain of
subgroups with [T : S] =2 and T = SU Sg with g*> € N. Let 3: G +— K be the map given by
B(g)=1ifge N and B(g9) =—-1if g N. Let F : S x S — K* be a 2-cochain such that

F(Sl, 82)

F(s2,51) = ﬁ(Sl)ﬁ(S2)ﬁ(8182)(: (08)(s1, 82))

11



for any s1,s9 € S and let 0 # o € K. Then the 2-cochain F = Firga) : TxT — K* defined
by
F(z,y) = F(z.y
F(z,yg)
F(zg,y)
F(zg,y9) = B

for any x,y € S, is said to be the 2-cochain extending F' by means of (T, g, ).

I

’11
—~~
s

8

(17)

Theorem 4.4. Let k be a field of characteristic # 2 and K/k a field extension. Let G be an
abelian group, N a subgroup of G such that G/N = Zy X Zy X Zy and Ny and No subgroups
of G such that N < Ny < Ny < G. Let  : G — K* be the map given by [(z) = 1
for z € N and B(x) = —1 for x & N and Fy : N X N — K* a symmetric 2-cocycle. Let
91,92, 93 € G with Ny = (N, g1), Na = (N1, g2) and G = (N3, g3), and let ay, oo, ag be nonzero
elements in K. Consider the extended 2-cochains F1 = (Fo)(ny,g1,01) 2 = (F1)(N2,g2,00) aNd
F; = (Fg)(ag&%). Then Kr,G is a strictly alternative division quasialgebra over k.

Conversely, if k is a field and A is a strictly alternative division quasialgebra over k then
the characteristic of k is # 2 and there are K,G, N, Fy, a1, a9, as satisfying the preceding
conditions such that A= Kp,G.

5 Quasialgebras with simple null part

In [5] we have classified antiassociative quasialgebras which even part is semisimple (artinian)

and the odd part is a unital bimodule for the even part. We have concluded that,

Theorem 5.1. Any unital aag-algebra with semisimple even part is a direct sum of ideals

which are of one of the following types:
(i) A= Ay ® Ay with Ay simple artinian and (Ay)? # 0.

(ii) A = Ay @ Ay with Ag = By ® By, where By and By are simple artinian ideals of Ay,
and Al = V12 ) V21, where V122 =0= V221, V12V21 = Bl and V21V12 = BQ.

(iii) A trivial unital aag-algebra with a semisimple even part.
To better understand the last theorem consider two types of aag-algebras with semisimple
artinian even part:

e Let A be a division aag-algebra and consider a natural number n. The set Mat,(A) is

an aaqg-algebra whose even part is Mat, (Ay);
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e Let A be a division aaq-algebra and consider natural numbers n, m. The set J\Y(Ztnm(D)

of (n4+m) x (n +m) matrices over D, with the chess-board Zs-grading:

Maty, (D)o = {(g 2) a € Mat,(D), b € Matm(D)}

(18)

__ 0
Maty (D)1 = { ( g) 10 € Matyym(D), w € Matmxn(D)}
w

with multiplication given by,
ar vy az w2\  [aiaz +viwe  ayvz + viby
wy by wy by wiag +bywy  —wyve +biby)
]\/4\(;75”7m(D) is an aag-algebra, whose even part is isomorphic to Mat, (D) x Mat,(D).

Then,

Theorem 5.2. Any unital aag-algebras with semisimple even part A = Ay ® A1 is a finite
direct sum of ideals A =A@ --- ® A" ® Al ... @ A5 @ A where:

Fori=1,---,r, A" is isomorphic to Matm.(Ai) for some n; and some division aaq-algebra
A?.

Forj=1,--- s, A s isomorphic to ]\Tatnj,mj (D7) for some division algebra D7 and
natural numbers n; and m;.

A is a trivial unital aaq-algebras with semisimple even part. Moreover, r, s, the n;’s and
the pairs {nj,m;} are uniquely determined by A; and so are (up to isomorphism) A, the

division aaq-algebras A'’s and the division algebras D7’s.

In general if A = ®yeqAy is a quasiassociative algebra over the field K , with simple
artinian null part B = A, then it is isomorphic to VR p AR pV*, where A is a quasiassociative
division algebra, V' is a simple Agp—module and D = Enda, (V). This is equivalent to the

following theorem [1],

Theorem 5.3. Any quasiassociative algebra A with simple artinian null part is isomorphic
to an algebra of matrices Mat, (A), for some integer n and quasiassociative division algebra
A. The integer n is uniquely determined by A and so is, up to isomorphism, the division

algebra A.

13



6 Wedderburn quasialgebras

A Wedderburn quasialgebra is a unital quasialgebra that satisfies the descending chain con-
dition on graded left ideals and with no nonzero nilpotent graded ideals [3]. In this paper it

was proved an analogous of the Wedderburn-Artin Theorem for quasialgebras.

The first result obtained in [3] it was that if A is a Wedderburn quasialgebra, then the
null part A° is a Wedderburn algebra.

Consider natural numbers ny,...,n,, define the matrix algebra My, +...4n, (k) having a

basis consisting of the elements

Kl _
Eij = By kot (19)

where, as usual, Ej;; denotes the matrix with 1 in the (¢,j) entry and 0’s elsewhere. The

multiplication is,

k
Let R be a quasialgebra with cocycle ¢. Consider in G a grading function |1],...,|r| € G
and take natural numbers nq,--- ,n,. Define the set of matrices,
MY . (R)=<all >=<Eflz>:2€R1<ij<r1<k<n;,1<1<n; (21)

that is a G-graded algebra for the gradation,
|| = fill]]5]7! (22)

for homogeneous x, and multiplication given by

. N T -1 T -1
K.opa o2l |31~ LIy lnl = Dozl Ll ylinl =) kg
iyl = 60,0, TR - xY); . 23
oY = om0 G i e ) e Y
In fact, Mffl,,,,,nr (R) is a quasialgebra with cocycle ¢.

The main result in [3] is,

Theorem 6.1. Let A be a Wedderburn quasialgebra. Then A is isomorphic to a finite direct

sum of quasialgebras of the form Mﬁh,,,,nr (15), where D is a division quasi-algebra with cocycle

®.
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Freudenthal’s magic supersquare in characteristic 3

Isabel Cunha* Alberto Elduquef

Abstract

A family of simple Lie superalgebras over fields of characteristic 3, with no counter-
part in Kac’s classification in characteristic 0 have been recently obtained related to an
extension of the classical Freudenthal’s Magic Square. This article gives a survey of these

new simple Lie superalgebras and the way they are obtained.

1 Introduction

Over the years, many different constructions have been given of the excepcional simple Lie
algebras in Killing-Cartan’s classification, involving some nonassociative algebras or triple
systems. Thus the Lie algebra G5 appears as the derivation algebra of the octonions (Cartan
1914), while F; appears as the derivation algebra of the Jordan algebra of 3 x 3 hermitian
matrices over the octonions and Ejg as an ideal of the Lie multiplication algebra of this Jordan
algebra (Chevalley-Schafer 1950).

In 1966 Tits [Tit66] gave a unified construction of the exceptional simple Lie algebras,
valid over arbitrary fields of characteristic # 2,3 which uses a couple of ingredients: a unital
composition algebra (or Hurwitz algebra) C', and a central simple Jordan algebra J of degree
3:

T(C,J)=0ex C® (Co® Jy) ®oer J,

where Cy and Jy denote the sets of trace zero elements in C' and J. By defining a suitable
Lie bracket on 7 (C,J), Tits obtained Freudenthal’s Magic Square ([Sch95, Fre64]):

*Departamento de Matemadtica, Universidade da Beira Interior, 6200 Covilha, Portugal.  Email:
icunha@mat.ubi.pt. Supported by Supported by Centro de Matematica da Universidade de Coimbra — FCT.
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elduque@unizar.es. Supported by the Spanish Ministerio de Educacién y Ciencia and FEDER (MTM 2004-
081159-C04-02) and by the Diputacién General de Aragén (Grupo de Investigacién de Algebra)

17



T(C,J) | Hy(k) Hs(kxk) HzMato(k)) H3(C(k))
k Aq Ay Cs Fy
kxk Ay A B Ay As Eg
Mats (k) Cs As Dg FE~
C(k) Fy Eg E7 By

At least in the split cases, this is a construction which depends on two unital composition
algebras, since the Jordan algebra involved consists of the 3 x 3 hermitian matrices over
a unital composition algebra. Even though the construction is not symmetric on the two

Hurwitz algebras involved, the result (the Magic Square) is symmetric.

Over the years, several symmetric constructions of Freudenthal’s Magic Square based on
two Hurwitz algebras have been proposed: Vinberg [Vin05], Allison and Faulkner [AF93] and
more recently, Barton and Sudbery [BS, BS03|, and Landsberg and Manivel [LM02, LMO04]
provided a different construction based on two Hurwitz algebras C, C’, their Lie algebras of
triality tei(C), tri(C’), and three copies of their tensor product: ¢;(C ® C'),i = 0,1,2. The
Jordan algebra J = H3(C”), its subspace of trace zero elements and its derivation algebra can

be split naturally as:
J = H3(C") =k & (&iou(C")),
Jo = k2@ (@Xou(C)),
derJ = tri(C) @ (@22:0%(0/)),

and the above mentioned symmetric constructions are obtained by rearranging Tits construc-

tion as follows:
T(C,J)=0exC @ (Co® Jy) ®oerJ
2 er C @ (Co ® k) @ (97-9Co ® 1;(C")) @ (1i(C") @ (Bgti(C")))

=~ (i(C) @ ti(C") @ (8201 (C © ).

This construction, besides its symmetry, has the advantage of being valid too in charac-
teristic 3. Simpler formulas are obtained if symmetric composition algebras are used, instead
of the more classical Hurwitz algebras. This led the second author to reinterpret the above

construction in terms of two symmetric composition algebras [Eld04].

An algebra endowed with a nondegenerate quadratic form (S, *, q) is said to be a symmetric

composition algebra if it satisfies

{ q(z = y) = q(x)q(y),

gz xy,2) = q(z,y * 2).
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for any x,y,z € S, where q(z,y) = q(x + y) — q(x) — q(y) is the polar of q.

Any Hurwitz algebra C' with norm ¢, standard involution z +— Z = ¢(z,1)1 — z, but with

new multiplication
T xy =Ty,
is a symmetric composition algebra, called the associated para-Hurwitz algebra.

The classification of symmetric composition algebras was given by Elduque, Okubo, Os-
born, Myung and Pérez-Izquierdo (see [EM93, EP96, KMRT98]). In dimension 1,2 or 4, any
symmetric composition algebra is a para-Hurwitz algebra, with a few exceptions in dimension
2 which are, nevertheless, forms of para-Hurwitz algebras; while in dimension 8, apart from
the para-Hurwitz algebras, there is a new family of symmetric composition algebras termed

Okubo algebras.
If (S, ,q) is a symmetric composition algebra, the subalgebra of s0(5,q)? defined by
ttl(S) = {(dov d17d2) € 50(57 Q)g : dO(x * y) = dl(ﬂf) *Y + Tk dg(y)Vx,y € S}

is the triality Lie algebra of S, which satisfies:

0 if dimS = 1,

) 2-dim’l abelian if dim S = 2,
tri(S) =

50(Sp, )3 if dim S = 4,

k50(5, q) if dim S = 8.

The construction given by Elduque in [Eld04] starts with two symmetric composition

algebras S, S’ and considers the Zy x Zs-graded algebra
g(S,8") = (&i(S) @ ti(S)) @ (B2_gui(S ® ),

where ¢;(S ® S’) is just a copy of S ® S’, with anticommutative multiplication given by:

tri(.S) @ tri(9”) is a Lie subalgebra of g(S,.5’),

[(d07 d17d2)7 Li(x ® x/)] =l (dl(‘r) ® x’),

[( 67 ,l’d/2)’Li(x ®$/)] = Li($ ® d;(ﬂj,)),

iz ® @), tip1(y @ Y)] = tig2 ((z x y) ® (z/ xy/)) (indices modulo 3),

iz ®@2"), 0y @ y)] = ' (@, y)0 (tay) + al,)0" (¢}, ),
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for any =,y € S, o',y € S, (do,d1,d2) € ti(S) and (dp, d}, d5) € «i(S’). The triple ¢, =
(a(z, )y—aly, )z, 3q(z,y)1—rly, $q(x,y)1—Iyry) is in ti(S) and 0 : (do, d1,d2) — (d2, do, d1)
is the triality automorphism in tri(S); and similarly for ¢’ and 6’ in tri(S”).
With this multiplication, g(5,S’) is a Lie algebra and, if the characteristic of the ground
field is # 2, 3, Freudenthal’s Magic Square is recovered.
dim S’
9(s,8) | 1 2 4 8
1 Ay Ag Cs3 Fy
2 Ay As® Ay As Eg
4 Cs As D¢ Ey
8 Fy Es E; Eg

dim S

In characteristic 3, some attention has to be paid to the second row (or column), where

the Lie algebras obtained are not simple but contain a simple codimension 1 ideal.
dim S’
g9(S,9) | 1 2 4 8
1 A Ay Cy Iy
2 Ay Ay Ay A5 Eg
4 Cs As D¢ FEr
8 Fy Fs E; Eg

dim S

e Ay denotes a form of pgly, so [Ag, Ag] is a form of psl;.
o Ay denotes a form of pgls, so [As5, As] is a form of pslg.

e Ej is not simple, but [Eg, Eg] is a codimension 1 simple ideal.

The characteristic 3 presents also another exceptional feature. Only over fields of this
characteristic there are nontrivial composition superalgebras, which appear in dimensions 3
and 6. This fact allows to extend Freudenthal’s Magic Square with the addition of two further
rows and columns, filled with (mostly simple) Lie superalgebras.

A precise description of those superalgebras can be done as contragredient Lie superalge-
bras (see [CEa] and [BGL]).

Most of the Lie superalgebras in the extended Freudenthal’s Magic Square in character-
istic 3 are related to some known simple Lie superalgebras, specific to this characteristic,
constructed in terms of orthogonal and symplectic triple systems, which are defined in terms

of central simple degree three Jordan algebras.
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2 The Supersquare and Jordan algebras

It turns out that the Lie superalgebras g(S;, S1,2) and g(Sy, S12), for r = 1, 4 and 8, and their
derived subalgebras for r = 2, are precisely the simple Lie superalgebras defined in [Eld06b]
in terms of orthogonal and symplectic triple systems and strongly related to simple Jordan

algebras of degree 3.

Let S be a para-Hurwitz algebra. Then,

9(S1,2,9) = (tri(S12) ® tri(9)) & (B_Li(S12® 9))
= (sp(V) @ V)@ ti(9)) @ (82ou(1©9)) @ (B2ou(V © 9)).

Consider the Jordan algebra of 3 x 3 hermitian matrices over the associated Hurwitz

algebra:

Qy az  ap

93]

J = H3(5) = ay oy ap | :ag,a1,00 €K, ag,a1,a2 €5

a ag Q2
=~ 3@ (@ti(S)).
In [CEDb, Theorem 4.9.] it is proved that:

9(S512,9)5 = sp(V) @oerJ (as Lie algebras),

1%

9(S12,8)1 =V ®J (as modules for the even part).

Therefore, some results concerning Zs-graded Lie superalgebras and orthogonal triple
systems ([Eld06b]) allow us to conclude that J = Jy/k1 is an orthogonal triple system with
product given by

[292] = (zo(yoz) —yo(zoz))
(T =a+ kl).
Orthogonal triple systems were first considered by Okubo [Oku93].

Theorem 1 (Elduque-Cunha [CEb]). The Lie superalgebra g(Si 2,5) is the Lie superalgebra
associated to the orthogonal triple system J = Jo/k1, for J = H3(S).

In order to analyze the Lie superalgebras g(Sa2,5), let V' be, as before, a two dimensional

vector space endowed with a nonzero alternating bilinear form. Assume that the ground field
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is algebraically closed. Then (see [CEDb]) it can be checked that g(Ss,S) can be identified to
a Zs-graded Lie algebra

9(Ss, ) ~ (sp(V) @ (54, 9)) & (V@ T(S5)),
for a suitable g(S4, S)-module T'(S) of dimension 8 + 6dim S.

In a similar vein, one gets that g(S42,.5) can be identified with

8(S12,5) = g(S4,5) @ T(S).

Hence, according to [CEb, Theorem 5.3, Theorem 5.6]:
Corollary 1 (Elduque-Cunha). Let S be a para-Hurwitz algebra, then:
1. T(S) above is a symplectic triple system.

2. 9(S4,2,5) =Zinder T & T is the Lie superalgebra attached to this triple system.

Remark 1. Symplectic triple systems are closely related to the so called Freudenthal triple
systems (see [YA75]). The classification of the simple finite dimensional symplectic triple
systems in characteristic 3 appears in [Eld06b, Theorem 2.32] and it follows from this clas-

sification that the symplectic system triple T(S) above is isomorphic to a well-known triple

k J _
system defined on the set of 2 X 2-matrices <J k:) , with J = Hs(S5).
The next table summarizes the previous arguments:

g Sl S2 54 Sg
S12 | Lie superalgebras attached to orthogonal
triple systems J = Jy/kl

S42 | Lie superalgebras attached to symplectic

tripl t koJ
riple systems
ple sy J &

(J a degree 3 central simple Jordan algebra)
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3 Final remarks

In the previous section, the Lie superalgebras g(S,, S12) and g(Sy, Sa2) (r =1,2,4,8) in the
extended Freudenthal’s Magic Square have been shown to be related to Lie superalgebras
which had been constructed in terms of orthogonal and symplectic triple systems in [E1d06b].

Let us have a look here at the remaining Lie superalgebras in the supersquare:

The result in [CEa, Corollary 5.20] shows that the even part of g(S1,2, 51,2) is isomorphic
to the orthogonal Lie algebra so7(k), while its odd part is the direct sum of two copies of
the spin module for so7(k), and therefore, over any algebraically closed field of characteristic
3, 9(S1,2,51,2) is isomorphic to the simple Lie superalgebra in [Eld06b, Theorem 4.23(ii)],

attached to a simple null orthogonal triple system.

For g(S4.2,S54,2), as shown in [CEa, Proposition 5.10 and Corollary 5.11], its even part is
isomorphic to the orthogonal Lie algebra so013(k), while its odd part is the spin module for
the even part, and hence that g(S42,S42) is the simple Lie superalgebra in [Elda, Theorem
3.1(ii)] for I = 6.

Only the simple Lie superalgebra g(S1 2, S4,2) has not previously appeared in the literature.
Its even part is isomorphic to the symplectic Lie algebra spg(k), while its odd part is the
irreducible module of dimension 40 which appears as a subquotient of the third exterior
power of the natural module for spg(k) (see [CEa, §5.5]).

Also g(S1,2,51,2) and g(S1,2, S4,2) are related to some orthosymplectic triple systems [CEb],

which are triple systems of a mixed nature.

In conclusion, notice that

the main feature of Freudenthal’s Magic Supersquare is that among all the Lie superal-
gebras involved, only g(S1,2,51) = psly o has a counterpart in Kac’s classification in charac-
teristic 0. The other Lie superalgebras in Freudenthal’s Magic Supersquare, or their derived

algebras, are new simple Lie superalgebras, specific of characteristic 3.
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On graded Lie algebras and intersection cohomology

G. Lusztig*

This is the text of a lecture given at the University of Coimbra in June 2006; a more

complete version will appear elsewhere.

1

Let G be a reductive connected group over C. Let LG be the Lie algebra of G. Let ¢ : C* —

G be a homomorphism of algebraic groups. Let
G ={g € G;gi(t) = 1(t)g for all t € C*}.
We have LG = ®,cz L, G where
L,G ={z € LG;Ad((t))z =t"z Vtek"}.
Now G* acts on LG by the adjoint action. If k # 0 this action has finitely many orbits. Fix
A={n,—n}

where n € Z — {0}. For n € A let J ¢ be the set of all isomorphism classes of irreducible
G'-equivariant local systems on various G*-orbits in L,G. For £,£’ in T, (on the orbits
0,0’) and i € Z let m;.z o be the multiplicity of £’ in the local system obtained by restricting
to O’ the i-th cohomology sheaf of the intersection cohomology complex IC(O, L).

Let mg o = > mi,gyvdimo_dim(y_)

The problem is to compute it.

. These form the entries of the multiplicity matriz.

Ezample 1. Let V be a vector space of dimension 4 with a nonsingular symplectic form.
Let G = Sp(V). Let V4,V_; be Lagangian subspaces of V such that V.= V; @ V_;. Let
A =1{2,-2}. Define t: C* — G by )z =tzifx € Vi, )z =t 1z if x € V_q.

We have LyG = S?Vy, L_oV = S?(V;) and Jp,¢ consists of 4 local systems

L,, C on the orbit of dimension 0;

L, C on the orbit of dimension 2;

L5, C on the orbit of dimension 3;

LA, non-trivial on the orbit of dimension 3.

*Department of Mathematics, M.I.T., Cambridge, MA 02139
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Ezample 2. Let V' be a vector space of dimension d. Let G = GL(V'). Assume that V is
Z-graded: V = @pezV. Define 1 : C* — G by «(t)x = t*x for € V. Take A = {1,—1}.
Let L1G = {T € End(V); TV}, C Vi11Vk}. The G*-orbits on L1G are in bijection with the
isomorphism classes of representations of prescribed dimension of a quiver of type A. In this
case our problem is equivalent to the problem of describing the transition matrix from a PBW
basis to the canonical basis of a quantized enveloping algebra U™ of type A.

This suggests that to solve our problem we must immitate and generalize the construction

of canonical bases of U,

2

Let B be the canonical basis of U} the plus part of a quantized enveloping algebra of finite
simply laced type.
B was introduced in the author’s paper in J.Amer.Math.Soc. (1990) by two methods:

e topological: study of perverse sheaves on the moduli space of representations of a quiver.

e algebraic: define a Z[v]-lattice £ in U} and a Z- basis By of £/vL (basis at v = 0) in
terms of PBW-bases then lift By to B.

Another proof of the existence of B was later given by Kashiwara (Duke Math.J., 1991).

3

Let n € A. Let £ € Jr,q on an orbit O. We say that £ is ordinary if there exists a
G-equivariant local system F on C (the unique nilpotent G-orbit in LG containig @) such
that

L appears in F|o and (C,F) appears in the Springer correspondence for G.

It is known that for £, L’ € Tz, g we have

L ordinary, mg ¢ # 0 implies £’ ordinary;

L' ordinary, mg s # 0 implies £ ordinary.

Let 3%, = {£ € Jp,,¢; L ordinary}.

We say that (G, ) is rigid if there exists a homomorphism v : SLy(C) — G which maps
the diagonal matrix with diagonal entries t",t~™ to ¢(t?)x (centre of G) for any ¢t € C*.

Definition. Let K(L,G) be the Q(v)-vector space with two bases (£), (£) indexed by
JOL’;IdG where L=, mg /L.

4

Let U, be as in §2. Let (e;);cs be the standard generators of U,f. Then Ul is the quotient

of the free associative Q(v)-algebra with generators e; by the radical of an explicit symmetric
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bilinear form on it. We have

+ _ +
Uv - 69I/ljv,u
where U;f ., is spanned by the monomials
c1 c2 Ccr
e e ... e

cs = v(i) for any ¢« € I. Thus U; is the quotient of the Q(v)-vector space

8315 =1

with >
C1 ,C2 Cr

spanned by e;le;” ... e;" as above by the radical of an explicit symmetric bilinear form on it.

5 Combinatorial parametrization of set of G'-orbits in L, G
Let P be the set of parabolic subgroups of G. Let
Pt ={P € P;(C) C P}

If P € P we set P = P/Up; we have « : C* — P naturally. Let n € A. Let P € P* be such
that (P,) is rigid. Choose a Levi subgroup M of P such that (C*) C M. Let s € [LM, LM]
be such that [s,z] = kx for any k € Z,z € Ly M. (Note that s is unique.) Let

L"G = {z € LG;[s,z] = rz},

LiG =L"GNLG.

Then
LG = EBT’E(71/2)Z;SEZL;G('

We say that P is n-good if

LUP = @re(n/2)Z;s€Z;2t/n<2r/nL¥G'

Then automatically
LM = 69re(n/2)Z;sEZ;2t/n:2r/nL:G'
Let
P, = {P € P";(P,.) is rigid, P is n-good},
P, =G"\P,.
We claim that
P, — {G" — orbits in L,G}.

Let P,LiG be as above. Then L)G = LG’ where G’ acts by Ad on L"G. Let O, be the
unique G’-orbit on L"G. Now G’ C G* hence there is a unique G*-orbit O in L, G containing
O,. The bijection above is given by P +— O. Other parametrizations of {G* — orbits in L, G}
were given by Vinberg (1979), Kawanaka (1987).
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6

Let B be the variety of Borel subgroups of G. Let B = BNP'. Let Zg = {B;B € B'}. Let
Jo=G\TJg. Let K¢ be the Q(v)-vector space with basis (Is)seg,- For Q € P* we define
a linear map (induction)
indg — f(@ — K¢
by
16 —orbit of B 7 LGt —orbit of B

where B is the inverse image of B’ under Q — Q. Let™: Q(v) — Q(v) be the Q-linear map
such that v™ = v™™ for m € Z. Define a "bar operation” 3 : K¢ — Kg by B(fIs) = fIs.

Inspired by the results in §4 we define a bilinear pairing
(:): Ko x K¢ — Q(v)

by
(Is: 1) = Y (—v)™@
Q
where Q runs over the G*-orbits on B* x B* such that priQ = S, proQ = 8§’ and if (B, B’) € Q

we set

. LU + LyU . LU +L,U

7(Q2) = —dim ToU 1 Lol + dim m;
here U, U’ are the unipotent radicals of B, B’. Let R be the radical of (). Let Kg = Kg/R.
Then (:) induces a nondegenerate bilinear pairing (:) on Kg. Note that 8 induces a map
Ko — Kg denoted again by (3. Moreover indg induces a map Kg — K¢ denoted again
by z'ndg.

For n € A and n € P,, we define subsets Z,] of K¢ by induction on dimG.

Assume that n € P,,, n # {G}. We set Z;] = indg(Zf) where P € .

We set Z;, = Uyep, iyt(cyZn- Then:

the last union is disjoint and indIG) cZPY 5 71 s g bijection.

For n € P, and P € n we set d;, = dim LoG — dim Lo P + dim L, P. Define a partial order
< on P, — {G} by

n' <n if and ony if d,y < d,.

7 <nifand only if n =17 or 0 <.

If § € Z;, we have B(§) = D ¢rcyr age, &1 where agg, € Z[v,v~ '] are unique and

age, # 0 implies 7y <nor £ =& (here § € Z),& € Z,)")

age, = 1if § =&

Also, 252 ezt U &g 6 = d¢e, for £,& € Z]. By a standard argument there is a unique
family of elements c¢ ¢, € Z[v] defined for £, &; in Z], such that

Ce6r = ZfzeZ,g Ce 20,815
ceg, 7 0 implies 1y < nor £ =& (where € € Z)],& € Z")
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ceer #0, € # & implies ce ¢y € VA

Ce gy = 1if f = 61.

For £ € Z!, we set W§ = >eez e Then BWE) = WE.

Define Y, : Kg — Kg by (Yo(z) : Z)) = 0 and = = Y,(z) + > ocez; Ye§ where
Ye € Q(v). This is well defined since the matrix ((£,£'))¢ erez; is invertible. Let

Jon = {&0 € 2L, Yo (WE,) # 0},
Let Z,, = Z], if (G, ) is not rigid. If (G,¢) is rigid let
Zy = 7! U{&:€ = Y (W) for some & € J_,,}.

We say that Z,, a PBW-basis of K. It depends on n. For £ € Z,, we define WS as follows.
W is as above if& ez . Wi = an where £ = Yn(WEOn), & € J_,,. We say that (Wﬁ) is
the canonical basis of K. It does not depend on n.

Theorem. The transition matriz expressing the canonical basis in terms of the PBW basis
Zy coincides with the multiplicity matriz (mg ) in §1 (with £, L ordinary). There is an

appropriate generalization for not necessarily ordinary L, L.
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On the quantization of a class of non-degenerate

triangular Lie bialgebras over K|[[A]]

Carlos Moreno* Joana Teles!

Abstract

Let K be a field of characteristic zero. Let IK[[h]] be the principal ideal domain of
formal series in h over IK. Let (a,][,]q,6q = dcr1) be a finite dimensional non-degenerate
triangular Lie-bialgebra over K. Let (ap,[,]a,;€a, = de(B)r1(R)) be a deformation non-
degenerate triangular Lie-bialgebra over IK[[A]] corresponding to (a,[,]a,eq = dcr1). The
aim of this talk is

a) To quantize (ap,[,]a,,ea = dc(R)r1(h)) in the framework by Etingof-Kazhdan for
the quantization of Lie-bialgebras. Let A Jte be the Hopf Q.U.E. algebra over
Y9 ry(h
K[[7]] so obtained.
b) Let (an, [;]aps€an = de(h)ri(h)) be another deformation non-degenerate triangular

Lie-bialgebra corresponding to (a,[,]a,&a, = dcri). Let A

an,Jot be its quanti-
1

zation. Let (1(h),B1(h) € a,’{@K[[hH a; be the corresponding 2-forms associated
respectively to ri(h) and 77 (%). We prove that j;}h) and j&%h) are equivalent in
the Hochschild cohomology of the universal enveloping algebra Uay if and only if
B1(h) and B} (h) are in the same class in the Chevalley cohomology of the Lie algebra
(@n, [; Jan) over KI[A]].

Keywords: Quantum Groups, Quasi-Hopf algebras, Lie bialgebras.

1 Some definitions

1.1 Lie bialgebras and Manin triples
1.1.1 Lie bialgebras over K

Let K be a field of characteristic 0. Let K][[A]] = IKj be the ring of formal power series in &
with coefficients in K. It is a principal ideal domain (PID) and its unique maximal ideal is
RKp,.

Let (a,[,]q) be a finite dimensional Lie algebra over K.

*Departamento de Fisica Tedrica, Universidad Complutense, E-28040 Madrid, Spain.
TCMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal. E-mail:

jteles@mat.uc.pt
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e A finite dimensional Lie bialgebra over K is a set (a,[,]q, K, e,4) where e4: a0 — a® a is
a 1-cocycle of a, with values in a ® a, with respect to the adjoint action of a such that

el 1 a* ®a* — a* is a Lie bracket on a*.

e It is called quasi-triangular if e; = d.r1, where d,. is the Chevalley-Eilenberg coboundary,

r1 € a® a is a solution to CYBE ([r1,71] = 0) and (71)12 + (r1)21 is adg-invariant.
e In case r1 is skew-symmetric, it is said to be a triangular Lie bialgebra. Moreover if
det(r1) # 0 it is called a non-degenerate triangular Lie bialgebra.
1.1.2 Deformation Lie bialgebras
Consider now the IK[[A]]-module obtained from extension of the scalars K[[h]] ®xk a.
Let (ap = K[[A]] @k a = a[[]], [, ]a,, Kn = K][[A]], €q, ), Where &4, : a — ap Qk, ap is a
1-cocycle of aj with values in tha adjoint representation, be a Lie bialgebra over K[[#]].
It is a deformation Lie bialgebra of the Lie bialgebra over K, a.
1.1.3 Manin triples
A Manin triple over K, is a set (g5, = (grn)+ @ (8n) -, [ ]5,, <; >3, ) where
® (@n[;]g,) is a (finite dimensional) Lie algebra over Kjy;
o ((gn)+[)(gn)s  Kn) is a (finite dimensional) Lie algebra over Kp;

e <;>j, is a non-degenerate, symmetric, bilinear, adg, -invariant form on gj;

i [7]ﬁﬁ’(9ﬁ)i = [’](Bh)i'

1.1.4 From Manin triples to Lie bialgebras
If (g5, = (9n)+ @ (9n)—, ,]5,» <;>g,) is a Manin triple then

1

e There is a IKp-linear isomorphism y~ (gn) - —  (gn)} Dbecause

<; >y, is non-degenerate.
e We may define in gn = (gn)+ @ (gn)% a structure of a Manin triple.

e There is a structure of Lie bialgebra on (gp) .

1.1.5 From Lie bialgebras to Manin triples

Let (ap, [, ]a,, Kn, €q,) be a Lie bialgebra over IK;. Then (g5 = ap @ af, [,]ah@a;;, (;>aﬁ@a;;),
where
[(#;6), (¥s Mg = ([7,Yla, + adiy — adyz; [€,Mlar + adyn — adyf),
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is a Manin triple.
The set (gr = ar ® o}, [, ]a,@az: 60, = de(R)r), Where r € gp ®k, gr (canonical), is a
quasi-triangular Lie bialgebra with [, |5 = ([, Jaz; —[,]ah>.

It is called the (quasi-triangular Lie bialgebra) classical double of the Lie bialgebra (ag, [, ]a, , K#, €qy, )-

1.1.6 Drinfeld Theorem

Drinfeld quasi-Hopf quasi-triangular QUE algebra corresponding to the deformation Lie al-
gebra (gn = ap @ a}, [, ]g,, 7 = a +t € gp K, g invariant) is

—~ 12,5423 _ h
(Ugfw "y 17Agh7egha (I)gh - eP(ﬁt Vht )7Sgh704 =cC 175 = 17Rgh = th)
where ¢ = )", X;S,, (Yi)Z;, g, = >, Xi®Y;®Z; and P is a formal Lie series with coefficients
in K (or just in Q.)
2 Etingof-Kazhdan quantization

2.1 The classical double
2.1.1 Quantization of the double

Given the bialgebra (g5 = ap®a}, [, la,@az s €g, = de(R)r) double of the Lie bialgebra (a, [, |a, » Kns €qy)
we will construct a twist of Drinfeld quasi-Hopf QUE algebra

J € Z//{\gl‘z@KﬁL/{\gh
obtaining a Hopf QUE algebra. To do it, we need the following elements.

2.1.2 Drinfeld category

The category My, is defined as

o Obpr,, = {topologically free gr-modules}, that is X € Obpy,, iff

1. X = V[[A]], where V is a vector space over K
2. V|[[h]] is a gr-module

e Of course, Obry,, = {topologically free Ugp-modules}
o Homm,, (U[[A]], V[[R]]) is the set of gr-module morphisms, U/[[A]] 1, VI[A]]

L f(a(h).x(h)) = a(h).f(x(n)), a(h) € gn
2. f((a(h) o b(h) = b(h) o a(h))z(h)) = [a(h), b()]g, f (x(h))
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and f extends in a unique way to a U(gp)-module morphism.

Theorem 2.1.1. Homy, (U[[R]], V[[]]]) is a torsion free IKp-module.
In the topology defined by its natural filtration

{nPHomg, (U[[A]], V{[R)])}

its completion mh(U[[h]], V'[[h]]) is separated, complete and a torsion free IKp-module.
It is then (see Kassel) a topologically free Ip-module, so

—

Homy, (U[[A]], V[[A]) = Homage (U, V)[[1]].

The canonical element r € g ®x, gn defines Qu; v, (n) € Endx, (Vi[[h]] @ Va[[A]] @ V3[[A]]),
i,j =1,2,3;1# j by
i J

Qv vy (01 (B) @ va(h) @ v3(h) = (- fr @+ @ fFot
By 7
+off@ @ fr @ -0 ).(v1(h) @ va(h) @ vs(h)).

Lemma 2.1.2. Qy, v, (n € Homg, (Vi[[H]] @ Va[[H]] © VA[I]], Vi [H]] @ Val[H]] ® Va[[A]])-

2.1.3 Tensor structure on Mg,

The element r is adg,-invariant. The Lie associator ®g, € Z//{\gh@)&/{\gh@@h is also invariant;
that is

Dg, - (Ag, ®1)Ag, (z(h) = (1 ® Ag,)Ag, (z(h)) - Pg,, x(h) € gh.
(From this equality and the fact that @4, = expP(ht'?, it*®) we may define a gp-morphism

i (), va(m)vain) € Homg ((Vi(R)@Va(h))@Va(h) |
Vi(h)&(Va(R)@V3(R))).

Theorem 2.1.3. Py, (5) vy (n),15(n) S an isomorphism in category My, and the set of these

isomorphisms defines a natural isomorphism between functors:

@(® x Id) — @(Id x ®).

2.1.4 Braided tensor structure on Mg,

For any couple
Vi[[n]], Va[[R]] € Obu,,

consider the isomorphism
Bvi(myva(ry = Vi(R)@Va(h) — Va(R)&Vi(h)
u(h)@v(h) — o <e%912(h)u(h)®v(h)) ,



where ¢ is the usual permutation.
Then /Bvl(ﬁ)vz(ﬁ) S I‘IOT?”LZ;\g (Vl(h)é@VQ(h), Vg(ﬁ)@‘/l(h)) .

h

Theorem 2.1.4. The set of isomorphisms By, nyvy(n) of My, defines a natural isomorphism

between functors @ — ® o o. Then the category My, has a braided tensor structure.

2.1.5 The category A
e Ob 4 = { topologically free IKz-modules }

e Hom 4 (Vi[[h]], V2[[h]]) = {f : VA[[h]] — V2[[A]] , Kps-linear maps preserving filtrations
(<= continuous) }

Lemma 2.1.5. The category A is a strict monoidal symmetric category:

® = Id: (V[p&U[[R]) @W([[R]] ~ V[[A)]& (U[[R]eW([R])
and

o V[HU[R] — U]V ]
u(h) @ v(h) — v(h) @ u(h).

2.1.6 The functor F

Let F be the following map
F:My — A

where

o F(V[[H])) = Homy Ugn, V[[H]))
= Homagar=g, (Ugo, V) (1]

o for f € Homg, (V[[h]],U][[R]]), then
F(f) € Homa (Homg, Uan, VIIA]), Homg, Usn, U1h]))
is defined as (F(f))(g) = fog € F(U[[h]]) € Oby, and g € F(V[[A]]).

Then F is a functor.

2.1.7 Tensor structure on F
We should now equip this functor F with a tensor structure. We will use the decomposition
gn = an ® ap, = (gn)+ D (gn)-

to produce such a structure.
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2.1.8 gp-modules M (h)y and M (h)_

e By Poincaré-Birkhoff-Witt theorem we have IKz-module isomorphisms

— U(gh)+ ®k, U(gn)— — Ugn (product in Ugp)
— U(gn)- @k, U(gr)+ — Ugn (product in Ugp)

e Let the IKz-modules of rang 1
Wi(h) ={a(h).ex : a(h) € Ky, es basis}
We endow W, with a trivial U(gp)+-module structure.
= z(h)x(a(h)ex) = a(h)(z(h)+ex) = Ox, z(h)+ € U(gn)+
e Define the corresponding induced left U gp-modules:
M(h)+ =Ugh Bu(g,), We(h) =--- =U(gn)s - 1+

where 11 = (1 ®y(g,), €+), 1 is the unit of Ugp.
As Kp-modules M (k)4 is then the IKz-module U(gp)+.

—

Lemma 2.1.6. M(h), € Obpy,, -

Theorem 2.1.7. There exists a unique gp-module morphism
ix : M(h)x — M(h)x ®k, M(h)+

such that

ii(li) =14 XK, 1.

It is continuous for the (h)-adic topology and extends in a unique way to a gr-module morphism

—_—

is: M(R), — (R Erc, M ().
Theorem 2.1.8. Define the following gr-module morphism
¢ :U(gn) — M(h)+ ®xk, M(h)-

by (1) =14y @1_.
Then ¢ is an isomorphism of gr-modules.

Proof. If (1) =14 ® 1_ and ¢ is a gsp-module morphism, the construction of ¢ is unique.
¢ preserves the standard filtration, then it defines a map grad ¢ on the associated graded

objects. This map grad ¢ is bijective and then (Bourbaki) ¢ is bijective. O
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2.1.9 Natural isomorphism of functors J

Definition 2.1.9. A tensor structure on the functor F : Mgy, — A is a natural isomorphism
of functors
J: F)@F() — F(®-)

We define this tensor structure following the same pattern that in Etingof-Kazhdan.
For Vi, = V[[h]], Wy, = W([[A]] € Oby,, , define

Jv,w, : F(VR)@K, F(Wr) — F(Va@Whs)
v @ wp — Jv,w, (Ve @ wp),
where vy, € F (Vi) = Homg, (Ugh, Vi) and wp, € F(W}), then

v Wy (U @ wp) = (v @ wp) o (¢ @) 0 (I’X/[l(h)+,M(h),,M(h)+®M(h),O

o (1@ Parry_ My, mm)_) o (1@ (oo G%QMW*’MW*) ®1)o

o (1@ P airy airy) © LM M M) -oM(R)- © (i+ ®i-) 0 6.

2.1.10 Definition of J

Theorem 2.1.10. The maps Jy; w, are isomorphisms and define a tensor structure on the
functor F.

From this tensor structure we get as in the KK case the following element in L/{g\f@@

h
J=(" 047 [(@1—,;734 “Poza- e (02305 )
(023P1231)) (14 @1_®@1,®1_)].
2.1.11 Quantization of the classical double
Theorem 2.1.11. The set (@, 1, A ey, S, R), such that
A/(uh) =J ' Agﬁ (up) - J
S'(up) = Q7H(R) - S, (un) - Q(R),

h
R =oJ 1. e29. ],

where Q(h) is an element in @ obtained from J and Sy, , is a quasi-triangular Hopf algebra,
and it is just the algebra obtained twisting via the element J~1 the quasi-triangular quasi-
Hopf QUE algebra obtained in Subsection 1.1.6.

In particular,
P (Ag, ®@1)J - (J®1)=(12Ag,)J] (1®J),
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J:1+gr+0(h2)
R=1+Hr+ O(h?)

We call the above quasi-triangular Hopf quantized universal enveloping algebra a quanti-

zation of the quasi-triangular Lie bialgebra over Kj

(gh =ap D Cl;%, [7]9}1769}@ = dc(h)r)
double of the Lie bialgebra (ag, [,]a,,€aq,) over the ring Kjp.

2.2 Quantization of Lie bialgebras
2.2.1 Quasi-triangular Lie bialgebras

If the IKp-Lie bialgebra is quasi-triangular, that is, if €4, is an exact 1-cocycle
€ap = de(R)r1(R),  71(R) € ap® ap
and [rq1(h),r1(h)]a, =0, we want to obtain a quantization of the IKp-Lie bialgebra

(aﬁ,a [7]ah75ah = dc(h)rl(h))'

Following Etingof and Kazhdan and also an idea by Reshetikhin and Semenov-Tian-

Shansky, we will construct a Manin triple over IK; and quantize it as we did before.

Lemma 2.2.1. There exist basis {a;(h), i = 1,...,dim a} and {b;j(h), j = 1,...,dim a} of
the IKy-module ap, such that

l

ri(h) = Zai(h) ® bi(h) € ap Rk, an- (2.1)
i=1

Proof. As Kp, is a principal ideal domain (PID) and ay is a free IKz-module, (%) has a rang,

[, and a theorem about matrices with entries in a PID-module asserts that basis verifying
(2.1) exist. O

Let us define maps, as in Reshetikhin-Semenov,
oy (Rys Ary(R) © O — Op

as

Ay (f) = Zai(h)-f(bi(h))
pryy () = Flai(m).bi(h),  f € aj,

and write

(ar)+ =Im Ay (ap)— = Im pp ().
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We have
dimg, (ap)4+ = dimg, (ap)— = = rang ri(h)

We may prove as in the K case.
Lemma 2.2.2. The mapping
Xri(ny ¢ (an)% — (an)—
9 Xr(n)(9) = (g @ 1)r1(h)

is a Kp-module morphism (Ky, is a PID and ay, is free over Kp).
(an)+ and (ap)— are Lie subalgebras of (a,[,]a,)

On the KKjp-module g = (az)+ @ (ap)— we may define a skew-symmetric, bilinear mapping
SllCh that [, ]9_h|(ah):t = [’](ah):t‘

Theorem 2.2.3. Let m be defined as

m:8n = (ap)+ ® (ap)- — ap
(x(h); y(h)) — x(h) +y(h).

Then,
(a) 7 ([(z(h); y(h)), (2(R); u(B))(an)y @(an)-) =
= [m(z(h);y(h), m(2(h); u(h))]a, ;
(b) ((an)+ @ (an)—, |, ] (an)+@(an)_» Kn) is a Lie algebra over Kp.

¢From (a) and (b), 7 is a Lie algebra morphism.
Theorem 2.2.4. The set (g = (an)+ @ (an)—, [, lgi» (; )g;) where
(o4 (B)s 5 ()5 (s 9 () = Xy (0 () 7 () Xy (- () (),

z4(h),y+(h) € (an)4,x—(h),y—(h) € (an)—, is a Manin triple.
In particular, the 2-form (;)g; is adg;-invariant.

Because it is a Manin triple the set

((ah)-i-’ [7 ](ah)+’5)

where € : (ap)+ — (ap)+ ® (an)+ is the transpose of the Lie bracket on (ap)* defined as

), nW@yr = X (D €)Xy iy (1)) (a)-) -

is a Lie bialgebra.
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Definition 2.2.5. Let {e;(h),i = 1,...,1} a basis of (ap)y and {e'(R),i = 1,...,1} its dual
basis on (ap)%. Let
r(h) = (ei(h); 0) ® (0;¢' (h))

the canonical element in the p-module (ar)+ @ (ap)i. Define
7(h) = (1@ Xry(n) © (1@ Xpy(m))-7(R) € (an)+ @ (an)-
We prove

Theorem 2.2.6. The set (gn = (an)+ @ (an)—, [, lgr €gr = de(R)T(R)) is a quasi-triangular Lie
bialgebra which is isomorphic to the quasi-triangular Lie bialgebra (gn = (ap)+®(an)i, [, gp, €gn =
de(h)r(h)), double of the Lie bialgebra ((an)+,[;](ay).»€)-

Theorem 2.2.7. Let the mapping 7 be defined by the commutativity of the diagram

s

gn = (an)4 @ (an)- an
(1 @ Xr'l(h))

(ap)4+ @ (ah)i

So, ®=mo(l® Xn(ﬁ))'
Then, 7 is a Lie bialgebra homomorphism verifying

(7 @ m)r(h) = ri(h).

2.2.2 Quantization of the quasi-triangular Lie bialgebra

(Clﬁ, [7 ]ah7‘€ah = dc(h)rl (h)v [rl(h)7 rl(h)]ah =0, rl(h) € ap® Clﬁ)

We may project using the Lie bialgebra morphism
T gn = (an)+ ® (an)} — ap
what we have done, about quantization of gz. We will get a quantization of ay. Precisely,

Theorem 2.2.8. Let (L?a\h, 1,Aq, , €qy,,Say,) be the usual Hopf algebra. Let
— hg
(u97i7 5 1L AQh’ €an» q)ghv SQh’ Rgh =ez )

be the quasi-triangular quasi-Hopf algebra in Subsection 1.1.6.
Let &4, = (F @ T @7)®,, and Ry, = (7 @ 7) Ry, , then
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o (T®T)oAy, =A

ap ©
e T0oSg, =S 0T

e The set
(Z/{aﬁ, "y 17 Aah7 €ay, q)ahu Sah7 Rah)

is a quasi-triangular quasi-Hopf QUE algebra. We call it a quantization (quasi-Hopf
one) of the Lie bialgebra (ap,r1(h) + ori(h)).

S/

Let (Ugﬁ, , 1, Al an>

Ry, ) where

an Con>
o Ay, (un) = Jg" - Dgy(un) - T,

o Sy, (un) = Q71(h) - Sy, (un) - Q(R)
o Ry =oJ;' e Ty,

be the quasi-triangular Hopf QUE algebra obtained before following E-K scheme of quanti-

zation of the classical double

(gh = (ah)-l- @ (ah)j-v [7]Bh7€9ﬁ = dc(h)T‘)

Let us define

i jﬂh = (7~T®7~T)J9h; Aah(ah) :j;ll.Aah(ah).Jah

e Ry, = (7 ®7)R.

i €a, the usual counit in U(ap)

. S'ah(aﬁ) = Q7 1(h)-Sq, (an): Q( ) where Q= > S, (ri(h)).s;(h) and jah S ri(h)®s;(h).

Theorem 2.2.9. Then the set

—

(U(ah), % 17 Aaﬁagam gaha Raﬁ)

is a quasi-triangular Hopf QUE algebra and we call it a quantization (Hopf one) of the Lie

bialgebra (ap,r1(h)). We moreover see that it is obtained by a twist via the element
T

from the quasi-triangular quasi-Hopf QUE algebra in Subsection 1.1.6.

In particular, we have

where the product - is in Uay.
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2.2.3 Non-degenerate triangular Lie bialgebras
This is the case (ap, [, |a,,€a, = de(h)r1(h)) where
e 71 (h) is non-degenerate <= invertible , det 71 (h) is a unit in Kj, (Kp is a PID)
e 71(h) is skew-symmetric
Also,
o (ap)t = ap, (an)- = ap
® gp = ap D apk
In this case, last theorem is
Theorem 2.2.10. Consider the non-degenerate triangular Lie bialgebra over IKp
(an, [, laps €ay = de(R)r1(R),r1(R) € ap ® ap, det r1(h) a unit in Kp,
[ri(h), 71 (R)]e, = 0),
the set (Zja\h, ° 1,Aaﬁ,eah,§%,ﬁah) where

i Aﬂh(ah) = ja_l ) Aah(ah) : jﬂﬁ

e Sa,(an) = Q7' Sa,(an) - Q
e Ry, =0Jyt Jo,, (F@7T)Q=0I

is a triangular Hopf QUE algebra. We have also the equality

(Jap)123 - (Jan)12 = (Jay )1,23 - (Jay )23-
We denote it as
anyday
meaning that is obtained by a twist via ja_ﬁl from the usual trivial Hopf triangular algebra

(Z/[Clh, "y 17 Aam €ay, 5 Saﬁ7 Raﬁ =1® 1)

Informally, we could say that, in the Hoschild cohomology of Uay, Jq, is an invariant star
product on the formal ”Lie group” on the ring Ky whose Lie algebra is the Lie algebra ap
over the ring IKy.

Lemma 2.2.11. Let ri(h) € ap ®x,, an as before, that is skew-symmetric and invertible. Let
Bi(h) € af Ak, af, defined as
Bi(h) = (Br(1) gy e* ®
where
ri(R)®. (B1(h)) 4o = 60
and then (B1(h)),, -r1(R)* = &2, ri(R)*. (B1(R)),, = 68. Then,

[
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i [rl(h)’ rl(h)]aﬁ =0+~ dchﬁl(h) =0
e 17t ody o 1 (X () <= [r12(h),1® X(R)]a, — [X(h) ® 1,712()]a,, X(h) € an

e Let a(h) € aj,. Then
dena(h) = 0 = 0 = [r{*(R), 1 @ " (a(R))]a, —
~lpr (a(h) ® 1,r*(W)]a,

Remember: Poisson coboundary 0 can be defined in this case as:

—0=p; " oden oy

A(an)  ——— A" (an)
ml lm
A, (ar) o Ari1(an)

and

pr ' Ar(an) — A7 (ap)

o — 7 (a)
where (,u,Tl(oz))il'"iT = r{lil(h) e T{T'ir (R)eyy...5. ()

What we want is to compare the two E-K quantizations we have obtained before of two
different triangular non-degenerate Lie bialgebras defined by different elements r(h), | (h) €

ap ® ap, (an, [, ]afmgah = dc(R)r1(R)) and (ap, [7]ah7€,a.ﬁ = dc(h)ri(h))'
The Lie bracket in ap is the same for both of them. The Lie bracket of the dual IKz-module

a} is different:

And therefore their doubles:

(ar @ ap, [, ]%696127 Cap@a; = de(R)r)

(ah @ Cl};, [7 ]/ah@a;‘l’ E/ah@a;‘l = d/c(h)r)

although r is the same in both cases, d.(h) and d.(h) are different because are defined through
the Lie bracket structures of aj @ aj.

The main point in this comparison is the following classical fact:
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Theorem 2.2.12. Let G be a Lie group of dimension n and g its Lie algebra. Let Ad be the
adjoint representation of G (on g). Let Ad" be the contragradient representation of G (on
g*), Ad" = (Adg=")T. Then:

e Ad" induces a representation of G on the exterior algebra Ng*;
e Ad" , g € G, commutes with the Chevalley-Eilenberg diferencial, d.,, on g*;

o Ad" induces a representation, Ad', of G on the Chevalley cohomological vector space
H:h(g)7

e The representation Ad is trivial, that is Adlg = Ingh(g); Vg € G.

We prove a theorem of this type for a Lie algebra ay, over Ky, and mappings Ad(exp z(h)) =
exp(ad z(h)) : ap, — ap, x(h) € ap.

2.2.4 Interior isomorphisms of (az,[,]q,)
Theorem 2.2.13. Let X € ap and let
QD,% LAy — ap

be defined as
oY = exp(hadx, ).Yh.

Then
o ol is well defined, that is Im o} C ap;
e ol is invertible;
o cp}l is an isomorphism of Lie algebras.

Our interest is in the contragradient mapping
€y ! 1 "
02 = ((cp}l) ) = (exp (hadk,)) = exp(—hady,) = exp(had,)
Kp-module isomorphism of ap. We have

7, @ ¢y = exp(hady,) ® exp(hady,)
= (exp(ﬁ ady,) ® Ida;;) ° (Ida;; ® exp(h ad}h))

— exp (adgxh © Idg: + Idg: ® ad;;Xh)

* *
because adyy, @ Idg: and Idg: @ adyy, commute.
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Theorem 2.2.14. Let B; € aj, A aj be a Chevalley 2-cocycle, that is,

denfBr =0,

relatively to the Lie algebra structure of ap and the trivial representation of ap on Kjp.

Then, we have

(i) (£3 ® ¢3)0h = exp (adhy, © Tdo; + Ides @ adiy, ) B
— Bn+ dyn, where , € af;

(ii) Since By, is closed, (3 @ ©3)B is closed;

(iii) If By, is exact, (92 @ p3)Bh is ezact;
(iv) (3 @ ¢2) acts on H? (ap) and this action is the identity.

Proof. Tt is enough to prove (3).

We have for n = 1 and any e;,e; € ap elements in a basis,

((Id® adyx, +adyyx, ® Id) (Bp);e; @ ej) =
= — (Br; (Id ® adpx, + adpx, ® Id)e; @ ej)
= — (Bn; € ® [AXp, €jla, + [M X, €ila, @ €5)
=—h <Bh; e ® X]gcllcj(h) e+ XiChi(h) e @ ej>
= —hX}Ch; () (Br)u — hXEChL(R) (Br)i;
= —hX (Ch(h)(Buus + CL(h) (9w )
= —nXf (=Cli(h) (Bn)ue)
= h X7, Bn ([ei €j]ap- €r)
= hBn ([eis €jlan, Xn)
= —hBn (Xn, [ei €j]ay)
= — (i(hXn)Bn) leis €jlay
= dep, (i(hX1)Pn) (eis €5),

where we used that 3, is a 2-cocycle (Br([z,y], 2)+ Br(ly, 2], ) + Br([z, z],y) = 0, z,y, z € an),
C’fj(h) are the structure constants of the Lie algebra aj in a basis {e;} and d.pa(e, ® ) =

—a([ea, en))-
So, we obtain

(Id & adeh + adeh &® [d)(ﬂﬁ) = dch(iﬁXhﬂﬁ),

for any cocycle By and Xj € ap.

47



For any elements e;, e; in a basis of ap, we have (n = 2)

((Id ® adjx, + adiy, ® 1d)*Bh,e; @ ej) =
= ((Id @ ad}y, + adfx, @ Id) - dep(inx,Bn); € @ €;)
= {don(inx, Bn): (Id © adnx, + adnx, ® Id)(e; ® ¢;))
= — (den(inx, Bn); €i @ [DXp, €jla, + [ X, €ila, ® €5)
= (inx, Bn)([ei; [N Xn, €5]ap o, + [[A X, €ilay - €5]an)
= (inx, Bn)([l€j, " Xnlay» €ila, + [[A X, €ilay > €5]an)
(inx, Br) (= leis €5 a hX Rl ay)
( )(
(
=

Zﬁxhﬂﬁ [hXﬁ7 [627 e]]ah]ah)
ZhXhﬁh) © adhXﬁ ([627 ej]ah)

den(—(inx, Bn) © adnx, ), €; @ e;) -

Thus, we get

(Id ® adyx, + adjyx, ® Id)*(Br) = —den ((i(hX3)Bn) o adnx,,) -

For n = 3, we have

((Id ® adyx, + adyy, ® 1d)*Bh,eq @ €y) =
= <—(Id ® adpy, + adyx, @ Id) de, ((inx, Br) 0 ad(hXp));eq ® eb>
= (den ((inx, Br) 0 ad(hXp)) ; (Id @ adpx, + adpx, @ Id)(eq, @ ep))
= (den((inx;, Bn) © ad(hXp)) ; ea ® [nXh, €b]a, + [MXh, €ala, @ €b)
— ((inx, Bn) © ad(hXp) ; [€a, [AX R, €b]ay]ay + [AXRs €alay, €b]ay)

— ((inx,, Br) 0 ad(hXp); [lev, hXRlay > €alw, + [[XR, €alay s €b]ay)
= ((inx, Br) © ad(hXn); [l€a, €b)ay, hX]ay)

— ((inx, Bn) © ad(hXp) o ad(hXp); [eq, €b]ay)
= (den, ((inx, Br) © ad(hXp) o ad(hXp)) seq @ ep) -

Then,
(Id ® adyx, + adpx, ® Id)?’ﬂﬁ = dep, ((inx, On) © ad(hXp) o ad(hXp)) .

We have obtained
(02 @ ©2)Bn = Bn + I den (i(X1) Br)+

+ h2dep, (-%( (Xn)Bh) o adxh> +

1
3

( (X1)Br) 0 adx, o adxh> +...
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Let us write

5 iR cady, ) € o
(i(Xn)B) © adx, o adxh> € a.
Then, we have
(02 © ©3)Bn = B + den(Fryr (B) + h2ya(R) + BPys(h) +...)
and it is easy to get a general formula for v,(h) € af, k € IN. O

Let us compute the first terms in powers of & of v1(h), v2(h), v3(h), etc.

V() = i(Xp)Br = i(Xq B 1) (By A7) = (i(Xa)By) hOT02

Z( > i(Xamb) hf

R>0 \a+b=R+2

i(X1)B1 + [i(X2) 1 +i(X1)Be] At

+ [i(X1)B5 + i(X2) B2 + i(X3) 1] B>+
+[ .. B+

where X, € a, 0, € a* ®k a* and therefore i(X,)0 € a*.

() = — o (X)) 0 adx,) = — o (X BB K 0 ad, 1)
- _% ((i(Xm)B) 0 ady, ) FH+P=3,

As X, € a, B € a* ®k a*, the map i(X,,)5 sends a to K, that is, i(X,,)5 € a*. But
relatively to adx,, even being X, € a, this map doesn’t send a in a but a into a.
Let {e;} be a basis of (a,K), then
adx,e; = [Xp, €ila, = [X;f,el,ei]ah = X;f,[el,ei]ah = X;,C’ﬁ(h)ek
= X;f, (C’ﬁ(s)hs_1> e = <X£C;§(S)€k> Bt (2.2)

where we have used

Chi(h) =Y _Ch(s)h*™!, Cf(s) € a.

s>1

Lemma 2.2.15. Let us consider the following mappings

Bs:axa—a

(y,2) — Bs(y, 2)
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where
By(y,2) = Bs(y'er, 2'e;) = y'2'Bs(er, ) = y'2'CL(s)ey.

Then, we have
(i) The definition of B is independent of the basis {e;} on (a,K);
(ii) Bs is a K-bilinear mapping on a with values in a;
(iii) [er, €ila, = Bs(er, ei)h*™L.
We can write (2.2) as
adx,e; = (X;)C’l]z(s)ek)hs_l

= X\ By(er,e;)h* ™" = By(XLey, e,)h* ™ = By(Xp, e)h*"
= ((i(Xp) Bo)e)h®™ ' = ((i(Xp) Bs)B* e

Therefore
adx, = (i(Xp)Bs) 1, s =1,2,3,...

Here i(X,)Bs € Homk/(a,a) and doesn’t contain h.

Returning to the expression of y2(%), we can write now

| = R[] =

e(h) = (i(Xm) ) © adx, ) AHFP—3

—_~ o~

(i(Xm)B1) © ((i(Xp)Bs)h*~ 1)) pmttan=3

((i(Xm)B1) 0 (i(X,)Bs)) AmHitprs—1

=Y | X 5 ()R 0 ((X)B,) | A
R>0 \ m+l+p+s=R+4 :
B m7l7p7821

= —% [(#(X1)B1) o (i(X1)B1)] +
- % [(i(X2)P1) o (i(X1)B1) + (i(X1)52) o (i(X1)B1)+

+(i(X1)B1) o (i(X2)B1) + (i(X1)51) o (i(X1)B2)] At
+ LR A
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We have also

Y3(h) = o7 ((i((Xn)Bn) © adx, o adx,)

(6P~ (Bah®™) © (ad, 1Y) o (adx, 1))

| = L =22 =

] ((i(Xp)Ba) o (i(Xp)Bs) o (i(Xq)By)) pptatbtats+r—6

&

> % ((i(Xp)Ba) © (i(Xy)Bs) o (i(Xq)B,)) | AM

0 \ p+atbt+gt+s+r=M+6
p,a,b,q,8,7>1

g
WV

| =

(i(X1)B1) o (i(X1)Bi) o (i(X1)B1)] +

S S W
. . __|)—‘
~~ o~ N
—
~— ~— SN~— SN~—

o+ o+t ow

~.

*
>

Then we get

(0} @ ©2)Bh = Bn + den(hy1 () + W29 (h) + Bys(h) +...)
= B+ dep [i(X1) B1] Pt

oy |0G)B +i(X0)% — 5 ((X1)B) o (X)) | A2
- dop [1(X0)Bs + i(X2) o + i(X3) B+

— (i) 0 (X1) By + (X1 0 (1) Br+
+i(X1)B1 0 i(X2)B1 +i(X1)B1 0i(X1)Ba)+

1
- gz‘(Xl)gl 0i(X1)B1oi(X1)By| B + ...
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Let us define the following elements in a*,

a1 = i(X1)6
0 = i(Xa)f1 + (X1 — (X)) o (X1 (23)
ag = i(X1) 03 +i(X2) 02 + i(X3) 01 — %(i(Xz)ﬁl o i(X1)B1+

+i(X1)B2 0i(X1) By + i(X1)B1 0 i(X2) By +i(X1) 1 0 i(X1)Ba)+

+ %i(xl)ﬁl 0 i(X1)B1 0 i(X1)By

v (5
=3 | 2 il > ((ixalﬁj) 0ix,, By, - oix,, Bbi)

j=1 i=1 ’ aq+agtbg-ta;+b;=itk—j
a1,a2,b2,...,a;,b;>1

then

(2 @030 = Br+ D den(on) i, ay, € a*.
k>1

We then prove a converse of last theorem.

Theorem 2.2.16. Let
alh) = apht € ap, op€a’, k=1,23,...,

there exists a unique element
Xp = Xﬂil_l, X €a

verifying the equality

(ezp(adhy, ) ® exp(adiy,)) Bn = B+ dencr(h).

Proof. If X, = X;h'~! exists verifying last equality, it must be obtained from the equalities
(2.3).

Due to the invertibility of §1, from the first equality we determine X;. Then, because we
know at this step X1, 31, 82, a2 and 3 is invertible, from the second equality we determine
X5. X3 can be computed from the third equality because (; is invertible and at this step we
know X1, X5, B1, Bo, (1, 02 and f3, etc, etc.. O

Recall

e (an,[,]a,) is a finite-dimensional Lie algebra over IK; which is a deformation Lie algebra
of the Lie algebra (a,[,]q) over K.
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e ri(h),r (k) are two elements of a; @k, ap which are non degenerate skew-symmetric
and solutions of YBE relatively to the Lie algebra (ag, [,]q,) and such that the terms in

power A0 coincide and are equal to r; € a ®k a.

e (an,[,]a,,m1(R)), (an,[,]a,, 71 (R)) are the corresponding finite dimensional Lie bialgebras
over Ky, both deformation Lie bialgebras for the Lie bialgebra (a,[,]q,71) over K.

e Let ¢f : a — ap be a Lie algebra automorphism of (az, [, ], )-

e Let vy : ajl(h) — a:,l(h) be a Lie algebra isomorphism from the Lie algebra (aj1 ()’ []

).

a:1(h))

to the Lie algebra (ar,l(h), [,]a:w)

o Let (go}i,zbh) ap @ a:l(h) — ap P a:i(h) be a Lie algebra isomorphism between the
doubles.

o Let 3} : U(ap) — U(ap) and oy, : Z/{(a;(h)) — L{(a:i(h)) be the (which are continuous
in the (h)-adic topology) associative algebra isomorphisms extensions respectively of cp}l
and ¥p.

Theorem 2.2.17. Let j;“,{(ﬁ) and j;",i(h) be invariant star products obtained in Theorem 3.10.
Suppose 31(h) € a} Ak, of is defined as B1(h) = (B1(h)),, €* @ e® where r1(R)®. (81 (h)),, = 6%
and (1 (h) € a}, Ak, a, is defined in a similar way from v (h).

Then, j;”;(m and jﬁ;{(h) are equivalent star products if, and only if, 51 (h) and B1(h) belong
to the same cohomological class. In other words, J;“,{(ﬁ) and J;",i(h) are equivalent star products

if, and only if, there exists a 1-cochain a(h) € a} such that
Bi(h) = Bi(h) + dena(h).
Sketch of the proof («<=)

o [B1(h)] = [B1(h)], there exists X € ap such that
expladi, ) B1(h) = 31 (h).

e Then ¢} = exp(adnx,) is a Lie algebra isomorphism a; — ap and (¢} @ ph)ri(h) =
ri(h).

e The map (¢}, ((¢}))™!) is a Lie bialgebra isomorphism between aj, & o (p and ap @
T )"

e We prove that jgﬁlh = (g ® @) Jmh.

e Using a theorem by Drinfeld, there exists an element v = exp(hX}) such that

Tl = Aalw) - Tt (Tt @)

an

and u~! defines the equivalence.
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Sketch of the proof (=)
e Hochschid cohomology on U(ay) appears.

e We construct an element o(h) € aj such that
Bi(h) = Bu(h) + dener(h)

where a(h) = a1h + agh?® +....

2.2.5 Hochschild cohomology on the coalgebra Uay

From a theorem by Cartier, we get

Hipoen(T(an)) = Alan)

where T'(ay) is the coalgebra of divided powers (see also Bourbaki). But from Cartier and
Bourbaki, we know
F(aﬁ) ~ TS(ah) ~ S(ah)

as Ky bialgebras (making a proof similar to the classical one for Lie algebras over a field of
characteristic 0)

We have also an isomorphism

S(an) ~ U(ap)

as coalgebras. From these isomorphisms, we get what we want

HI*{och(u(aﬁ)) = /\(Clﬁ).
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On central extension of Leibniz n—algebras

J. M. Casas*

Abstract

The study of central extensions of Leibniz n-algebras by means of homological methods
is the main goal of the paper. Thus induced abelian extensions are introduced and the
classification of various classes of central extensions depending on the character of the

homomorphism 6. (F) in the five-term exact sequence

WHL (K) — nHL (£) "M —  HLy(K) — WHLy(L) — 0

associated to the abelian extension F : 0 — M5 K 5 £ — 0 is done. Homological char-
acterizations of this various classes of central extensions are given. The universal central
extension corresponding to a perfect Leibniz n-algebra is constructed and characterized.
The endofunctor uce which assigns to a perfect Leibniz n-algebra its universal central
extension is described. Functorial properties are obtained and several results related with
the classification in isogeny classes are achieved. Finally, for a covering f : L' — L (a
central extension with £ a perfect Leibniz n-algebra), the conditions under which an
automorphism or a derivation of £ can be lifted to an automorphism or a derivation of
L' are obtained.

1 Introduction

The state of a classical dynamic system is described in Hamiltonian mechanics by means
of N coordinates qi,...,qy and N momenta p1,...,py. The 2N variables {q1,...,pn} are
referred as canonical variables of the system. Other physically important quantities as energy
and momentum are functions F' = F(q,p) of the canonical variables. These functions, called
observables, form an infinite dimensional Lie algebra with respect to the Poisson bracket
{F,G} = Zﬁl(g—ig—g — g;g—g). The equation of motion are ¢; = g—g and p; = _?9_5-7 where
the Hamiltonian operator of the system H is the total energy. These equations may be written

in terms of Poisson brackets as ¢; = {q;, H};p; = {pi, H}. In general the time evolution of an
observable F is given by F' = {F, H}.
The simplest phase space for Hamiltonian mechanics is R? with coordinates z,y and

canonical Poisson bracket {fi, fo} = %%—@2 — %—J;% = a{g{;,g g). This bracket satisfies the

*Dpto. Matemética Aplicada I, Universidad de Vigo, E. U. I. T. Forestal, Campus Universitario A Xun-

queira, 36005 Pontevedra, Spain. Email:jmcasas@uvigo.es
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Jacobi identity { f1,{f2, fs}}+{fs, {f1. fo}} +{f2, {f3, fi}} = 0 and give rise to the Hamilton

equations of motion % ={H, f}.

In 1973, Nambu [23] proposed the generalization of last example defining for a tern of
classical observables on the three dimensional space R3 with coordinates z,y, z the canonical
bracket given by {fi, f2, f3} = % where the right hand side is the Jacobian of the
application f = (f1, f2, f3) : R — R3. This formula naturally generalizes the usual Poisson
bracket from a binary to a ternary operation on the classical observables. The Nambu-
Hamilton generalized motion equations include two Hamiltonian operators Hy and Hs and
have the form % = {H, Hy, f}. For the canonical Nambu bracket the following fundamental

identity holds

{{f17f27f3}7f47f5} + {f37{f17f27f4}7f5} + {f37f47{f17f27f5}} =
{f17f27{f37f47f5}}

This formula can be considered as the most natural generalization, at least from the dynamical
viewpoint, of the Jacobi identity. Within the framework of Nambu mechanics, the evolution
of a physical system is determined by n—1 functions Hy, ..., H,—1 € C*°(M) and the equation
of motion of an observable f € C°°(M) is given by df /dt = {H1,...,H,—1, f}.

These ideas inspired novel mathematical structures by extending the binary Lie bracket
to a m-ary bracket. The study of this kind of structures and its application in different areas
as Geometry and Mathematical Physics is the subject of a lot of papers, for example see [8],
[10], [11], [12], [13], [14], [16], [22], [24], [25], [26], [27], [28], [29], [30] and references given
there.

The aim of this paper is to continue with the development of the Leibniz n-algebras theory.
Concretely, using homological machinery developed in [3], [4], [5], [8] we board an extensive
study of central extensions of Leibniz n-algebras. Thus in Section 3 we deal with induced
abelian extensions and Section 4 is devoted to the classification of various classes of central
extensions depending on the character of the homomorphism 6,[E] in the five-term exact
sequence

WHL(IC) — nHL (L) S M — JHLo(K) — WHLy(L) — 0
associated to the abelian extension F : 0 — M= K = £ — 0. Homological characterizations
of this various classes of central extensions are given. When we restrict to the case n = 2 we
recover results on central extensions of Leibniz algebras in [2], [6], [7], [9].

Sections 5 and 6 are devoted to the construction and characterization of universal central
extensions of perfect Leibniz n-algebras. We construct an endofunctor uce which assigns to a
perfect Leibniz n-algebra its universal central extension. Functorial properties are obtained
and several results related with the classification in isogeny classes are achieved. Finally, in
Section 7 we analyze the conditions to lift an automorphism or a derivation of £ to £’ in a

covering (central extension where £’ is a perfect Leibniz n-algebra) f : £ — L.
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2 Preliminaries on Leibniz n-algebras

A Leibniz n-algebra is a K-vector space £ equipped with a n-linear bracket [—, ..., —] : L& —

L satisfying the following fundamental identity

[[$17$27' .- >33n],y17y27 v ayn—l] =
n

Z[xla ceey i1, [xi7y17y27 .. 7yn—1]7xi+17 .. 7xn] (1)
i=1

A morphism of Leibniz n-algebras is a linear map preserving the n-bracket. Thus we have
defined the category of Leibniz n-algebras, denoted by ,Leib. In case n = 2 the identity (1)
is the Leibniz identity, so a Leibniz 2-algebra is a Leibniz algebra [18, 19, 20], and we use
Leib instead of sLeib.

Leibniz (n + 1)-algebras and Leibniz algebras are related by means of the Daletskii’s
functor [10] which assigns to a Leibniz (n + 1)-algebra £ the Leibniz algebra D, (L) = L®"
with bracket

(01 @ @an, b1 @ ®by] =D a1 @+ @ [ag, br,...,bn] ® - ®ay (2)
i=1

Conversely, if £ is a Leibniz algebra, then also it is a Leibniz n-algebra under the following
n-bracket [8]

[T1, 22, ..., xn] = [x1, [T2, ..., [Tn_1, Tp]]] (3)

Examples:

1. Examples of Leibniz algebras in [1], [19] provides examples of Leibniz n-algebras with
the bracket defined by equation (3).

2. A Lie triple system [17] is a vector space equipped with a ternary bracket [—, —, —] that
satisfies the same identity (1) (particular case n = 3) and, instead of skew-symmetry,
satisfies the conditions [z,vy, z] + [y, z,z] + [2,2,y] = 0 and [z,y,y] = 0. It is an easy
exercise to verify that Lie triple systems are non-Lie Leibniz 3-algebras.

- —

3. R™! is a Leibniz n-algebra with the bracket given by [z1, s, ... ,2y] := det(A), where

A is the following matrix

— — —
€1 €9 . €n+1
Ti1 P21 .-+ T(pn41)l
T12 P22 .- T(p41)2
Tin T2n -+ T(n41)n
Here z;= w1; e1 +x2; €2 + -+ T(n41)i €nt1 and {ey,ez,...,e,4+1} is the canonical basis

of R*+1,
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4. An associative trialgebra is a K-vector space A equipped with three binary operations:
=, L, (called left, middle and right, respectively), satisfying eleven associative relations
[21]. Then A can be endowed with a structure of Leibniz 3-algebra with respect to the
bracket

[y, 2] =2 d(yLz2)—(yL2)Fz—zd(zLy)+(z Ly Fa

=zd(yLlz—zly)—(ylLz—zlyktxa
for all z,y,z € A.

5. Let C*°(R"™) be the algebra of C*°-functions on R™ and 1, ..., x, be the coordinates on
R™. Then C*(R"™) equipped with the bracket [fi,..., fn] = det(%)i,j:17,,,7n is a n-Lie

algebra [12], so also it is a Leibniz n-algebra.

Let L be a Leibniz n-algebra. A subalgebra K of L is called n-sided ideal if [l1,12,...,1,] €
K as soon as l; € K and ly,...,li—1,li+1, ..., 1, € L, for all § = 1,2,...,n. This definition
guarantees that the quotient £/ is endowed with a well defined bracket induced naturally
by the bracket in L.

Let M and P be n-sided ideals of a Leibniz n-algebra £. The commutator ideal of
M and P, denoted by [M,P,L" 2], is the n-sided ideal of £ spanned by the brackets
i,y liyo 0, 0 1,] as soon as I; € M, lj € P and I, € L for all k # i,k # j;4,5,k €
{1,2,...,n}. Obviously [M, P, L"2] ¢ MNP. In the particular case M = P = £ we obtain
the definition of derived algebra of a Leibniz n-algebra L. If £ = [£,."., L] = [L£"], then the
Leibniz n-algebra is called perfect.

For a Leibniz n-algebra L, we define its centre as the n-sided ideal
ZLy={lel|l,....Li—1, L lig1, .. L) =0¥; € Li=1,...,i,...,n}

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket, that is, the
commutator n-sided ideal [£"] = [£,...,L] = 0. It is clear that a Leibniz n-algebra L is
abelian if and only if £ = Z(L). To any Leibniz n-algebra £ we can associate its largest
abelian quotient Lgp. 1t is easy to verify that Lq, = L/[L"].

A representation of a Leibniz n-algebra L is a K-vector space M equipped with n actions
[— ..., =] L% M @L£®M=1=9) M, 0 <i < n — 1, satisfying (2n — 1) axioms which are
obtained from (1) by letting exactly one of the variables x1,..., 2, y1,...,yn—1 be in M and
all the others in L.

If we define the multilinear applications p; : £L&"~! — Endg (M) by

Pi(lla .. .,ln_l)(m) = [ll,. .. ,li_l,m, li, PN ,ln_l], 1 < ) <n-— 1

pn(ll7 M 7ln—1)(m) = [ll7 e 7ln—l7m]

then the axioms of representation can be expressed by means of the following identities [3]:
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1. For 2 < k <n,
Pk([lh- .. 7ln]aln+17- .. 7l2n—2) =

Zpi(llu s 7[2'7 B 7ln) : pk(li7ln+l7 o 7l2n—2)
=1

2. For 1 <k <n,
[p1(lns -+ s lan—2), p(las -y ln-1)] =

n—1
Zpk(l:h e 7l’i—17 [lla lna e 7l2n—2]7li+17 e 7ln—1)
=1

being the bracket on Endg (M) the usual one for associative algebras.

A particular instance of representation is the case M =L, where the applications p; are

the adjoint representations
adi(lb cee ’ln—l)(l) = [l17 cee 7li—17 l7li7 cee aln—l]y 1<i<n-1

adn(ll, e ,ln_l)(l) = [ll, e 7ln—17 l]

If the components of the representation ad : L~ — Endg (L) are ad = (ady, ..., ady,),
then Ker ad = {l € L | ad;(l1,...,l,_1)(1) = 0,¥(ly,...,ln_1) € LZ"71 1 < i < n}, that is,
Ker ad is the centre of L.

Now we briefly recall the (co)homology theory for Leibniz n-algebras developed in [3, 8].

Let £ be a Leibniz n-algebra and let M be a representation of £. Then Hom(L, M) is a
D,,—1(L)-representation as Leibniz algebras [8]. One defines the cochain complex ,,CL*(L, M)
to be CL*(Dyp—1(L),Hom(L, M)). We also put ,HL*(L,M) = H*(,CL*(L,M)). Thus,
by definition ,HL*(L,M) = HL*(D,—1(L),Hom(L,M)). Here CL* denotes the Leibniz
complex and H L* its homology, called Leibniz cohomology (see [19, 20] for more information).
In case n = 2, this cohomology theory gives o HL™(L, M) = HL™ (L, M), m > 1 and
oHLO(L, M) = Der(L, M). On the other hand, , HL?(L, M) = Der(L, M) and ,HL*(L, M)
=~ Ext(L, M), where Ext(L, M) denotes the set of isomorphism classes of abelian extensions
of £L by M [8].

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [3] as the homology
of the Leibniz complex ,CL4(L) := CL(Dy,—1(L), L), where L is endowed with a structure
of D,,_1 (L) symmetric corepresentation [20]. We denote the homology groups of this complex
by nHL,(L). When L is a Leibniz 2-algebra, that is a Leibniz algebra, then we have that
oHLi(L) = HLg1(L),k > 1. Particularly, o HLo(L) = HL(L) = L/[L, L] = Lg. On the
other hand, ,HLo(L) = Ly and ,HL{(L) = (RN [F"])/[R,F"!] for a free presentation
0—-R—-F—=L—0.

Moreover, to a short exact sequence 0 — M — K — £ — 0 of Leibniz n-algebras we can

associate the following five-term natural exact sequences [3]:

0— HLY(L,A) — ,HL(K,A) — Homg(M/[M, M,K" 2], A) —
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WHLYN L, A) — HLY(K, A) (4)
for every L-representation A, and

WHL(K) = nHLy (L) = M/[M, K" = ,HLy(K) — nHLy(L) — 0 (5)

3 Induced abelian extensions

An abelian extension of Leibniz n-algebras is an exact sequence £ : 0 — M5 K 5 £ — 0
of Leibniz n-algebras such that [k;,...,k,] = 0 as soon as k; € M and k; € M for some
1<i,j5<n(i e, [M,MK" 2] =0). Here ki,...,k, € K. Clearly then M is an abelian
Leibniz n-algebra. Let us observe that the converse is true only for n = 2. Two such extensions
E and E’ are isomorphic when there exists a Leibniz n-algebra homomorphism from K to K’
which is compatible with the identity on M and on £. One denotes by Ext(L, M) the set of
isomorphism classes of extensions of £ by M.
If F is an abelian extension of Leibniz n-algebras, then M is equipped with a L-representation

structure given by

[l17' e )li—lamv li+17' e aln] = [kly' e 7ki—17/€(m)7k‘)i+17 .- akn]

such that w(k;) =1;,j=1,...,i—1,i+1,...,n,i=1,2,...,n.
The abelian extensions of Leibniz n-algebras are the objects of a category whose mor-
phisms are the commutative diagrams of the form:

K1 1

0 M; K1 Ly 0
I
0 My —25 o — 25 [ 0

We denote such morphism as («,3,7) : (E1) — (E2). It is evident that o and v satisfy the

following identities

allly, . lici,mylivr, - ) = [Y(h), ooy y(Lior), alm), y(Liga)s - -, Y (1n)]

1 = 1,2,...,n, provided than My is considered as Li-representation via +. That is, a is a
morphism of £i-representations.

Given an abelian extension £ and a homomorphism of Leibniz n-algebras v : £1 — L we
obtain by pulling back along v an extension E, of M by L1, where K, = K x L1, together
with a morphism of extensions (1,7,7) : E, — E. We call to the the extension (E,) the

backward induced extension of E.

Proposition 1. FEvery morphism («,3,v) : E1 — E of abelian extensions of Leibniz n-

algebras admits a unique factorization of the form



Given a homomorphism of L-representations o : M — M, we obtain the extension “E :
0 — My 28 2K ™8 £ — 0by putting “K = (MyxK)/S, where S = {(a(m), —k(m)) | m € M}.

We call to the the extension *F the forward induced extension of E.

Proposition 2. Every morphism («,3,7) : E — Ey of abelian extensions of Leibniz n-

algebras admits a unique factorization of the form

(a7al71)
—

17 b
E @B) "5 ()

through the forward induced extension determined by .

4 Various classes of central extensions

Let E:0 > M5 K5 £ — 0¢€ Ext(L,M) be. Since M is a L-representation, we have

associated to it the exact sequence (4)

0 — Der(£,M) "™ Der(ic, M) 2 Home (M, M) 5 HL (2, M) ™ HL (I, M)

Then we define A : Ext(£,M) — ,HL'(L,M), A([E]) = 0*(E)(1m). The naturality of the
sequence (4) implies the well definition of A. Now we fix a free presentation 0 — R % F 5
L — 0, then there exists a homomorphism f : F — K such that «.f = €, which restricts to
f:R — M. Moreover f induces a L-representation homomorphism ¢ : R/[R, R, F""2] — M
where the action from £ on R/[R, R, F" 2] is given via e, that is,

[ll,... ,li_l,ﬁlﬂ_l,... ,ln] = [xl,... 17 J A S 7 I ,xn] + [R,R,fn_2]

where €(z;) =1;,7 € {1,...,i—1,i+1,...,n},i € {1,...,n}. The naturality of sequence (4)

induces the following commutative diagram

Der(K, M) Home (M, M) —2 T Hri e M) ——  HLN(K, M)

7] d | I

Der(F,M) "> Hom;(R/[R, R, F"2|,M) —> , HL'(£L,M) — , HL'(F, M)
Having in mind that ,, HL'(F, M) = 0 [8], then A[E] = 6*(E)(1m) = o*0* (1) = o™ (¢).
Proposition 3. A : Ext(£,M) — ,HLY(L,M) is an isomorphism.

Proof. 1t is a tedious but straightforward adaptation of the Theorem 3.3, p 207 in [15]. ©

Definition 1. Let E: 0 — M 5 K 5 £ — 0 be an extension of Leibniz n-algebras. We call
E central if M, K"~1] = 0.
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Associated to E we have the isomorphism ,, HL¥ (L, M) 6%*“ Hom(,HLy(L),M) (see The-
orem 3 in [3]). Let us observe that M is a trivial L-representation since F is a central
extension. On the other hand, A[E] € ,HL'(L,M), then 0, A[E] € Hom(,HL.(L),M).
Moreover 0, A[E] = 0,(E), being 6,(F) the homomorphism given by the exact sequence (5):

WHL(KC) — nHL (L) S M —  HLo(K) — WHLy(L) — 0

When 0 — M — K — £ — 0 is a central extension, the sequence (5) can be enlarged

with a new term as follows (see [5]):
O = W HIL (K) — nHL (L) = M — ,HLy(K) — nHLo(L) — 0 (6)

where J; = (M® 777 @M ® Kapp® .1 @Kap) & (M@ "7 @M @ Kap @ M @ K@ 401
R ap) @ -+ B (Kap® . 1. @K, @ M@ 77 @M).
According to the character of the homomorphism 6,A[E] we can classify the central

extensions of Leibniz n-algebras. Thus we have the following
Definition 2. The central extension E:0— M 5 K 5 L — 0 is called:
1. Commutator extension if 0,.A[E] = 0.
2. Quasi-commutator extension if 0, A[E] is a monomorphism.
3. Stem extension if 0.A[E] is an epimorphism.
4. Stem cover if 0. A[E] is an isomorphism.

Let us observe that Definition 2 in case n = 2 agrees with the definitions in [2] for Leibniz
algebras. It is clear, by naturality of sequence (5), that the property of a central extension
which belongs to any of the described classes only depends on the isomorphism class.

Following, we characterize the various classes defined in terms of homological properties.
Proposition 4. The following statements are equivalent:

1. E is a commutator extension.

2.0->M— ,HLy(K) = ,HLy(L) — 0 is ezact.

3. me [KM] S [L7).

4. MK = 0.

64



Proof. E is a commutator extension < 6,(EF)=0<0— M — ,HLy(K) — ,HLy(L) —
0 is exact (use sequence (5)) < MN[K"] =0 < [K"] = [£"] (use next diagram)

M QI[’C"% UCI“] = [[Tn] (7)
l\f K—">"L
Mﬂl\[/IIC"} ’Ciab il ﬁlab

o
Proposition 5. The following statements are equivalent:
1. F is a quasi-commutator extension.
2. WHL{(7) : yHL1(K) — ,HL{(L) is the zero map.
30— ,HL(L) > M — ,HLyK) — ,HLy(L) — 0 is exact.
4. oHL{ (L) = MN[K"].

Proof. 6,(F) is a monomorphism < Ker 0, (F) =Im 7, =0 < 7, : , HL{(K) — ,HL{ (L)
is the zero map < 0 — ,HL (L) - M — ,HLy(K) — ,HLy(L) — 0 is exact (by exactness
in sequence (5)).

For the equivalence of last statement we must use that the monomorphism 6, (F) factors
as nHL (L) » MN[K"] — M. ©

Corollary 1. If E is a quasi-commutator extension with ,HL,(L) =0, then E is a commu-

tator extension.
Proof. MN[K"] = ,HL; (L) =0. ©

Corollary 2. Let E be a central extension with K a free Leibniz n-algebra, then E is a

quasi-commutator extension.
Proof. ,HL;(K) = 0 [8] and use sequence (5). ¢
Proposition 6. The following statements are equivalent:
1. E is a stem extension.
2. Ky : M — ,HLy(K) is the zero map.
3. T HLy(K) = nHL(L).

4. M C [K].
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Proof. In exact sequence (5), 0,(E) is an epimorphism < k, = 0 < 7, is an isomorphism.
In diagram (7), Kop = Loy < % =0 MCIK". o

Proposition 7. Every class of central extensions of a L-trivial representation M is forward

induced from a stem extension.

Proof. Pick any central extension class £ : 0 - M — K — £ — 0, then 0,(F) :
nHL (L) — M factors as i.7 : yHL{(L) - M NI[K"] = M; — M. As M; is a trivial £-
representation, then given 7 there exists a central extension E; € ,HL'(£,M;) such that
0.(Eq) = 7. Moreover, Ej is a stem extension since 6,(FE1) is an epimorphism. By naturality
of sequence (5) on the forward construction By — *(Ej), we have that 0,/(E;) = i0.(E;) =

it = 0(F), i. e., "(E) = E, and so F is forward induced by E7, which is a stem extension. ¢

Proposition 8. Let L be a Leibniz n-algebra and let U be a subspace of ,HL{(L), then there

exists a stem extension E with U = Ker 0,A[E].

Proof. We consider the quotient vector space M = , HL{(L)/U as a L-trivial represen-
tation. We consider the central extension £: 0 — M — K — £ — 0 € ,HL*(£,M). Thus
0. A[E] = 0,(E) € Hom(, HL,(£),M). If 0,(E) : ,HL*(L) — M = ,HL'(£)/U is the canon-
ical projection, then there exists a central extension £ : 0 - M — K — £ — 0 such that
0. A[E] = 6,(F) is the canonical projection. Associated to E we have the exact sequence (5),
in which U = Ker 0,(E) = Ker §,A[E]. Moreover E is a stem extension since 0, A[E] = 0,(E)

is an epimorphism. ¢

Proposition 9. The following statements are equivalent:
1. I is a stem cover.
2. 7 nHLy(K) S HLo(L) and HL(7) : wHL{(K) — ,HL{ (L) is the zero map.
Proof. 0,(F) is an isomorphism in sequence (6). ©

Corollary 3. A stem extension is a stem cover if and only if U = 0.

Proof. U =0« Ker 0,(E) =0« 0,(F) : ,HL (L) — M is an isomorphism. ¢

5 Universal central extensions

Definition 3. A central extension E : 0 — M = K 5 £ — 0 is called universal if for
every central extension E' : 0 — M' — K' 5 £ — 0 there exists a unique homomorphism
h: K — K' such that 7'h = 7.

Lemma 1. Let 0 - N — H 5 £ — 0 be a central extension of Leibniz n-algebras, being
H a perfect Leibniz n-algebra. Let 0 — M — K 5 £ — 0 be another central extension of
Leibniz n-algebras. If there exists a homomorphism of Leibniz n-algebras ¢ : H — K such

that o = m, then ¢ is unique.
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Proof. See Lemma 5 in [4]. ¢

Lemma 2. If0 5N > H 25K ->0and 0 > M — K 5 £ — 0 are central extensions with
K a perfect Leibniz n-algebra, then 0 — L = Kermop — H 0 £ — 0 is a central extension.

Moreover, if K is a universal central extension of L, then 0 - N — H LK =0 splits.

Proof. Since K is a perfect Leibniz n-algebra, then p restricts to the epimorphism p’ :
Z(H) — Z(K). From this argument and using classical techniques it is an easy task to end

the proof. ¢

Lemma 3. If K is a perfect Leibniz n-algebra and w : I — L is an epimorphism, then L is

a perfect Leibniz n-algebra.

Lemma 4. I[f £E:0— M LK I L — 0 s a universal central extension, then KC and L are

perfect Leibniz n-algebra.

Proof. Assume that K is not a perfect Leibniz n-algebra, then Ky is an abelian Leibniz
n-algebra and, consequently, is a trivial L-representation. We consider the central exten-
sion E:0 — Kgp — Koy x L5 £ — 0, then the homomorphisms of Leibniz n-algebras
0, K — Kap x L, (k) = (k,m(k));(k) = (0,7(k)), k € K verify that proo =m = pro1,

so I/ can not be a universal central extension. Lemma 3 ends the proof. ¢

Theorem 1.

1.IfE:0—->M— K5 L —0is a central extension with K a perfect Leibniz n-algebra

and every central extension of K splits, if and only if E is universal.
2. A Leibniz n-algebra £ admits a universal central extension if and only if L is perfect.
3. The kernel of the universal central extension is canonically isomorphic to ,HL;(L,K).
Proof. See Theorem 5 in [3]. The equivalence of statement (1) is due to Lemma 2. ¢

Corollary 4. The central extension 0 — M — K 5 £ — 0 is universal if and only if
nHLy(K) = ,HL (K) =0 (that is, K is a superpefect Leibniz n-algebra).

Proof. By Theorem 1 (1) K is a perfect Leibniz n-algebra, so ,HLy(K) = g = 0. On
the other hand, the splitting of any central extension by K is equivalent to ,HL{(K) = 0,
since 0 — 0 — K = K — 0 is the universal central extension of I (that is, K is centrally
closed) . ¢

Corollary 5. Let E:0 — M — K 5 £ — 0 be a central extension with £ a perfect Leibniz
n-algebra. E is a stem cover if and only if ,HLy(K) = ,HL{(K) = 0.
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Proof. From the exact sequence (5) associated to E and Proposition 9. ¢

Remark. Let us observe that the stem cover of a perfect Leibniz n-algebra £ is isomorphic

to the universal central extension of L.

Proposition 10. Let E: 0 — M — K 5 £ — 0 be a central extension of Leibniz n-algebras.
If K is a perfect Leibniz n-algebra, then the sequence 0 — ,HL{(K) — ,HL{(L) - M — 0
is exact and ,HLy(L) = 0.

Proof. L is perfect by Lemma 3. Exact sequence (6) associated to F ends the proof. ¢

Following we achieve a construction of the universal central extension of a perfect Leibniz
n-algebra slightly different to the construction given in [4]. This approach permits us to obtain
new results concerning to the endofunctor uce which assigns to a perfect Leibniz n-algebra its
universal central extension. To do this, we recall that the computation of the homology with

trivial coefficients of a Leibniz n-algebra £ (see [3]) uses the chain complex
- 2CLy(L) = CLy(LP" 1, L) = LO-1 B 0L (L) = CLy (L8, L) = £& 4

B CLy(L) = CLy(L*" 1, L) = £ — 0

where
do(T1 @+ @ T2p—1) = [T1, T2, -+, Tp] @ Tp11 @ -+ @ Tap—1—
n
Z:El@"'@xi—l®[$iv$n+la--->$2n—1]®117i+1®"'®33n
i=1
and

di(21 ® - @) = [T1,22,...,Ty)
Let £ be a perfect Leibniz n-algebra. As K-vector spaces, we consider the submodule I of

L®" spanned by the elements of the form

[$17$27 s axn] ®xn+1 @ QTop_1—

n
Z:El@"'@xi—l®[$iv$n+la--->$2n—1]®117i+1®"'®33n
i=1

for all z1,...,29,_1 € L. Let us observe that I = Im ds. Then we construct uce(£) = L&"/I.
We denote by {z1,...,2z,} the element 21 ® --- ® x, + I of uce(L). By construction the
following identity holds in uce(L)

{[$1,$2, cee ,$n],$n+1,. .. ,fL'Qn_l} =
n

Z{xla ceey Tj—1, [x’hmn-i-la s Jx2n—1]7mi+17 s 7xn} (8)
=1
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The linear map d; vanishes on the elements of I, so it induces an epimorphism d : uce(£) — £
which is defined by d({x1,2,...,2,}) = [z1,22,...,2,]. Let us observe that Ker d = Ker
dv/I = Ker dy/Im dy = ,HL{(L). On the other hand, the K-vector space uce(L) is endowed

with a structure of Leibniz n-algebra by means of the following n-ary bracket:
[x1, 20, ..., 2,] i= {d(z1),d(z2),...,d(z,)}

for all z1,...,7, € uce(£). In this way d becomes into a Leibniz n-algebras homomorphism.

Particularly, the following identity holds:
[{JEH, e ,l'ln}, {l‘Ql, e ,I'Qn}, ey {:Enl, e ,:L‘nn}] =

{[‘Tlla e 7x1n]7 [‘T217’ . 7x2n]7- R [xnla e wrnn]}

Consequently, d : uce(£) —» L is an epimorphism of Leibniz n-algebras. Actually d : uce(L) —
[L£™], but if L is perfect, then £ = [£"]. It is an easy task, using identity (8) and Lemma 1,
to verify that the epimorphism d : uce(£) — [£"] is the universal central extension of £ when
L is a perfect Leibniz n-algebra.

By the uniqueness and having in mind the constructions of the universal central extension
given in [4] we derive that uce(£) = [F"]/[R, F* 1] = Lx .7 L, where 0 - R — F — L — 0
is a free presentation of the perfect Leibniz n-algebra £ and x denotes a non-abelian tensor
product of Leibniz n-algebras introduced in [4].

As we can observe, last construction does not depend on the perfectness of the Leibniz
n-algebra L, that is, in general case, we have constructed the universal central extension of
[L£"]. Following we explore the functorial properties of this construction. So we consider a
homomorphism of perfect Leibniz n-algebras f : £’ — L. Let I, and I be as the submod-
ule defined previously. The canonical application f®" : ,CL{(L') = L'®" — ,CL{(L) =
LO Oz @ @xy) = f(11) ® -+ @ f(x,) maps Iy into I, thus it induces a linear
map uce(f) : uce(L") — uce(L),uce(f){x1,...,zn} = {f(z1),..., f(xn)}. Moreover uce(f) is
a homomorphism of Leibniz n-algebras.

On the other hand, one verifies by construction that the following diagram is commutative:

uce(L') ueef) uce(L)

.,
f

L——L

Thus we have a right exact covariant functor uce : ,Leib — ,Leib and, consequently, an
automorphism f of £ gives rise to an automorphism uce(f) of uce(L). The commutativity
of last diagram implies that uce(f) leaves , HL{(L) invariant. Thus, we obtain the group

homomorphism

Aut(L) — {g € Aut(uce(L)) : (o HL1(L)) = nHL{(L)} : f — uce(f)
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6 Isogeny classes in ,Leib

Definition 4. A Leibniz n-algebra L is said to be unicentral if every central extension T :

K — L maps Z(K) onto Z(L):
Z(K) —=7Z(L)

Ker(7)- K

L

Proposition 11. Let £ be a perfect Leibniz n-algebra, then L is unicentral.

Proof. L = 0, so the Ganea map C : @7, J; — ,HL (L) given by the exact sequence
(6) associated to the central extension 0 — Z(L) — £ — L/ZL — 0 is the zero map, so

Corollary 3.6 in [5] ends the proof. ©

Under certain hypothesis the composition of universal central extensions is again a uni-

versal central extension:

Corollary 6. Let 0 = N - H 5 K - 0and 0 = M — K 5 £ — 0 be two central
extensions of Leibniz n-algebras. Then mo T : H — L is a universal central extension if and

only if T : H — K is a universal central extension.

Proof. If mo7 :'H — L is a universal central extension, then ,HLy(H) = ,HL{(H) =0
by Corollary 4, this Corollary also implies that 0 — N — H — K — 0 is a universal central
extension.

Conversely, if 0 - N — H = K — 0 is a universal central extension, then K is perfect
by Theorem 1, (2), then m o7 : H — L is a central extension by Lemma 2. Now Corollary 4
ends the proof. ¢

Proposition 12. For every perfect Leibniz n-algebra L there is the isomorphism ﬁ =

uce(L)
Z(uce(L)) "

Proof. If L is perfect, then £ is unicentral by Proposition 11, so in the following diagram

Z(uce(L)) —=Z(L)

uce(L) —— L

the kernels of the horizontal morphisms coincide, and then the cokernels of the vertical mor-

phisms are isomorphic. ¢

Remark: For a Leibniz n-algebra £ satisfying that £/Z(L) is unicentral, then the central
extension 0 — Z(L) — L — L/Z(L) — 0 implies that Z(L/Z(L)) = 0 (see Corollary 3.8 in
[5]). Hence for a perfect Leibniz n-algebra £, £/Z(L) is perfect, so it is unicentral and by

Proposition 12 we have that % > Z(u:fe((ﬁﬁ))) are centerless, that is its center is trivial.
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Corollary 7. Let L and L' be two perfect Leibniz n-algebras. Then uce(L) = uce(L') if and
only if LJZ(L) = L')Z(L").

Proof. If uce(L) = uce(L), then, by Proposition 12, L/Z(L) = uce(L)/Z(uce(L)) =
uce(L)/Z(uce (L)) = L JZ(L).

Conversely, if £L/Z(L) = L'/Z(L") then uce(L/Z(L)) = uce(L'/Z(L")). Corollary 6 applied
to the central extensions uce(£) - L and £ — L/Z(L) yields the isomorphism uce(L/Z(L)) =
uce(L), from which the result is derived. ¢

~

Definition 5. We say that the perfect Leibniz n-algebras £ and L' are isogenous if uce(L) =
uce(L').

Remarks:

i) Isogeny classes are in an obvious bijection with centerless perfect Leibniz n-algebras: by
Corollary 7 two different centerless perfect Leibniz n-algebras have different universal
central extensions and they are non-isogenous, and in each isogeny class, namely the
class of a perfect Leibniz n-algebra L there is always an isogenous centerless perfect
Leibniz n-algebra L/Z(L).

ii) Isogeny classes are also in bijection with superperfect Leibniz n-algebras: in each isogeny
class, namely the class of a perfect Leibniz n-algebra L there is always an isogenous
superperfect Leibniz n-algebra uce(£), and two different superperfect Leibniz n-algebras
have different universal central extensions and are non-isogenous since a superperfect

Leibniz n-algebra L is centrally closed.

iii) Remark the fact that each isogeny class C is the set of central factors of its superperfect
representant IC, and then C is an ordered set. In this ordered set there is a maximal
element, which is the superperfect representant, and a minimal element, which is the

centerless representant.

iv) A Leibniz n-algebra L is called capable if there exists a Leibniz n-algebra K such that
L = K/Z(K). Capable Leibniz n-algebras are characterized in [5]. From Proposition 12
and Corollaries 3.2 and 3.8 in [5] we derive that centerless perfect Leibniz n-algebras

are equivalent to capable perfect Leibniz n-algebras.

The following holds for the centerless representant £ and the superperfect representant

uce(L) of each isogeny class:

Corollary 8. Let L be a centerless perfect Leibniz n-algebra. Then Z(uce(L)) = ,HL1 (L)
and the universal central extension of L is 0 — Z(uce(L)) — uce(L) — L — 0

Proof. Since L is centerless then Proposition 12 implies that 0 — Z(uce(L)) — uce(L) —

L — 0 is isomorphic to the universal central extension of L. ¢
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7 Lifting automorphisms and derivations

Lifting automorphisms: Let f : £ — L be a covering (that means a central extension
with £’ a perfect Leibniz n-algebra). Consequently, £ also is a perfect Leibniz n-algebra by

Lemma 3, so diagram (9) becomes into

WH L (L)) WH

uce(L') D | e

By Corollary 6, the central extension f.d’ : uce(£') — L is universal. Moreover uce(f)
is a homomorphism from this universal central extension to the universal central extension
d : uce(£) — L. Consequently uce(f) is an isomorphism (two universal central extensions of

L are isomorphic). So we obtain a covering d’.uce(f)~! : uce(£) —» L' with kernel

C := Ker (d.uce(f)™) = uce(f)(Ker d') = uce(f)(nHL1 (L))

Theorem 2. (lifting of automorphisms) Let f : L' — L be a covering.
a) Let be h € Aut(L). Then there exists h' € Aut(L') such that the following diagram

commutes
f

/s
jh’ Th (11)
otz
if and only if the automorphism uce(h) of uce(L) satisfies uce(h)(C) = C.
In this case, I is uniquely determined by (11) and B/ (Ker f) = Ker f.

b) With the notation in statement a), the map h — h' is a group isomorphism
{h € Aut(L) : uce(h)(C) = C} — {g € Aut(L) : g(Ker f) = Ker(f)}

Proof. a) If b/ exists, then it is a homomorphism from the covering h.f to the covering f,
so h' is unique by Lemma 1. By applying the functor uce(—) to the diagram (11) we obtain
the following commutative diagram:

uce(L") ueeld) uce(L)

uce(h’) uce(h)

uce(L') uedf) uce(L)
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Hence

uce(h)(C) = uce(h).uce(f)(nHL1 (L)) =
uce(f).uce(h)(HL1 (L") = uce(f)(nHL1 (L") =C

Conversely, from diagram (10) one derives that d = f.d’.uce(f)~!, and hence one obtains

the following diagram:

d -1
h

h,
| e |
C— uce(L) & velf) L ! L
If uce(h)(C) = C, then d .uce(f) Luce(h)(C) = d.uce(f)~'(C) = 0, then there exists a
unique A’ : L' — L' such that k'.d.uce(f)™' = d.uce(f) Luce(h). On the other hand,
h.f.d uce(f)™! = f.d uce(f) Luce(h) = f.0 .d uce(f)~L, so h.f = f.1.
Commutativity of (10) implies that h/(Kerf) = Kerf.

b) By a), the map is well-defined. It is a monomorphism by uniqueness in (a) and it is

uce(h)

an epimorphism, since every g € Aut(L') with g(Kerf) = Kerf induces an automorphism
h: L — L such that h.f = f.g. Hence, by a), g = h’ and uce(h)(C) =C. ¢

Corollary 9. If L is a perfect Leibniz n-algebra, then the map
Aut(L) — {g € Aut(uce(L)) : g(n HL1(L)) = nHL1 (L)} : f — uce(f)
is a group isomorphism. In particular, Aut(L) == Aut(uce(L)) if L is centerless.

Proof. We apply statement b) in Theorem 2 to the covering d : uce(£) — L. In this case
C =0 and uce(f)(0) = 0.
If A is centerless, then ,HL;(L) = Z(uce(L)) by Corollary 8. Since any automorphism

leaves the center invariant, then the second claim is a consequence of the first one. ¢

Lifting derivations: Let £ be a Leibniz n-algebra and d € Der(L). The linear map
0 LO — LOM o(21® Q@) = Do 1 T1Q+QTi—1Rd(T;) RTi41 R - @Iy, leaves invariant
the submodule I and hence it induces a linear map uce(d) : uce(L) — uce(L),{X1,..., Xp} —
{d(X1), Xo, ..., Xp} +{X1,d(X2),..., Xp}+ -+ {X1, Xo,...,d(X,)} which commutes the

following diagram:

uce(L) peeld) uce(L)

1A

L—r—k

In particular, uce(d) leaves Ker (d) invariant. Moreover, a tedious but straightforward

verification stands that uce(d) is a derivations of uce(£). On the other hand,

uce : Der(L£) — {0 € Der(uce(£)) : 6(,HL(L)) C ,HL{(L)} : d — uce(d)
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is a homomorphism of Lie algebras (Der(L) is a Lie algebra, see p. 193 in [8]). Its kernel is

contained in the subalgebra of those derivations vanishing on [£"]. It is also verified that

uce(ad[xll7~~~7-’En1}®'”®[w1,n717~~~:wn,n71]) = ad{xllynwmnl}®"'®{-’E1,n717~~~7-'En,n71}

where adx,g..x, , : L— L, X — [X,X1,...,Xn-1] and

ad{wll7~~~7$7L1}®"'®{-'E1,n717~~~7wn,n71} : uce(ﬁ) - uce(ﬁ)

{z1,...,zn} — ez, vz {z, o yzmt, .oy -
{$1,n—17 cee axn,n—l}]-
Hence uce(adE(Xl)@“@E(Xnil)) = adx,®.-9Xx,_,, being X; = {z;1,...,xpmhi=1,...,n—1,

and uce(ad[ﬁn]@)n:l@[ﬁn}) = IDer(uce(L)), where IDer(uce(L)) are the inner derivations

dX1®---®Xn,1 : uce(ﬁ) — uce(ﬁ), {21, . ,Zn} — [{2’1, ceey Zn}, Xl, - ,Xn_l],

with X; = {:Eil,...,l'in} S uce(ﬁ),z’ =1,...,n—1.
The functorial properties of the functor uce(—) concerning derivations are described in the

following

Lemma 5. Let f : L' — L be a homomorphism of Leibniz n-algebras, let d € Der(L) and
d € Der(L) be such that f.d' = d.f, then uce(f).uce(d’) = uce(d).uce(f)

Proof. A straightforward computation on the typical elements {z1,...,2z,} of uce(L)

shows the commutativity. ¢

Theorem 3. (lifting of derivations) Let f : £ — L be a covering. We denote C =
uee(f)(nH L1 (L) & nH Ly (L).

a) A derivation d of L lifts to a derivation d' of L satisfying d.f = f.d' if and only if the
derivation uce(d) of uce(L) satisfies uce(d)(C) € C. In this case, d' is uniquely determined
and leaves Ker f invariant.

b) The map

{d € Der(L) : uce(d)(C) € C} — {6 € Der(L') : §(Ker(f)) € Ker(f)}

d—d

is an isomorphism of Lie algebras mapping IDer(L) onto IDer(L’).
¢) For the covering d : uce(L) — L, the map

uce : Der(L£) — {6 € Der(uce(L)) : 0(nHL (L)) € wHL1 (L)}

is an isomorphism preserving inner derivations. If L is centerless, then Der(L) = Der(uce(L)).
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Proof. a) Assume the existence of a derivation d’ such that f.d’ = d.f, then by Lemma 5

we have that
uce(d)(C) = uce(d).uce(f)(nHL1 (L)) =
uce(f).uce(d)(nHL1 (L") S uce(f)(,HL (L)) =C

The converse is parallel to the proof of Theorem 2 a) having in mind that d is a derivation if
and only if Id + d is an automorphism.
b) The K-vector space Der(L) is endowed with a structure of Lie algebra by means of the
bracket [dy,ds] = dy.da — da.dy. Now the proof easily follows from a).

¢) Apply b) to the covering d : uce(L£) — L. Observe that C' = 0 in this situation.

If L is centerless, then by Corollary 8 we have that ,, H L1 (L) = Z(uce(L)) and a derivation

of L leaves the center invariant, so the isomorphism follows from b). ©

Acknowledgments

Supported by MCYT, Grant BFM2003-04686-C02-02 (European FEDER support included)
and Xunta de Galicia, Grant PGIDIT04PXIC37101PN.

References

[1] S. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and Operator Theory,
Tashkent, (1997), 1-12, Kluwer Acad. Publ., Dordrecht (1998).

[2] J. M. Casas, Central extensions of Leibniz algebras, Extracta Mathematicae, Vol. 13
(1998), N. 3, 393-397.

[3] J. M. Casas, Homology with trivial coefficients of Leibniz n-algebras, Comm. in Algebra
31 (3) (2003), 1377-1386.

[4] J. M. Casas, A non-abelian tensor product and universal central extension of Leibniz n-
algebras, Bull. Belgian Math. Soc Simon Stevin 10 (2004), 259-270.

[5] J. M. Casas, Ganea term for homology of Leibniz n-algebras, Algebra Colloquium 12 (4)
(2005), 629-634.

[6] J. M. Casas, E. Faro and A. M. Vieites, Abelian extensions of Leibniz algebras, Comm. in
Algebra 27 (6) (1999), 2833-2846.

[7] J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian
Math. J. 9 (4) (2002), 659-669.

[8] J. M. Casas, J.-L. Loday and T. Pirashvili, Leibniz n-algebras, Forum Math 14 (2) (2002),
189-207.

75



[9] J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, Research
and Exposition in Mathematics, Vol. 25 (2002), 189-196.

[10] Y. I. Daletskii and L. A. Takhtajan, Leibniz and Lie algebras structures for Nambu
algebra, Letters in Math. Physics 39 (1997), 127-141.

[11] A. S. Dzhumadil’daev, Representations of vector product n-Lie algebras, Comm. in Al-
gebra 32 (9) (2004), 3315-3326.

[12] V. T. Filippov, n-Lie algebras, Sib. Mat. Zh., Vol. 26 (1985), No. 6, 126-140.

[13] P. Gautheron, Some remarks concerning Nambu mechanics, Letters in Math. Physics 37
(1996), 103-116.

[14] J. Grabowski and G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson
structures, Differential Geom. Appl. 12 (2000), no. 1, 35-50.

[15] P.J. Hilton and U. Stammbach, A course in homological algebra, Graduate Text in Math.
4 (1971), Springer-Verlag, New York-Berlin.

[16] R. Ibafiez, M. de Leén, B. Lépez, J. C. Marrero and E. Padrén, Duality and modular
class of a Nambu-Poisson structure, J. Phys. A: Math. Gen. 34 (2001), 3623-3650.

[17] W. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952),
217-242.

[18] J.-L. Loday, Cyclic homology, Grundl. Math. Wiss. Bd. 301 (1992), Springer.

[19] J.-L. Loday, Une version non commutative des algébres de Lie: les algébres de Leibniz,
L’Enseignement Mathématique 39 (1993), 269-292.

[20] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and
(co)homology, Math. Ann. 296 (1993), 139-158.

[21] J.-L. Loday and M. O. Ronco, Trialgebras and families of polytopes, Homotopy theory:
relations with algebraic geometry, group cohomology and algebraic K-theory, Contemp.
Math. 346 (2004), Am. Math. Soc., Providence, RI, 369-398.

[22] G. Marmo, G. Vilasi and A. M. Vinogradov, The local structure of n-Poisson and n-
Jacobi manifolds, J. Geom. Phys. 25 (1998), 141-182.

[23] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 3 (7) (1973), 2405-2412.

[24] A.P. Pojidaev, Enveloping algebras of Filippov algebras, Comm. in Algebra 31 (2) (2003),
883-900.

[25] P. Saraiva, Reduced n-Lie algebras, Comm. in Algebra 30 (4) (2002), 2057-2074.

76



[26] J. Stasheff, The (secret?) homological algebra of the Batalin- Vilkovisky approach. In “Sec-
ondary calculus and cohomological physics” (Moscow, 1997), 195-210, Contemp. Math.,
219 (1998), Amer. Math. Soc., Providence, RI.

[27] L. A. Takhtajan, On fundation of the generalized NAMBU mechanics, Comm. Math,
Phys. 160 (1994), No. 2, 295-315.

[28] L. A. Takhtajan, A higher order analog of the Chevalley-FEilenberg complex and the de-
formation theory of n-gebras, St. Petersburg Math. J. Vol. 6 (1995), No. 2, 429-438.

[29] 1. Vaisman, A survey on Nambu-Poisson brackets, Acta Math. Univ. Comenian. (W. S.)
68 (1999), no. 2, 213-241.

[30] A. Vinogradov and M. Vinogradov, On multiple generalizations of Lie algebras and Pois-
son manifolds. In “Secondary calculus and cohomological physics” (Moscow, 1997), 273—
287, Contemp. Math., 219 (1998), Amer. Math. Soc., Providence, RI.

7



78



Fine gradings on some exceptional algebras

Cristina Draper* Candido Martin'

Abstract

We describe the fine gradings, up to equivalence, on the exceptional Lie algebras of

least dimensions, g, and f,.

1 Introduction

The research activity around gradings on Lie algebras has grown in the last years. Many
works on the subject could be mentioned but, for briefness, we shall cite [2] and [5]. The
most known fine grading on a simple Lie algebra, that is, the decomposition in root spaces,
has shown to have many applications to the Lie algebras theory and to representation theory.
So, it seems that other fine gradings could give light about different aspects of these algebras.

This paper is based in [3] and [4]. In the first one we classify up to equivalence all
the gradings on gy, and, in the second one all the nontoral gradings on f;. In this last
algebra we rule out the study of the toral gradings because they provide essentially the
same perspective of the algebra than the root space decomposition. The gradings which
summarize the information about all the ways in which an algebra can be divided are the fine
gradings, because any grading is obtained by joining homogeneous spaces of a fine grading.
Our purpose in these pages is provide a complete description of them, in the cases of go and
f4. This objective does not need so technical tools as those used in the above works. These
technicalities are only needed to show that, effectively, the described gradings will cover all
the possible cases.

Besides we will describe the fine gradings on the Cayley algebra and on the Albert algebra,

motivated by their close relationship to g, and f, respectively.

2 About gradings and automorphisms

Let F be an algebraically closed field of characteristic zero, which will be used all through this
work. If V' is an F-algebra and G an abelian group, we shall say that the decomposition V' =
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08115-C04-04, and by the Junta de Andalucia PAI projects FQM-336 and FQM-1215
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DgecVy is a G-grading on V whenever for all g, h € G, V,Vj, C V. The set {g € G | V, # 0}
is called the support of the grading and denoted by Supp(G). We shall always suppose that G
is generated by Supp(G). We say that two gradings V = @geaXy = @renYsn are equivalent
if the sets of homogeneous subspaces are the same up to isomorphism, that is, there are an
automorphism f € aut(V) and a bijection between the supports a: Supp(G) — Supp(H)
such that f(X,) = Y, for any g € Supp(G). A convenient invariant for equivalence is
that of type. Suppose we have a grading on a finite-dimensional algebra, then for each
positive integer ¢ we will denote by h; the number of homogeneous components of dimension
i. Besides we shall say that the grading is of type (hi,hg,..., k), for [ the greatest index
such that h; # 0. Of course the number ), ih; agrees with the dimension of the algebra.

There is a close relationship between group gradings and automorphisms. More precisely,
if {f1,..., fn} C aut(V) is a set of commuting semisimple automorphisms, the simultaneous
diagonalization becomes a group grading, and conversely, given V' = ®4ecqV, a G-grading, the
set of automorphisms of V' such that every V, is contained in some eigenspace is an abelian
group formed by semisimple automorphisms.

Consider an F-algebra V, a G-grading V = @©4cq X, and an H-grading V' = ®pegYy,.
We shall say that the H-grading is a coarsening of the G-grading if and only if each nonzero
homogeneous component Y3, with h € H is a direct sum of some homogeneous components
Xy. In this case we shall also say that the G-grading is a refinement of the H-grading. A
group grading is fine if its unique refinement is the given grading. In such a case the group
of automorphisms above mentioned is a maximal abelian subgroup of semisimple elements,
usually called a MAD ("maximal abelian diagonalizable”). It is convenient to observe that
the number of conjugacy classes of MADs groups of aut(V') agrees with the number of equiv-
alence classes of fine gradings on V. Our objective is to describe the fine gradings, up to

equivalence, on the exceptional Lie algebras go and f4.

3 Gradings on C and Der(C)

Under the hypotesis about the ground field there is only one isomorphy class of Cayley
algebras so that we take one and forever any representative C' of the class. Consider also
go := Der(C). The Lie algebra g, is generated by the set of derivations {D,, | z,y € C},
where

Dy = [z, ly] + [lz,7y] + [rz,7y] € Der(C)

for I, and r, the left and right multiplication operators in C'.
In our context a grading on an algebra is always induced by a set of commuting diagonal-

izable automorphisms of the algebra. Thus, an important tool for translating gradings on C'
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to gradings on gy (and conversely) is given by the isomorphism of algebraic groups

Ad: aut(C) — aut(gy)
fo= Ad(f);  Ad(f)(d) := fdf .
Since Ad(f)(Dzy) = Dy, s(y), the grading induced on gy by the grading C = ©yeaCy

is given by g5 = L = ®yeqLy with Ly = Egl-i-gz:g
translation procedure has the drawback that equivalent gradings on C are not necessarily

D¢, c,,- As pointed out in [3] this

transformed into equivalent gradings on g,. But of course isomorphic gradings are indeed
transformed into isomorphic ones and reciprocally. Moreover two fine equivalent gradings on

C are transformed into fine equivalent gradings on g9 and reciprocally.

3.1 Gradings on the Cayley algebra

Next we fix a basis of C' given by:
B = (617 €2, U1, U2, u3,v1, V2, U3)‘

This is called the standard basis of the Cayley algebra C, and is defined for instance in [3,
Section 3] by the following relations

eluj :u]' :’U,jeg, ’U,Z"U,j = Vg :—uju,-, u;v; = ex,

€2Uj :Uj :vjel, —’UZ"Uj = UL :Uj’UZ', Viu; = €9,

where e; and e are orthogonal idempotents, (i, j, k) is any cyclic permutation of (1,2, 3), and
the remaining relations are null. This algebra is isomorphic to the Zorn matrices algebra. For
further reference we recall here that the standard involution x — T of C' is the one permuting
e; and ey and making £ = —x for x = w; or v; (i,j = 1,2,3). This enable us to define the
norm n: C' — F by n(x) := xZ, the trace map tr: C — F by tr(x) := =+ Z, and the subspace
Cy of all trace zero elements. This is f-invariant for any f € aut(C).

The gradings on C' are computed in [6] in a more general context. In particular, up to
equivalence, there are only two fine gradings on C. These are:

a) The Z2-toral grading given by

Co,1 = (u1) Cr1 = (ug) C_1,—2 = (u3)
Co,—1 = (v1) Co1-1=(va) Ci2=(v3)
whose homogeneous elements out of the zero component Cj g have zero norm.

b) The Z3-nontoral grading given by

Cooo = (e1 + e2) Coo1 = (e1 — e2)
Cro0 = (u1 +v1) Co1o = (u2 + v2)
Cio1 = (u1 —v1) Conr = (uz — va)
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Chiio = (ug + v3) Ci11 = (uz — v3) (1)

This grading verifies that every homogeneous element is invertible.

Any other group grading on C' is obtained by coarsening of these fine gradings.

3.2 Gradings on g,

Applying the previous procedure for translating gradings from C to g = L we can obtain the
fine gradings on this algebra. These are the following:

a) The Z>-toral grading given by

Loy = (Duy w1 s Dusog s Dug vs)
L1 = (Dyy uy) Loa = (D, vg) L11 = (Dy, v3)
Lio = (Duy ) Li3 = (Dyjvs) Loz = (Duys)
L_10= (Duyw,) Lo,—1 = (Duyus) L1 1= (Dujus)
Loy, 2=(Dyw) Lo1,3= (D) L-2-3= (Duyus)

This is of course the root decomposition relative to the Cartan subalgebra h = L . Moreover,
if ® is the root system relative to b, and we take A = {ag,as} the roots related to Dy, y,
and D,, ., respectively, it is clear that A is a basis of ® such that Ly, n, = Ln;a1+nsas-

All the homogeneous elements, except the ones belonging to L, are nilpotent.

b) The Zg’-nontoral grading is given by

Lopo=0 Lop1 ="

Loio=(c+ f,B+G) Loi1=(—c+f,B—G)
Lizo=(A+D,b+g) Liig=(-A+D,~b+g)
Ligo=(a+d,C+F) Lig;=(—a+dC—F)

if we denote by A := Dy, uy, @ := Dy, sy € := Dy s, b= Dy ups G 1= Dy 4y, Fi= Dy g5
D := Dy, vy, d := Dyyus, [ := Dyjuzs 9 = Dy vg, B := Dy, 4y and C := D,, 4, that is, a

collection of root vectors corresponding to the picture

Notice that each of the nonzero homogeneous components is a Cartan subalgebra, that is,

every homogeneous element is semisimple.
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4 Gradings on J and Der(/J)
The Albert algebra is the exceptional Jordan algebra of dimension 27, that is,
J = Hg(C) = {:E = (:Ew) S Mg(C) | Tij = l’_ﬂ}

with product z -y := %(xy + yx), where juxtaposition stands for the usual matrix product.
Denote, if z € C, by

00 0 00 z 0 z 0
sZM =100 z| 2z®@=10 0 0| 2®=1z 0 0
0% 0 z 0 0 0 0 0

and denote by Fj,FEs and E3 the three orthogonal idempotents given by the elementary
matrices e, ego and esg respectively. The multiplication table of the commutative algebra .J

may be summarized in the following relations:

E2—E, Ead—o, AOp0) —

tI’(CL (EJ + Ek)7

where (i, 7, k) is any cyclic permutation of (1,2,3) and a,b € C.

We fix for further reference our standard basis of the Albert algebra:

B = (Eh E27 E37 egg)v 623) ) Ugg) ; Ué?)) ; ’LL§3) ) U§3) ) U§3) 5 U§3)7 652)7 6&2), —’LL§2), _ug2)7

2 2 2 2 1 1 1 1 1 1 1 1
o2, —of®, ~of2, o2, 0, 9, oD, o), o0 D),

The Lie algebra f; = Der(J) is generated by the set of derivations {[R,, R,] | z,y € C},
where R, is the multiplication operator. As in the case of C and gy we also have an algebraic
group isomorphism relating automorphisms of the Albert algebra J and of f,. This is given
by

Ad: aut(J) — aut(fy)
fo= Ad(f) Ad(f)(d) = fdf 1.
This provides also a mechanism to translate gradings from J to f; and conversely. Since
Ad(f)([Re, Ry]) = [Ry(z), Ry(y); the grading induced on f, by J = @geqdy is given by
fp = L = ®geqly with Ly = Zgl+g2:g[Rng,RJg2].

4.1 Gradings on the Albert algebra

There are four fine gradings on J, all of them quite natural if we look at them from a suitable

perspective.

a) The Z*-toral grading on .J.
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Define the maximal torus Ty of F; whose elements are the automorphisms of J which are
diagonal relative to B. This is isomorphic to (F*)* and it is not difficult to check that the

matrix of any such automorphism relative to B is

52 afy .1 af ay 6 o & By 9
2

11
/B’Y,B,;’ 6 ) 7577777%7@76}5_’}/77757
afy o 029 w)

575757aﬁ77ﬁ”77 5

for some a, 3, 7, § € F*. Define now t, 3 s as the automorphism in ¥y whose matrix relative

1
diag(l,l,l,a, —, 3,7,
« «

to B is just the above one. Notice that we have a Z*-grading on J such that ta,8,,6 acts in

J(n1,n2,n3,ns) With eigenvalue o 3"2473§™4. This is just

J0,0,00 = (E1, Ea, E3)

J1,0,0,0 = <€§3)> Jo,0,0,-1 = <€§2)> J 1001 = (€ )y
J-1000 = (623)> J0,0,01 = (622)> J100,-1= <€§1)>
Jo,1,00 = <U§3)> Ji10-1= <u§2)> Jo1,0-1= <u§1)>
Joo,1,0 = <u§3)> Jio1,-1 = <u§2)> Joo,1,-1 = <u§1)>
Jo1 1,12 = (U§3)> Jo~1,-1,1 = (U§2)> Jo 1,11 = (U;(),l)>
Jo—1,00 = (v}’ J 1,101 = (U§2)>, Jo,—1,01 = (v b

J_10-11= <U52)>

Joj1,-1 = <U;(),2)>

Recall from Schafer ([9, (4.41), p.109]) that any = € .J satisfies a cubic equation x> —
Tr(z)2z? 4+ Q(z)z — N(x)1 = 0 where Tr(z), Q(z), N(x) € F. Notice that again in this grading
every homogeneous element b ¢ Jy 0,0 verifies that N(b) = 0.

b) The Z3-nontoral grading on J.

Define H = H3(F) = {x € M3(F) | x = 2'} and K = K3(F) = {z € M3(F) | x = —a'}.

There is a vector space isomorphism
J=H&K®®Cy (2)

given by E; — E;, 10 +— 10 ¢ H and for z € Cy, 2 — (ejr —erj) ® x € K ® Cp, being
(i, j, k) any cyclic permutation of (1,2,3) and e;; € M3(F) the elementary (i, j)-matrix. Thus
J is a Jordan subalgebra of M3(F)® C with the product (c®z)- (d®y) = 3((c®z)(d®@y)+
(d®y)(c®x)) for (c®x)(dRyY) =cd® xy.

This way of looking at J allows us to observe that the gradings on the Cayley algebra C,
so as the gradings on the Jordan algebra Hs(F'), induce gradings on J, because aut(C') and
aut(Hs(F)) are subgroups of aut(J). Moreover, both kind of gradings are compatible. To be
more precise, consider a G1-grading on the Jordan algebra H = @©4eq, Hy. This grading will
come from a grading on M3 (F') such that the Lie algebra K has also an induced grading ([7,
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p. 184-185]). Taking a Ga-grading on the Cayley algebra C = @geq,Cy, we get a Gi x Ga-
grading on J given by

ng,e = Hg1 D Kg1 ® (00)6’ ng,gz = Kg1 ® (00)92’ (3)

for g1 € G1,92 € G2 and e the zero element in any group.
Take now as G-grading on g, the Z3-nontoral grading (1). Note that (Cp). = 0, so that
Jg1,e = Hg,. And take as Gi-grading on H3(F), the Z3-grading given by

H. = (E1, Ey, E3) Hyp = (1)
Hyg= (1(2)> Hy= <1(3)>7

which induces in K the Z%-grading such that
K.=0 Ko1=(e12—e2) Ki1= (ea3—e3) Kiog=(e13—e31).
Combining them as above, we find a Z3-grading on J with dimensions

dim J, . = dim H, = 3,

dim Je 4, = 0,

dim Jy, o = dim Hy, =1,

dim Jy, 4, = dim Ky, ® (Cp)g, = 1,

which is of type (24,0,1). The grading so obtained turns out to be, after using the isomor-
phism (2),
Je,e = (Ev, Eq, E3)
Jeg=0
Ji1g = (Cg)
J10.9 = (Cg)®?
Jog = (Cg)®,
for g € Z3 and C, again given by (1).
c) The Z3 x Z-nontoral grading on J.
If p € SO(3, F), denote by In(p) the automorphism in aut(Hs(F)) given by In(p)(x) =

prp~ L. It is well known that a maximal torus of SO(3) is given by the matrices of the form

1 0 0
Pap: =10 a f
0 -0 «

with a, 8 € F such that o+ 3% = 1. Thus, the set of all 7, 5 = In(p, ) is a maximal torus of
aut(H3(F')) and the set of eigenvalues of 7, g is Sy 8 = {(a+1i8)" | n = 0,£1, £2}. Supposing
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|Sa,8| = 5, we find for 7, g the following eigenspaces

(— E?+u%+1ﬂ>

= (—i® +1@)
=< 1,E2+E3>
= (i® + 1)

H_2 = <’LE2 —iF3 + 1(1)>

where the subindex n indicates that the eigenvalue of 7, g is (a+43)". This gives a Z-grading
on Hs(F'), which induces the Cartan grading on K = Der(H3(F')), a Lie algebra of type a;.

An equivalent, but more comfortable, way of looking at these gradings, is:

Hjy = (ea3) Ky =0

Hy = <€13—|—€21> K= <€13—€21>

H. = (E1,FEy + E3) K, = (B — E3) (4)
H_y = (e12 +e31) K_1 = (e12 — e31)

H_5 = (e32) K 5=0

When mixing them with the Z3-grading on C as explained in (3), we obtain a Z x Z3-fine

grading on J, whose dimensions are

dim J27e = dimHQ =1

dimJi, =dimH; =1

dim J, . = dim H, = 2

dim Jy = 0

dim Jl,g =dim K; ® (C())g =1
dim Je 4 = dim K. ® (Cp)g = 1,

for g € Z%. It is obviously a grading of type (25,1). A detailed description of the components
could be obtained directly by using (3).

d) The Z3-nontoral grading on J.

There is another way in which the Albert algebra can be constructed, the so called Tits
construction described in [8, p.525]. Let us start with the F-algebra A = M3(F') and denote
by Tra,Qa,N4: A — F the coefficients of the generic minimal polynomial such that =3 —
Tra(x)x? + Qa(z)r — Na(z)1l = 0 for all z € A. Define also the quadratic map #: A — A
by zf := 22 — Try(2)x + Qa(x)1. For any z,y € A denote z x y := (x + y)* — 2% — 9%, and
¥ = %az x 1= %TrA(x)l — %az Finally consider the Jordan algebra A' whose underlying
vector space agrees with that of A but whose product is = -y = %(my + yz). Next, define in

A3 := A x A x A the product

(a1,b1,c1)(ag, b, c2) ==
(a1 - az + (bica)* + (bac1)*, abs + abby + 3(c1 X ¢2), caa} + cra3 + 5(by x ba)).
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Then A3 with this product is isomorphic to J = H3(C).

This construction allows us to extend any f automorphism of A to the automorphism
f® of J = A3 given by f*(x,y,2) := (f(z), f(y), f(2)). As a further consequence we will
be able to get gradings on J coming from gradings on the associative algebra A via this
monomorphism of algebraic groups. Thus, consider the Zg—grading on A produced by the

commuting automorphisms f := In(p) and g := In(q), for p = diag(l,w,w?), being w a

0 1 0
q= 0o 0 1 .
1 0 O

The simultaneous diagonalization of A relative to {f, g} yields A =@

primitive cubic root of the unit and

2

i j—0di,; where

Ago = (1a), Ao = (w?e11 —wea + e33), Aoz = (—wer1 +w?ean + e33),
A1g = (e13 + €21 +e32), A = (wle1z —wear +e32), Arp = (—wers + wear + e32),
Agg = (e12 + €23 +e31), Ao = (wler2 —weas +e31), Az = (—wera + weaz + €31).

If we make a simultaneous diagonalization of J relative to the automorphisms {f®, ¢g*} we
get the toral Z3-grading J = EB?J:OA‘;’J. Now consider a third order three automorphism
¢ € aut(J) given by ¢(ag,a1,a2) = (ag,war,w?as). It is clear that {f®, ¢°, ¢} is a com-
mutative set of semisimple automorphisms of J, producing the simultaneous diagonalization

J = @7 p—oJijk Where

J@j,o = Aij x0x0
Ji,j,l =0x Aij x 0
Ji,jg =0x0x A,’j,

so that we have 27 one-dimensional homogeneous components. In particular this Z3-grading

on J is fine and nontoral (otherwise Jyoo would contain three orthogonal idempotents).

Observe also that the homogeneous elements are invertible.

4.2 Gradings on f,

Recall that the isomorphism Ad: aut(J) = aut(f,), introduced at the beginning of Section 4,
provides a mechanism for translating gradings from J to f4 and conversely. Therefore, there

will be four fine gradings on f, too, over Z*, Z3, Z3 x Z and Z3.

a) The Z*-toral grading on j,.
Denote by w; the i-th element in the basis B. The Z*-toral grading on J = Dgezady
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induces a grading on f4 = L = ©yezaLy by Ly = Zg1+g2:g[Rng,RJ92]:

L070,070 = <[Rw4a w5]7 [ng,ng], [Rw77 RUJIO]? [RW125RW13]>
L1,0,0,0 = ([Ror > ) Lo,0,0,1 = ([Ruy s Ruys]) Lo1,1,0 = ([Rugs Rur])
L 1,2 -12=(Rug,Rus)) L1,00,-1 = ([Ruys R ) Loi1,—1=

9 <|:Rw17Rw19:|>
Loy, 102=([Ro Ros])  Lo1,-101=([Ru,Rupr])  Ligi,—1 = ([Ruy, Ruyl)
Loia,—2 = ([Ruy, Royy)) Lo, 1,01 = ([Ruy, Rus)) Ligg,—2=([Ru,, Ruy))
Lfl,fl 0,0 = <[Rw57 Rw9]> LO,*LO,O = <[Rw17Rw9]> L271,17*2 = <[Rw47 Rw11]>
L 101,00 = ([Rus, Ru,]) Loo,1,0 = ([Ru,, Ro.,]) L1, 1,00 = ([Ru,, Ruol)
Loo,1,-1 = ([Ruy, Russ] Lio,1,0 = ([Ru,, Ro,]) Lio,1,-1 = ([Ru,, Rus)])
Lio,-2 = ([Rug, Rooys | Lii2,-2 = ([Ror, Ruy ) Lo,~1,1,0 = ([Rur, Rus)
L_1,0,00 = ([Ruys Rus)) Lo,0,0,-1 = ([Ruws Ruys]) Lo,—1,-1,0 = ([Rugs Ruyo))
Lis1,—2 = ([Rus, Ruyy]) L1001 = ([Ruyy Rusol) Lo,—1,-11 = ([Ruys Ruygl)
Li1,0,—2 = ([Ruyy, Ruyy) Li1,0,-1 = ([Ru,» Ruysl) L1111 = ([Ruys Runsl)
Lo—1,-12 = ([Ruys Bu])  Lo1,0,-1 = ([Ruys Rus)) Loy—1,-1,2 = ([Ruys Rugl)
Li1,0,0 = ([Ruy, Rugl) Lo1,00 = ([Ruy, Rug) L o 1 _12=([Ros, Ru)
Lio,-1,0 = ([Ruy, Ruyo)) Loo,—1,0 = ([Ruy, Ruo)) L 1100 = ([Rus, Rugl)

w26]> L—170,—170 = <[Rw57Rw10]> L—170,—171 = <[Rw17Rw18]>
L_10,-12=(Rugs Rug))  L-1,-1,—22 = ([Rug> Ruro)) Lo,1,—1,0 = ([Rugs Ruso])-

This is of course the root decomposition relative to the Cartan subalgebra h = Lgg,0. If ®
is the root system relative to b, and we take A = {a, ag, a3, ay} the set of roots related to
[Rugs Rusly [Ruwgs Rurls [Ruys Ruis] and [Ry,, Ry,] respectively, it is straightforward to check
that A is a basis of ® such that the root space Ly, a;+nsas+nsas+nias and the homogeneous
component Ly, _n; no—ny no—n1,na+2n, coincide.

b) The Zj3-nontoral grading on f,.

We got the Z3-grading on J by looking at J as H & K ® Cy. But f, is its algebra of
derivations, hence there should exist some model of §, in terms of H, K and C. In fact we
can see f, as

L=Der(C)® K& Hy® Cy
identifying Der(H3(F)) in a natural way with K in the known Tits unified construction for
the Lie exceptional algebras (for instance, see [9, p.122]).

Consider a G'1-grading on the Jordan algebra H = @©4eq, Hy. This grading will come from
a grading on M3(F) so that the Lie algebra K has also an induced grading. Take now the Z3-
grading on the Cayley algebra C' = DByeg,=73 Cy and the induced grading Der(C) = ®geq, Ny
All this material induces a G; x Ga-grading on L by means of

Lgl,e = KQl’ LG,QQ = NHQ D (HO)e ® (00)92’ Lg1,92 = (HO)g1 ® (00)927 (5)

which is just the grading induced by the G} x Ga-grading on J described by (3).
In the case of the Z3-grading recall that G; = Z%,

H. = (E\,FE2,E3) Hoy = (ei2+e2) Hii=(eas+es) Hip=(e13+esn)
K.=0 Ko1 = (e12 —ea) Ki1= (e —ez) Kiog=(e13—es3)
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and dim(Cp)y = 1, dim N, = 2 for all g € Z3 \ {(0,0,0)}. Therefore

dim L., = 0,

dim L 4, = dim Ny, + dim(Hp)e ® (Cp)g, = 4,
dim Ly, . = dim K, =1,

dim Ly, g, = dim(Hyp)g, @ (Co)g, = 1,

and so the grading is of type (24,0,0,7), with all the homogeneous elements semisimple.

c) The Z3 x Z-nontoral grading on f,.

We obtain the grading by the method just explained, with the G; = Z-grading on H and
K described in (4), and by crossing it with the Z3-grading on C. In such a way we get a
Z3 x Z-grading of type (31,0, 7), since

dim L, = 0,

dile,e = dim Kl = 1,

dim L., = dim K, = 1,

dim Ly g = dim Hy ® (Cp)g = 1,

dile,g =dimH ® (C())g =1,

dim L, g = dim N, + dim(Hp). ® (Cp)y = 3,

and L, is dual to L_g, so they have the same dimensions.
The detailed description of the components of the last two gradings can be made by using
(5), but it is not worth to be developed here.

d) The Zg-nontoral grading on f,.

The easiest way to visualize this grading intrinsically, that is, with no reference to a
particular basis or computer methods, is probably looking at the automorphisms inducing
the grading. Adams gave a construction of the Lie algebra eg from three copies of ag ([1,
p.85]). Once the automorphisms have been given in e¢g we will restrict them to 4.

Given a 3-dimensional F-vector space X in which a nonzero alternate trilinear map
det: X x X x X — F has been fixed, we can identify the exterior product with the dual
space by X A X Z X* such that x Ay +— det(z,y,—) € hom(X, F). And in a dual way we can
identify X* A X* with X through det®, the dual map of det. Consider three 3-dimensional
vector spaces X; (i = 1,2,3), and define:

L=sl(X1)®sl(Xa)@sl(X3)d X1 @Xo® X3 & X{®X; ®X3,
endowed with a Lie algebra structure with the product

(®fi,®@x] = E?;;”;éﬁ filwi) £ () (fr(=)mr — 5 frlan)idx,)
[@z;, ®yi] = Q(zi A ys)
[@fi, @9 =&(fi \gi)
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for any xz;,y; € X, fi,9; € X, with the wedge products as above, and where the actions of
the Lie subalgebra > sl(X;) on X; ® Xo® X3 and X; ® X5 ® X3 are the natural ones (the i-th
simple ideal acts on the i-th slot). The Lie algebra L is isomorphic to eg. The decomposition
L= L;® Ly P L3 is a Zg-grading for L5 = sl(X1) & sl(X2) &sl(X3), L1 = X1 @ Xo ® X3
and L5 = X{ ® X5 ® X3. Take ¢ the automorphism which induces the grading, that is,
o1 L; = u)iidLZ for w a primitive cubic root of the unit. We are giving two automorphisms
commuting with ¢.

A family of automorphisms of the Lie algebra commuting with ¢; is the following. If
pi: X; — X, 1 =1,2,3, are linear maps preserving det: XZ?O’ — F, the linear map p; ® p2 ®
p3: L1 — L7 can be uniquely extended to an automorphism of £ such that its restriction to
sl(V;) € Lg is the conjugation map g — pig,oi_l.

Fix now basis {ug, u1,us} of X1, {vg,v1,v9} of Xo, and {wq, w1, ws} of X3 with det(ug, u1,uz) =
det(vg, v1,v2) = det(wp, w;,wy) = 1. Consider ¢2 the unique automorphism of eg extending
the map

Ui @ Vj Q Wk = Uil @ Vjp1 @ Wi
(indices module 3). Finally let ¢3 be the unique automorphism of ¢g extending the map

U; Qv @ wg — wu; ® U.)]'Uj & wkwk = w’+]+kui R V; @ W.

The set {(b,-}?:l is a commutative set of semisimple automorphisms, and it induces a Zg—
grading on e¢g. The grading is nontoral since its zero homogeneous component is null.
Some computations prove that the rest of the homogeneous components are all of them
3-dimensional.

The nice 3-symmetry described in ¢g is inherited by f,. Indeed graphically speaking,
f, arises by folding eg. More precisely, taking Xo = X3 we can consider on eg the unique
automorphism 7: e — e¢g extension of u ® v ® w — u ® w ® v. This is an order two
automorphism commuting with the previous ¢; for i = 1,2,3. The subalgebra of elements
fixed by 7 is

sI(X)) @sl(Xp) @ X; @ Sym?(Xy) @ X; ®Sym?(X3),

where Sym™ X; denotes the symmetric powers. This is a simple Lie algebra of dimension 52,
hence f,. Furthermore, denoting also by ¢;: {4 — f, the restriction of the corresponding auto-
morphisms of eg, the set {(bi}f:l is a set of commuting semisimple order three automorphisms
of f, with no fixed points other than 0. So it induces a nontoral Z3-grading on f, of type

(0,26), with all the homogeneous elements semisimple.
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Notes on a general compactification of symmetric

spaces

Vadim Kaimanovich* Pedro J. Freitas’

Abstract

In this paper we outline the results regarding a construction of a general K-equivariant

compactification of the symmetric space G/ K, from a compactification of the Weyl cham-

ber. A more detailed paper on this subject is expected soon. !

Symmetric spaces are a classical object of the Riemannian geometry and serve as a testing
ground for numerous concepts and notions. The simplest symmetric space is the hyperbolic
plane which can be naturally compactfied by the circle at infinity, which is essentailly the
only reasonable compactifictaion of the hyperbolic plane. However, for higher rank sym-
metric spaces the situation is more complicated, and there one can define several different
comapctifications—the visibility, the Furstenberg, the Martin, the Karpelevich—to name just
the most popular ones. The present report is a part of an ongoing project aimed at under-

standing the nature and structure of general compactifications of symmetric spaces.

1 General Concepts

We start by defining the notation (either well known or taken from [GJT], with minor ad-
justments) and the concepts necessary. The results that follow can be found in [GJT] and
[He].

We take (G, a semisimple connected Lie group with finite center, and let K be a maximal
compact subgroup. Denote by g and € the Lie algebras of G and K respectively.

Let g = £ @ p be the Cartan decomposition of g, p being the orthogonal complement of
t in g, with respect to the Killing form B. The space p can be identified with the tangent
space to G/K at the coset K, which we’ll denote by o. The restriction of the Killing form to

this space is positive definite, and thus provides an inner product in p.
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Key words and phrases. Compactifications, Symmetric Spaces.

93



We take a to be a fixed Cartan subalgebra of p, a™ a fixed Weyl chamber, ¥ the set of all
the roots of g with respect to a (the so-called restricted roots), 3 the set of positive roots,
A the set of the simple roots. We denote by d be the rank of G (the dimension of a).

The action of G on G/K is by left multiplication. Every element of G can be written as
k.exp(X) with k € K and X € p—this is an easy consequence of the Cartan decomposition,
which states that every element of G' can be expressed as ki exp(X)keo, ki,ke € K, X € at
— as the closed Weyl chamber will be a very important object, we’ll denote ro := a+. From
this we can easily conclude that every point in G/K can be presented as kexp(X).o, k € K,
X € w, which means that the K-orbit of exp(w), is whole symmetric space. Moreover, the
element X € tv is uniquely defined, and is called the generalized radius. The element k is

unique modulo the stabilizer of X for the adjoint action of K over tv.

Given a topological group H, we’ll say that a topological space A is an H -space if there
is an action of H on A (which we’ll denote by a dot) and the map

HxA — A
(h,a) +— ha

is continuous. If B is another H-space, and ¢ : A — B is a continuous map, we say that ¢ is
H -equivariant if, for any h € H,a € A, ¢(h.a) = h.¢(a).

If B is compact, ¢ is an embedding, and ¢(A) is dense in B, we'll say that (¢, B) (or
simply B if there is no confusion about the map involved) is a compactification of A. If ¢ is

H-equivariant, we’ll say that B is an H -compactification.

2 Building the compactification

We are now concerned with the definition of a compactification of the space G/K via com-
pactifications of the closed Weyl chamber. There are a few compactifications of G/K that

can be presented this way, as we will see later.

Now suppose we have a compactification of w, w, that is Hausdoff and satisfies the fol-

lowing condition:
(x) For sequences xp, ), € w, If v,, — x € O and d(xy,x]) — 0, then z, — .

Notice that if z € o, we always have this property, since the topology in tv is given by

the metric d.

Now, we are looking for a K-invariant compactification of G/K that restricted to o will

be . We present a process of doing this.
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Consider the space K x to, and the map m : K X tv — G/K defined naturally by
m1(k,x) := k.exp(z).o. Consider also the compact space K x tvo and its quotient by the

equivalence relation ~ defined by the following rules:
(i) for x,y € v, (k,x) ~ (r,y) < x =y and rexp(x).0 = sexp(y).o;

(ii) for z,y € Ov, (k,x) ~ (r,y) < there exist convergent sequences (k,x,) and (r,y,) in
K x w with limz,, = x, limy,, =y, such that d(k exp(z,), 7 exp(yn)) — 0.

The relation ~ is clearly an equivalence relation. Denote by K the quotient space.
Notation. Condition (i) assures that there is a bijection between G/K and (K x w)/ ~,

name it ¢. We will therefore use the notation kE(z) to denote (k,z)/ ~, for k € K and z € 1.
Thus, «(kexp(x).0) = kE(z) in K.

Now take the inclusion and projection maps
11: K xmw—Kxrw me: K xmw — IC.

We have that following diagram commutes.

Kxw 5 G/K

ln Le

Kxm 22 K

It can be proved that the image of K X to is dense in K, and that ¢ is an embedding. This
makes K into a compactification of G/K, since K is clearly compact. The following result is

a parallel to the polar decomposition on G/K.

Proposition 2.1. For z,y € to, and k,r € K, we have that kE(x) = rE(y) if and only if

x =y and k~'r € Stabg (E(x)). In particular, the “generalized radius” x is well defined,
even when kE(zx) € OK.

This furthers the analogy with elements in G/K. The compactification has the following

properties.

Proposition 2.2. 1. The space K is Hausdorff.
2. The projection o : K X 0 — K is a closed map.

3. The space K is a K-space, and v is K -equivariant.

Moreover, one can prove, using certain classes of converging sequences (just as it is done

in [GJT]) that this compactification has some uniqueness properties.

Theorem 2.3. The compactification K has the following properties.
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1. It is a K-compactification.

2. When restricted to v is to.

3. It respects intersections of Weyl chambers.

4. It is metrizable if w0 is metrizable.

5. Being metrizable, it dominates any other compactification satisfying conditions 1-3.

Examples. There are a few known compactifications that are particular cases of our
compactification I, originating from different compactifications of . Among these are the

compactifications of Furstenberg, Martin, Satake and Karpelevich.

3 An action of G and independence of the base point.

In the case G = SL(n,R) and K = SO(n), it is possible to define an action of G on K. So, in
this section, we take G = SL(n,R), plus the following assumptions on the compactification

t0.

1. We'll assume that, in the compactification of the Cartan subalgebra a, if a sequence ay,

converges, then for any a € a, a + a, also converges.
2. The compactification 0 is a refinement of the Furstenberg compactification.

For g € G, denote by K, the compactification obtained by apllying the above process to
G/K, but using g.o as a reference point, instead of o.

Under these conditions, it is possible to identify a point of K with a point of Ky, comparing
the behaviour of sequences in both compactifications, and the rules of convergence for both—
and prove they are the same. The proof available so far is quite technical, and the authors

are working on a better version. We thus can prove the following result.
Proposition 3.1. With the notation above, K and Ky are the same compactification.

This allows us to define an action of G on K, as follows: given a point x € G/K, and

g € G, we take g.z to be the point in K corresponding to the point g.z € K.
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Tridiagonal pairs, the ¢-tetrahedron algebra, U,(sly),
and U,(sly)

Darren Funk-Neubauer®

Abstract

Let V denote a finite dimensional vector space over an algebraically closed field. A
tridiagonal pair is an ordered pair A, A* of diagonalizable linear transformatons on V' such
that (i) the eigenspaces of A can be ordered as {Vi}fzo with A*V; CV;_14+V;+V; 41 for 0 <
i < d; (i) the eigenspaces of A* can be ordered as {V;*}¢_, with AV C V;* | + Vi + V7,
for 0 < @ < d; (iii) there are no nonzero proper subspaces of V which are invariant
under both A and A*. Tridiagonal pairs arise in the representation theory of various Lie
algebras, associative algebras, and quantum groups. We recall the definition of one such
algebra called the g-tetrahedron algebra and discuss its relation to the quantum groups
Uy,(sl2) and Uq(sAlg). We discuss the role the ¢-tetrahedron algebra plays in the attempt to
classify tridiagonal pairs. In particular, we state a theorem which connects the actions of
a certain type of tridiagonal pair A, A* on V to an irreducible action of the ¢-tetrahedron

algebra on V.

1 Tridiagonal Pairs

In this paper we discuss the connection between tridiagonal pairs and representation theory.
However, tridiagonal pairs originally arose in algebraic combinatorics through the study of
a combinatorial object called a P- and Q-polynomial association scheme [4]. In addition,
tridiagonal pairs are related to many other areas of mathematics. For example, they appear
in the study of orthogonal polynomials and special functions [12], the theory of partially

ordered sets [11], and statistical mechanics [13]. We now define a tridiagonal pair.

Definition 1.1. [4] Let V denote a finite dimensional vector space over an algebraically closed
field K. A tridiagonal pair on V' is an ordered pair A, A* where A:V — V and A*:V -V

are linear transformatons that satisfy the following conditions:

(i) Each of A, A* is diagonalizable.

*Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madi-
son, WI 53706-1388, USA. E-mail: neubauer@math.wisc.edu
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(ii) The eigenspaces of A can be ordered as {Vi}fzo with A*V; CV,_1+V;+ Vi1 (0 < i < d),
where V_; =0, Vg1 = 0.

(iii) The eigenspaces of A* can be ordered as {V;*}¢_, with AV;* C V;* | + V* + 1 (0 <
i <9), where V*) =0, V¥ | = 0.

(iv) There does not exist a subspace W C V such that AW C W, A*W C W, W # 0,
W #£V.

According to a common notational convention A* denotes the conjugate-transpose of A. We
am not using this convention; the linear transformations A, A* are arbitrary subject to (i)—

(iv) above.

Referring to Definition 1.1, it turns out d = ¢ [4]; we call this common value the diameter of
the tridiagonal pair. We call an ordering of the eigenspaces of A (resp. A*) standard when-
ever it satisfies (ii) (resp. (iii)) above. We call an ordering of the eigenvalues of A (resp. A*)

standard whenever the corresponding ordering of the eigenspaces of A (resp. A*) is standard.

The tridiagonal pairs for which the V;, V.* all have dimension 1 are called Leonard pairs. The
Leonard pairs are classified and correspond to a family of orthogonal polynomials consisting of
the g-Racah polynomials and related polynomials in the Askey scheme [12]. Currently there
is no classification of tridiagonal pairs. We will discuss the connection between tridiagonal
pairs, the g-tetrahedron algebra, and the quantum groups U,(slz) and Uq(SAlg). The hope is

that this connection will eventually lead to a classification of tridiagonal pairs.

2 The eigenvalues of a tridiagonal pair

In this section we describe how the standard orderings of the eigenvalues of a tridiagonal pair

satisfy a certain three term recurrance relation.

Let A, A* denote a tridiagonal pair on V. Let {92-}?:0 denote a standard ordering of the

eigenvalues of A. Let {9;}?20 denote a standard ordering of the eigenvalues of A*.
Theorem 2.1. [4, Theorem 11.1] The expressions

* *
0i—o — 0;41 i—2 — Vi1
b
Oi—1 —0; - 0F

are equal and independent of i for 2 <i<d—1.

We now describe the solutions to the recurrance from Theorem 2.1.
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Theorem 2.2. [4, Theorem 11.2] Solving the recurrence in Theorem 2.1 we have the following.
For some scalars q,a,b,c,a*,b*,c* € K the sequences {0;}¢_, and {0;}%_, have one of the
following forms:
Case I: For 0 <3 <d
0; = a+bq' +cq ',
0: — a* +b*qz+c*q—l
Case II: For 0 <1 <d
0; =a+bi+ci(i—1)/2,
0 =a" +b"i+c"i(i —1)/2.
Case III: The characteristic of K is not 2, and for 0 <i <d
0; = a+b(—1)" +ci(—1)",
0F = a* +b*(—1)" 4 c*i(—1)".
For the remainder of this paper we will be concerned with the tridiagonal pairs whose eigen-
values are as in Case I from Theorem 2.2. Such tridiagonal pairs are closely connected to

representations of the quantum groups U, (slz) and Uq(sAlg). The study of this connection

inspired the definition of the g-tetrahedron algebra.

3 The ¢-tetrahedron algebra, U,(sl;), and Uq(sAlz)

In this section we define the g-tetrahedron algebra and discuss its connection to the quantum

groups Uy (slz) and Uq(sAlg).

For the remainder of the paper we will assume ¢ € K is nonzero and not a root of unity.
We will use the following notation. For an integer ¢ > 0 we define

i

[i]:u

=L =61 R0

We interpret [0]! = 1.

Let Z4 = Z/AZ denote the cyclic group of order 4.

Definition 3.1. [7, Definition 6.1] Let X, denote the unital associative K-algebra that has

generators
{wij |4, €Ly, j—i=1orj—i=2}
and the following relations:
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(i) For i,j € Z4 such that j —i = 2,
LT g5 = 1.

(ii) For h,i,j € Z4 such that the pair (i — h,j — i) is one of (1,1),(1,2),(2,1),

-1
qThiTi; —(q “TijThg

—1.
q—q!

(iii) For h,i,j,k € Zy such that i —h=j—i=k—j =1,
3 2 2 3 _
Tpiik = BloThitikThi + [BloTnitikh; — TjkTh; = 0. (1)
We call X, the g-tetrahedron algebra.
We now recall the definition of Ug(sly).

Definition 3.2. [9, p. 9] Let U,(sl2) denote the unital associative K-algebra with generators
K*! e* and the following relations:

KK™' = K'K=1,

Ke:I:K—l — q:I:Qe:I:7
K—-K!
ete” —e et = —
q—q

We now recall an alternate presentation for Uy(slz).

Lemma 3.3. [8, Theorem 2.1] The algebra Uy(sly) is isomorphic to the unital associative

K-algebra with generators x*', y, z and the following relations:

sz =272 = 1,
qry —q 'yz
— o = L
q—q
@wz—g 2y _
q—q* ’
qzr — q_lznz -
q—q! '

We now present a lemma which relates U, (slz) and X,.

Lemma 3.4. [7, Proposition 7.4] For i € Zy there exists a K-algebra homomorphism from
U,(slz) to X, that sends

-1
T — Tji+2, T — Tit24, Y 7 Ti+2i+3, £ — Ti43-

We now recall the definition of Uq(sAlg).
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Definition 3.5. [1, Definition 2.2] Let Uq(sAlg) denote the unital associative K-algebra gen-
erated by Kiil, eli, i € {0,1} subject to the relations

KK *
KoK

KieF K1
Kie K
efei_ — e;e;F
epel

K 'K; =1,

K1K07

+2 +
q ei7

qler, it
K, —K;!
— 1

qa—4q

F_+
€1 €0

We now recall an alternate presentation for Uq(SAlg).

Theorem 3.6. [5, Theorem 2.1], [10] The algebra Uq(sAlg) is isomorphic to the unital asso-

ciative K-algebra with generators x;,vy;, zi, i € {0,1} and the following relations:

Tox1 = 120
-1
AxiYi —q "Yili

qg—q!

quizi — ¢ 2y

q—qt

-1
qziT; —q "T;%4

q—q!

9zy; — ¢ ‘Yz

qg—q!

= 17 Z#]a

By — Blav2yivi + Blaviviv? — vyt =0,

Z?Zj - [3]1122'22]'27; + [3](122'2]'22'2 — Z]'Z? = 07

We now present a lemma which relates Uq(sAlg) and X,.

Lemma 3.7. [7, Proposition 8.3] For i € Z4 there exists a K-algebra homomorphism from

Uq(sAlg) to X, that sends

T1 = Tii+2,

To — Ti+2,i

Y1 — Ti4-2,i+3,

Yo — Tii+1,
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4 The connection between tridiagonal pairs and X,

We now recall a theorem which connects X, to the tridiagonal pairs whose eigenvalues are as
in Case I of Theorem 2.2 (with a = a* = ¢ =0* =0 and b,c* # 0).

Theorem 4.1. [6, Theorem 2.7], [7, Theorem 10.4] Let A, A* denote a tridiagonal pair on
V. Let {Hi}glzo (resp. {6} zd:o) denote a standard ordering of the eigenvalues of A (resp.
A*). Assume there exist nonzero scalars b, c¢* € K such that 6; = bg>~? and 0 = ¢ q?=% for
0 < i < d. Then there exists a unique irreducible representation of X, on V' such that bxg

acts as A and c*x9 acts as A*.

Since the finite dimensional irreducible representations of X, are completely understood [7]
Theorem 4.1 classifies tridiagonal pairs where the eigenvalues of A (resp. A*) are 6; = bg*~¢

(resp. 0F = c*q?=2).

Given Theorem 4.1 it is natural to ask the following question. If the eigenvalues of A and
A* are more general can we still construct a representation of X, on V'? More specifically,
if the eigenvalues of A are 0; = qui_d for 0 < ¢ < d and the eigenvalues of A* are 0 =
b*q% 4 + ¢*¢?2% for 0 < i < d can we construct a representation of X, on V that generalizes

the construction in Theorem 4.17 We answer this question in the next section.

5 A generalization of Theorem 4.1

In this section we present a theorem which connects X, to the tridiagonal pairs whose eigen-

values are as in Case I of Theorem 2.2 (with a = a* = ¢ =0 and b,b*,c* # 0).
Before we state this theorem we have a number of prelimanary definitions.

Let A, A* denote a tridiagonal pair on V and let {V;}%_, (resp. {Vi*}%,) denote a standard
ordering of the eigenspace of A (resp. A*). For 0 < i < ddefine U; = (V+---+V,*)N(Vi+-- -+
V). Tt turns out each of {U;}%_, is nonzero and V is their direct sum [4]. The sequence {U;}%_,
is called the split decomposition of A, A*. There exist linear transformations R: V — V and
L :V — V such that (i) Uy,...,U; are the common eigenspaces for A — R, A* — L and (ii)
RU; C Ujy1 and LU; C U;—q for 0 < ¢ < d [4]. R (resp. L) is called the raising (resp.

lowering) map associated to A, A*.

Definition 5.1. [3] Let V denote a finite dimensional vector space over K. Let A, A* denote
a tridiagonal pair on V and let {6;}¢ , (resp. {6} ,) denote a standard ordering of the
cigenvalues of A (resp. A*). Assume for nonzero b € K that 6; = bg®>~? for 0 < i < d.
Furthermore, assume for nonzero b*,c* € K that 6] = b* ¢ 4 ¢*q?% for 0 < i < d. Let

{U;}%_, denote the split decomposition of A, A*. Let R (resp. L) denote the raising (resp.
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lowering) map associated to A, A*. It is known that dim(Up) = 1. Thus for 0 < i < d the

space Uy is an eigenspace of L'R’; let o; denote the coresponding eigenvalue.

The following polynomial will be used to state our theorem. It is a slight modification of the

Drinfeld polynomial which is well known in representation theory [1, 2].

Definition 5.2. [3] With reference to Definition 5.1 define the polynomial P € K[\] by

The following theorem uses P to explain the connection between finite dimensional irreducible
representations of X, and the tridiagonal pairs whose eigenvalues are as in Case I of Theorem
2.2 (with a = a* = ¢ =0 and b,b*,c* # 0).

Theorem 5.3. [3] With reference to Definition 5.1 and Definition 5.2, the following are

equivalent:

i) There exists a representation of K, on V such that bxg; acts as A and b*x39 + c*xa3
q

acts as A*.

(i) P(¢***(q—q")7?) #0.

Suppose (i), (ii) hold. Then the X, representation on V is unique and irreducible.
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Quantum Lie algebras via modified reflection

equation algebra

Dimitri Gurevich* Pavel Saponov'

1 Introduction

A Lie super-algebra was historically the first generalization of the notion of a Lie algebra. Lie
super-algebras were introduced by physicists in studying dynamical models with fermions.
In contrast with the usual Lie algebras defined via the classical flip P interchanging any two
elements P(X @ Y) =Y ® X, the definition of a Lie super-algebra is essentially based on a
super-analog of the permutation P. This super-analog is defined on a Z,-graded vector space
V =V @ Vi where 0,1 € Zy is a "parity”. On homogeneous elements (i.e. those belonging
to either Vj or V7) its action is P(X ® V) = (=1)XYY ® X, where X stands for the parity of
a homogeneous element X € V.

Then a Lie super-algebra is the following data

(0=0gP0, P:g®g—g®g, [,]:g®g—9),

where g is a super-space, P is a super-flip, and [ , | is a Lie super-bracket, i.e. a linear operator

which is subject to three axioms:

L [X,Y] = —(-1)X[Y, X];

2. [Xv [Y> ZH + (_1)X(Y+7) [Y> [Z> XH + (_1)Z(Y+7) [Zv [Xv YH = 0;

3. [X,Y]=X+7Y.

Here X,Y, Z are assumed to be arbitrary homogenous elements of g. Note that all axioms

can be rewritten via the corresponding super-flip. For instance the axiom 3 takes the form
PX®[Y,Z]) = [, 2P Pr2(X @Y ® Z).

(As usual, the indices indicate the space(s) where a given operator is applied.)
In this paper we discuss the problem what is a possible generalization of the notion of a

Lie super-algebra related to ”"flips” of more general type.

*USTV, Université de Valenciennes, 59304 Valenciennes, France. E-mail: gurevich@univ-valenciennes.fr
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The first generalization of the notion of a Lie super-algebra was related to gradings dif-
ferent from Zs. The corresponding Lie type algebras were called I'-graded ones (cf. [Sh]).

The next step was done in [G1] where there was introduced a new generalization of the
Lie algebra notion related to an involutive symmetry defined as follows. Let V be a vector
space over a ground field K (usually C or R) and R : V®% — V®?2 be a linear operator. It is

called a braiding if it satisfies the quantum Yang-Baxter equation
Ry Ro3R12 = RogRi2Ros

where Rio = R® I, Ro3 = I ® R are operators in the space V®3. If such a braiding satisfies
the condition R? = I (resp., (R—qI)(R+q ' 1) =0, ¢ € K) we call it an involutive symmetry
(resp., a Hecke symmetry). In the latter case ¢ is assumed to be generic!.

Two basic examples of generalized Lie algebras are analogs of the Lie algebras gl(n) and
sl(n) (or of their super-analogs gl(m|n) and sl(m|n)). They can be associated to any ”skew-
invertible” (see Section 2) involutive symmetry R : V®? — V®2 We denote them g¢l(VR)
and sl(VRg) respectively. The generalized Lie algebras gl(Vg) and sl(Vg) are defined in the
space End (V) of endomorphisms of the space V. Their enveloping algebras U(gl(Vg)) and
U(sl(Vg)) (which can be defined in a natural way) are equipped with a braided Hopf structure
such that the coproduct coming in its definition acts on the generators X € gl(Vg) or sl(Vg)
in the classical manner: A: X - X®1+1® X.

Moreover, if an involutive symmetry R is a deformation of the usual flip (or super-flip) the
enveloping algebras U(gl(Vg)) and U(sl(Vg)) are deformations of their classical (or super-)
counterparts.

There are known numerous attempts to define a quantum (braided) Lie algebra similar
to generalized ones but without assuming R to be involutive. Let us mention some of them:
[W], [LS], [DGG], [GM]. In this note we compare the objects defined there with gl type Lie
algebras-like objects introduced recently in [GPS]. Note that the latter objects can be associ-
ated with any skew-invertible Hecke symmetry, in particular, that related to Quantum Groups
(QG) of A,, series. Their enveloping algebras are treated in terms of the modified reflection
equation algebra (mREA) defined bellow. These enveloping algebras have good deformation
properties and the categories of their finite dimensional equivariant representations look like
those of the Lie algebras gl(m|n). Moreover, these algebras can be equipped with a structure
of braided bi-algebras. Though the corresponding coproduct acts on the generators of the
algebras in a non-classical way it is in a sense intrinsic (it has nothing in common with the
coproduct in the QGs). Moreover, it allows to define braided analogs of (co)adjoint vectors
fields.

!Note that there exists a big family of Hecke and involutive symmetries which are not deformations of the

usual flip (cf. [G2]). Even the Poincaré-Hilbert (PH) series corresponding to the ”symmetric” Sym (V) =
T(V)/{Im (¢I — R)) and ”skew-symmetric” A(V) = T(V)/{Im (¢~ "I + R)) algebras can drastically differ from

the classical ones, whereas the PH series are stable under a deformation.
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We think that apart from generalized Lie algebras related to involutive symmetries (de-
scribed in Section 2) there is no general definition of a quantum (braided) Lie algebra. More-
over, reasonable quantum Lie algebras exist only for the A, series (or more generally, for
any skew-invertible Hecke symmetry). As for the quantum Lie algebras of the By, C,,, D,
series introduced in [DGG], their enveloping algebras are not deformations of their classical

counterparts and for this reason they are somewhat pointless objects.

2 Generalized Lie algebras
Let R: V®2 — V%2 be an involutive symmetry. Then the data
(V,R,[,]: V2 =V)
is called a generalized Lie algebra if the following holds
L. [,]JRX®Y)=—-[X,Y];
2. [ ][, 12 + RiaRo3 + Ry3R12)( X @Y ® Z) = 0;
3. R[,]2(X®Y ®Z) =], |12R3R12(X ®Y ® Z).

Such a generalized Lie algebra is denoted g.
Note that the generalized Jacobi identity (the axiom 2) can be rewritten in one of the

following equivalent forms
[, 10 J23( + RigRaz + RosR12)(X Y @ Z) = 0;
[0 (XY ® Z - R(Y ® 2)) = [X,[Y, Z]);
[ s(X @Y - RX @Y))Z) = [[X,Y], Z].

Example 1. If R is the the usual flip then the third axiom is fulfilled automatically and we
get a usual Lie algebra. If R is a super-flip then we get a Lie super-algebra. In the both cases

R is involutive.
The enveloping algebras of the generalized Lie algebra g can be defined in a natural way:
U(g) = T(V)/(X®Y - RIX®Y) - [X,Y]).

(Hereafter (I) stands for the ideal generated by a set I.) Let us introduce the symmetric
algebra Sym (g) of the generalized Lie algebra g by the same formula but with 0 instead of
the bracket in the denominator of the above formula.

For this algebra there exists a version of the Poincaré-Birhoff-Witt theorem.

Theorem 2. The algebra U(g) is canonically isomorphic to Sym(g).

109



A proof can be obtained via the Koszul property established in [G2] and the results of
[PP]. Also, note that similarly to the classical case this isomorphism can be realized via a

symmetric (w.r.t. the symmetry R) basis.

Definition 3. We say that a given braiding R : V©? — V®2 js skew-invertible if there exists
a morphism W : V2 — V2 such that

TroWioRo3 = P13 = TroWosRyo
where P is the usual flip.

If R is a skew-invertible braiding, a ”categorical significance” can be given to the dual
space of V. Let V* be the vector space dual to V. This means that there exist a non-
degenerated pairing (, ) : V* ® V — K and an extension of the symmetry R to the space
(V*aV)®2 — (V*aV)®? (we keep the same notation for the extended braiding) such that the
above pairing is R-invariant. This means that on the space V*@ V@ W (resp., W@ V*® V)
where either W =V or W = V* the following relations hold

R(, Yi2=1{(, )23 Ri12 Ra3 (resp., R(, )az =(, )12 Ro3 R12).

(Here as usual, we identify X € W with X ® 1 and 1 ® X.)

Note that if such an extension exists it is unique. By fixing bases x; € V and z;®x; € V2
we can identify the operators R and ¥ with matrices ||Rf]l || and ||\I’f]l|| respectively. For
example,

R(z; ® x5) = Rff T @ 1y

(from now on we assume the summation over the repeated indices).

Then the above definition can be presented in the following matrix form
kl j k
R ‘Ijz]n? = 0pm0;-
If “x is the left dual basis of the space V*, i.e. such that (/z, z;) = (5? then we put
(z, ) = (, >\I/i,lg Fr@a =C!, where €)= \I/f,f

(Note that the operator W is a part of the braiding R extended to the space (V* @ V)®2.) By
doing so, we ensure R-invariance of the pairing V @ V* — K.

As shown in [GPS] for any skew-invertible Hecke symmetry R the following holds
Cij Bf = q_2“5f, where Bg = \I/Zf

with an integer a depending on the the HP series of the algebra Sym (V') (see footnote 1).
So, if ¢ # 0 the operators C and B (represented by the matrices ||/ || and HBfH respectively)

are invertible. Therefore, we get a non-trivial pairing

(,)Y:(VeVvH® K
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which is R-invariant.
Note that these operators B and C' can be introduced without fixing any basis in the
space V as follows
By =Tru)(Yi2), C1=Trg) (Vi) (1)

Let us exhibit an evident but very important property of these operators
Tray(By Rig) =1, Tri(CyRig) =1. (2)

By fixing the basis hg = 2; ® 2 in the space End (V) = V ® V* equipped with the usual
product
o:End (V)®? — End (V)

we get the following multiplication table hf o hﬁﬁ = (% hﬁ.

Below we use another basis in this algebra, namely that lg = x; ® 2/ where 27 is the right
dual basis in the space V*, i.e. such that (z;,27) = 53 . Note that the multiplication table for
the the product o in this basis is lf ol = Bi I (also see formula (6)).

Let R be the above extension of a skew-invertible braiding to the space (V*@V)®2. Then
a braiding Rpuq (v) : End (V)®2 — End (V)®? can be defined in a natural way:

Rgna(v) = R2s R3aRi2 Ros,

where we used the isomorphism End (V) =2V @ V*.
Observe that the product o in the space End (V) is R-invariant and therefore Rpyq (v)-

invariant. Namely, we have
Rena (v)(X oY, Z) = 093(REnd (v))12(REna (v))23(X Y ® Z)

Rgna (v)(X,Y 0 Z) = 012(Rgnd (v))23(REnd (v))12(X @Y ® Z) .

Example 4. Let R : V®2 — V®2 be a skew-invertible involutive symmetry. Define a gener-
alized Lie bracket by the rule

[X,Y] =X oY —oRpuav)(X®Y).

Then the data (End (V), Rgna (v),[ » |) is a generalized Lie algebra (denoted gl(Vg)).
Besides, define the R-trace Trg : End (V) — K as follows

Trp(hl) = Bihl, X € End(V).
The R-trace possesses the following properties :
e The pairing

End(V)@End(V) - K: XY — (X,)Y)=Trr(X oY)

is non-degenerated;
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e It is Rpyq(v)-invariant in the following sense
Rpna (v)(TrrX) ®Y) = (I @ Trg) Rpna (v) (X ®Y),
Rgna(v)(X @ (TrrY)) = (Trr ® I) Rpna (v) (X ®@Y);
e Trp[,]=0.

Therefore the set {X € gl(Vg)|Trr X = 0} is closed w.r.t. the above bracket. Moreover,
this subspace squared is invariant w.r.t the symmetry Rp,q(y). Therefore this subspace

(denoted sl(Vg)) is a generalized Lie subalgebra.

Observe that the enveloping algebra of any generalized Lie algebra possesses a braided
Hopf algebra structure such that the coproduct A and antipode S are defined on the generators
in the classical way

AX)=X®1+1® X, S(X)=-X.

For details the reader is referred to [G2].
Also, observe that while R is a super-flip the generalized Lie algebra gl(Vg) (resp., sl(VRr))
is nothing but the Lie super-algebras gl(m|n) (resp., sl(m|n)).

3 Quantum Lie algebras for B,, (), D, series

In this Section we restrict ourselves to the braidings coming from the QG U,(g) where g is a

Lie algebra of one of the series B,,, C,, D,,. By the Jacobi identity, the usual Lie bracket
[,]:g®g—g

is a g-morphism.
Let us equip the space g with a U,(g) action which is a deformation of the usual adjoint
one. The space g equipped with such an action is denoted g,. Our immediate goal is to define

an operator

[ ]g:8,®8q — 8g
which would be a U, (g)-covariant deformation of the initial Lie bracket. This means that the
g-bracket satisfies the relation

[ Jg(ar(X) ® aa(Y)) = a([X @ Y],),

where a is an arbitrary element of the QG Uy(g), a1 ® a2 = A(a) is the Sweedler notation for
the QG coproduct A, and a(X) stands for the result of applying the element a € U,(g) to an
element X € g,.
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Let us show that U,(g)-covariance of the bracket entails its R-invariance where R =
Pﬂ'g@g(R) is the image of the universal quantum R-matrix R composed with the flip P.
Indeed, due to the relation

A12(R) = Ri3Ro3,

we have (by omitting 7mgeg)

R, LI(X®Y ®Z)=PR(X,Y]® Z) =P[, |2A1eR(X QY ® Z) =
P[ , ]12R13R23(X RY ® Z) = P[ , ]12P13R13P23R23(X RY ® Z) =
P[ , ]12P13P23R12R23(X RY ® Z) = [ , ]23R12R23(X RY ® Z).

Finally, we have

R[, li2 =1, ]2sRi2Ra3, R[,]2s =1, J12R23R12

(the second relation can be obtained in a similar way).

Thus, the U, (g)-covariance of the bracket [ , ], can be considered as an analog of the axiom
3 from the above list. In fact, if g belongs to one of the series B,,, C}, or D,, this property
suffices for unique (up to a factor) definition of the bracket [, ],. Indeed, in this case it is
known that if one extends the adjoint action of g to the space g ® g (via the coproduct in the
enveloping algebra), then the latter space is multiplicity free with respect to this action. This
means that there is no isomorphic irreducible g-modules in the space g ® g. In particular, the
component isomorphic to g itself appears only in the skew-symmetric subspace of g® g. A
similar property is valid for decomposition of the space g, ® g, into a direct sum of irreducible
U,(g)-modules (recall that ¢ is assumed to be generic).

Thus, the map [, |;, being a U,(g)-morphism, must kill all components in the decom-
position of g, ® g, into a direct sum of irreducible g,-submodules except for the component
isomorphic to g,. Being restricted to this component, the map [ , ], is an isomorphism. This
property uniquely defines the map [ , ], (up to a non-zero factor). For an explicit computation
of the structure constants of the g-bracket [, ], the reader is referred to the paper [DGGJ.
Note that the authors of that paper embedded the space g, in the QG U,(g). Nevertheless,
it is possible to do all the calculations without such an embedding but using the QG just as
a substitute of the corresponding symmetry group.

Now, we want to define the enveloping algebra of a quantum Lie algebra g,. Since the
space gq ® gq is multiplicity free, we conclude that there exists a unique Uj,(g)-morphism
P, :g,®9 — 9q ®gq which is a deformation of the usual flip and such that Pq2 = I. Indeed,
in order to introduce such an operator it suffices to define g-analogs of symmetric and skew-
symmetric components in g, ® g,. Each of them can be defined as a direct sum of irreducible
U,(g)-submodules of g, ® g, which are g-counterparts of the U,(g)-modules entering the usual

symmetric and skew-symmetric subspaces respectively.
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Now, the enveloping algebra can be defined as a quotient
Ulgg) =T(9¢)/(X @Y = P(X®Y) — [, ]g).

Thus, we have defined the quantum Lie algebra g, and its enveloping algebra related
to the QG of B,, C,, D, series. However, the question what properties of these quantum
Lie algebras are similar to those of generalized Lie algebras is somewhat pointless since the
algebra U(g,) is not a deformation of its classical counterpart. Moreover, its ”¢g-commutative”
analog (which is defined similarly to the above quotient but without the g-bracket [ , ], in the
denominator) is not a deformation of the algebra Sym (g). For the proof, it suffices to verify
that the corresponding semiclassical term is not a Poisson bracket. (However, it becomes

Poisson bracket upon restriction to the corresponding algebraic group.)

Remark 5. A similar construction of a quantum Lie algebra is valid for any skew-inver-
tible braiding of the Birman-Murakami-Wenzl type. But for the same reason it is out of our

interest.

Also, note that the Lie algebra si(2) possesses a property similar to that above: the
space sl(2) ® sl(2) being equipped with the extended adjoint action is a multiplicity free
sl(2)-module. So, the corresponding quantum Lie algebra and its enveloping algebra can be
constructed via the same scheme. However, the latter algebra is a deformation of its classical
counterpart. This case is consider in the next Sections as a part of our general construction

related to Hecke symmetries.

4 Modified reflection equation algebra and its representation

theory

In this section we shortly describe the modified reflection equation algebra (mREA) and the
quasitensor Schur-Weyl category of its finite dimensional equivariant representations. Our
presentation is based on the work [GPS], where these objects were considered in full detail.
The starting point of all constructions is a Hecke symmetry R. As was mentioned in
Introduction, the Hecke symmetry is a linear operator R : V2 — V®2_ satisfying the quantum

Yang-Baxter equation and the additional Hecke condition
(R—qD)(R+q ') =0,

where a nonzero q € K is generic, in particular, is not a primitive root of unity. Besides, we
assume R to be skew-invertible (see Definition 3).

Fixing bases x; € V and x; ® z; € V®2 1 <i,5 < N = dimV, we identify R with a
N? x N? matrix HRZlH Namely, we have

R(l’i@fﬂj) :Rfjlﬂfk@xl, (3)
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where the lower indices label the rows of the matrix, the upper ones — the columns.
As is known, the Hecke symmetry R allows to define a representations pgr of the Ay 1

series Hecke algebras Hy(q), k > 2, in tensor powers V®":
pr : Hy(q) = End(V®¥)  pgr(o;) = R; = 10"D @ R 1#F-171)

where elements o;, 1 <i <k — 1 form the set of the standard generators of H(q).

The Hecke algebra Hj(q) possesses the primitive idempotents e) € Hy(q), which are in
one-to-one correspondence with the set of all standard Young tableaux (A, a), corresponding
to all possible partitions A F k. The index a labels the tableaux of a given partition A in
accordance with some ordering.

Under the representation pg, the primitive idempotents e are mapped into the projection
operators

ER) = pr(ed) € End (V). (4)

these projectors being some polynomials in R;, 1 <: <k — 1.
Under the action of these projectors the spaces V¥¥, k > 2. are expanded into the direct
sum
dx
VF =P DVow: Vi = Im(E), (5)
Ak a=1
where the number dy stands for the total number of the standard Young tableaux, which can
be constructed for a given partition A.

Since the projectors E} with different a are connected by invertible transformations, all
spaces V() q) with fixed A and different a are isomorphic. Note, that the isomorphic spaces
Vina) (at a fixed A) in decomposition (5) are treated as particular embeddings of the space
V) into the tensor product V®*. Hereafter we use the notation Vy for the class of the spaces
Vira) equipped with one or another embedding in ek,

In a similar way we define classes V;'. First, note that the Hecke symmetry being extended

to the space (V*)®? is given in the basis 2! ® 27 as follows
R(z'®2?) = R{,i o* @ 2t

(and similarly in the basis ‘z ® Jz). It is not difficult to see that the operator R so defined in
the space (V*)®2 is a Hecke symmetry. Thus, by using the above method we can introduce
spaces V(’;ﬂ) looking like those from (5) and define the classes V.

Now, let us define a rigid quasitensor Schur-Weyl category SW (V') whose objects are spaces
Vy and V); labelled by partitions of nonnegative integers, as well as their tensor products
VA @V, and all finite sums of these spaces.

Among the morphisms of the category SW(V') are the above left and right pairings and
the set of braidings Ry w : U®W — W ®U for any pair of objects U and W. These braidings

can be defined in a natural way. In order to define them on a couple of objects of the form
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Vy ® V,; we embed them into appropriate products VO @ (V*)® and define the braiding
Ryw as an appropriate restriction. Note, that all these braidings are R-invariant maps (cf.
[GPS] for detail). Note that the category SW(V') is monoidal quasitensor rigid according to
the standard terminology (cf. [CP]).

Now we are aiming at introducing modified reflection equation algebra and equipping
objects of the category SW(V) with a structure of its modules.

Again, consider the space End (V') equipped with the basis lij (see Section 2). Note that

the element ll-j acts on the elements of the space V as follows

1 (zg) =z (27, 21) = xiB,g . (6)
Introduce the N x N matrix L = ||le ||. Also, define its ”copies” by the iterative rule
Ly:=L1:=L®I,  Liz:=RLlzR;". (7)

Observe that the isolated spaces Lz have no meaning (except for that L7). They can be only
correctly understood in the products LyLz, L7L5L5 and so on, but this notation is useful in

what follows.

Definition 6. The associative algebra generated by the unit element e, and the indetermi-

nates lg 1 <14,j < N subject to the following matrix relation
RigsLiRygLy — LiRig L1 Rig — h(Ri2 Ly — Ly Ri2) =0, (8)
is called the modified reflection equation algebra (mREA) and denoted L(Ry,h).

Note, that at i = 0 the above algebra is known as the reflection equation algebra L(Ry).
Actually, at ¢ # £1 one has L(Rq,h) = L(R,). Since at h # 0 it is always possible to
renormalize generators L — h L. So, below we consider the case h = 1.

Thus, the mREA is the quotient algebra of the free tensor algebra T'(End (V')) over the
two-sided ideal, generated by the matrix elements of the left hand side of (8). It can be
shown, that the relations (8) are R-invariant, that is the above two-sided ideal is invariant
when commuting with any object U under the action of the braidings Ry gna vy or Rena (v),u
of the category SW(V).

Taking into account (2) one can easily prove, that the action (6) gives a basic (vector)
representation of the mREA L(Ry,1) in the space V'

p1(l]) >z = 2;B] (9)

where the symbol > stands for the (left) action of a linear operator onto an element. Since B
is non-degenerated, the representation is irreducible.

Another basic (covector) representation pj : L(R,,1) — End (V*) is given by
piypak = —2" R (10)
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one can prove, that the maps End (V) — End (V) and End (V') — End (V*) generated by
= p(t]) and 1] = pi())
are the morphisms of the category SW(V).

Definition 7. A representation p : L(Ry,1) — End (U) where U is an object of the category

SW(V') is called equivariant if its restriction to End (V') is a categorical morphism.

Thus, the above representations p; and p] are equivariant.

Note that there are known representations of the mREA which are nor equivariant. How-
ever, the class of equivariant representations of the mREA is very important. In particular,
because the tensor product of two equivariant £(R,, 1)-modules can be also equipped with a
structure of an equivariant £(R,, 1)-module via a ”braided bialgebra structure” of the mREA.

Let us briefly describe this structure. It consists of two maps: the braided coproduct A
and counit €.

The coproduct A is an algebra homomorphism of £(R,,1) into the associative algebra
L(R,) which is defined as follows.

e As a vector space over the field K the algebra L(R,) is isomorphic to the tensor product

of two copies of mREA
L(Rq) = ﬁ(Rqa 1) ® L(Rg,1).

e The product % : (L(R,))®? — L(R,) is defined by the rule
(a1 @ b1) x (ag @ be) := ajay @ byby, a; ® b; € L(Ry), (11)

where aja) and biby are the usual product of mREA elements, while @} and o) result

from the action of the braiding Rp,q(y) (see Section 2) on the tensor product by ® az
ag @ by == Rpnaqv) (b1 @ az). (12)

The braided coproduct A is now defined as a linear map A : L(R,,1) — L(R,;) with the
following properties:
Aleg) :==ec®er
Af)=Heec+ecol] —(a—a VTl @l (13)
A(ab) := Aa) » A(b) Va,be L(Ry,1).

In addition to (13), we introduce a linear map ¢ : L(R4,1) — K

e(l) =0 (14)
g(ab) :=e(a)e(b) Va,be L(Ry,1).
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One can show (cf. [GPS]) that the maps A and ¢ are indeed algebra homomorphisms and
that they satisfy the relation

([dee)A=id=(¢®id) A.

Let now U and W be two equivariant mREA-modules with representations pyy : L(R4,1) —
End (U) and pw : L(Ry,1) — End (W) respectively. Consider the map pyew : L(R,) —
End (U ® W) defined as follows

prew(a®@b)> (u@w) = (pr(a)>u’) @ (pw(b') >w), a®beL(Ry), (15)
where
o ® b= REnd (V),U(b ® U) .

Definition (15) is self-consistent since the map b — py(b') is also a representation of the
mREA L(R,,1).

The following proposition holds true.
Proposition 8. ([GPS]) The action (15) defines a representation of the algebra L(R;).

Note again, that the equivariance of the representations in question plays a decisive role
in the proof of the above proposition.
As an immediate corollary of the proposition 8 we get the rule of tensor multiplication of

equivariant £(R,, 1)-modules.

Corollary 9. Let U and W be two L(R, 1)-modules with equivariant representations py and
pw. Then the map L(Ry,1) — End (U ® W) given by the rule

a— puew(Ala)),  Va€ L(Rg1) (16)

is an equivariant representation. Here the coproduct A and the map pygw are given respec-
tively by formulae (13) and (15).

Thus, by using (16) we can extend the basic representations p; and pj to the represen-
tations py and p] in tensor products V& and (V*®!) respectively. These representations are
reducible, and their restrictions on the representations p) , in the invariant subspaces V() 4

(see (5)) are given by the projections
Pra = E;\ © Pk (17)

and similarly for the subspaces V(’L a)" By using (16) once more we can equip each object of

the category SW (V') with the structure of an equivariant £(R, 1)-module.
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5 Quantum Lie algebras related to Hecke symmetries

In this section we consider the question to which extent one can use the scheme of section 2 in
the case of non-involutive Hecke symmetry R for definition of the corresponding Lie algebra-
like object. For such an object related to a Hecke symmetry R we use the term quantum or
braided Lie algebra. Besides, we require the mREA, connected with the same symmetry R,
to be an analog of the enveloping algebra of the quantum Lie algebra. Finally, we compare
the properties of the above generalized Lie algebras and quantum ones.

Let us recall the interrelation of a usual Lie algebra g and its universal enveloping algebra
U(g). As is known, the universal enveloping algebra for a Lie algebra g is a unital associative

algebra U(g) possessing the following properties:
e There exists a linear map 7 : g — U(g) such that 1 and Im 7 generate the whole U(g).

e The Lie bracket [z,y] of any two elements of g has the image
m([z,y]) = 7(2)7(y) — 7(y)7(2).

Let us rewrite these formulae in an equivalent form. Note that the tensor square g ® g

splits into the direct sum of symmetric and skew symmetric components
g®g=0sPga; 9 =ImS, go=1ImA,
where S and A are the standard (skew)symmetrizing operators
Sey)=ry+tyezr, AxzRy)=zQy—ye,

where we neglect the usual normalizing factor 1/2. Then the skew-symmetry property of the

classical Lie bracket is equivalent to the requirement
[ ]S(@zey)=0. (18)
The image of the bracket in U(g) is presented as follows

7([z,y]) = 0A(7(z) @ 7(y)), (19)
where o stands for the product in the associative algebra U(g).

e The Jacobi identity for the Lie bracket [, ] translates into the requirement that the
correspondence x — [z, | generate the (adjoint) representation of U(g) in the linear

subspace 7(g) C U(g).

So, we define a braided Lie algebra as a linear subspace £ = End (V) of the mREA
L(R4,1), which generates the whole algebra and is equipped with the quantum Lie bracket.

We want the bracket to satisfy some skew-symmetry condition, generalizing (18), and define
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a representation of the mREA in the same linear subspace £; via an analog of the Jacobi
identity.
As L4, let us take the linear span of mREA generators

L1 =FEnd(V)=VeV*.

Together with the unit element this subspace generate the whole £(R,, 1) by definition.
In order to find the quantum Lie bracket, consider a particular representation of L(Rg, 1)

in the space End (V). In this case the general formula (16) reads
= pvev- (A1),

where we should take the basic representations (9) and (10) as pv(lg ) and py« (lf ) respectively.

Omitting straightforward calculations, we write the final result in the compact matrix form
pvev(L1) > Ly = LiR1z — Ri2Ly, (20)

where the matrix Ly is defined in (7).
Let us define
[Lt1,Ls] = L1Ri2 — Ri2L; . (21)

The generalized skew-symmetry (the axiom 1 from Section 2) of this bracket is now modified
as follows. In the space £1 ® £ one can construct two projection operators S, and .4, which
are interpreted as g-symmetrizer and g¢-skew-symmetrizer respectively (cf. [GPS]). Then

straightforward calculations show that the above bracket satisfies the relation
[ ]18s(L1® Ly) =0, (22)

which is the generalized skew-symmetry condition, analogous to (18).
Moreover, if we rewrite the defining commutation relations of the mREA (8) in the equiv-
alent form
LiLy — Ry LtL5R12 = L1 Rys — RioLy, (23)

we come to a generalization of the formula (19).

By introducing an operator
Q: LY — L7, Q(LiLz) = Ry LiLzRuy
we can present the relation (23) as follows
Lilg = Q(LyLly) = [L7, Lg). (24)

It looks like the defining relation of the enveloping algebra of a generalized Lie algebra.

Though we prefer to use the notations Lz it is possible to exhibit the maps @ and |, | in
k
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the basis lg ® [;".) Observe that the map @ is a braiding. Also, note that the operators S,
and A, can be expressed in terms of @) and its inverse (cf. [GPS]).

We call the data (g = £1,Q,[, |) the gl type quantum (braided) Lie algebra. Note that
if ¢ =1 (i.e. the symmetry R is involutive) then QQ = Rgyq (1) and this quantum Lie algebra
is nothing but the generalized Lie algebra gl(Vgr) and the corresponding mREA becomes
isomorphic to its enveloping algebra.

Let us list the properties of the the quantum Lie algebra in question.

e The bracket [, | is skew-symmetric in the sense of (22).

e The g-Jacobi identity is valid in the following form

I he =511 J2s(T = Qu2) - (25)

e The bracket [, ]is R-invariant. Essentially, this means that the following relations hold
Rena(v)l s l2s = [, 12(REna (v))23(REna (v))12

Rena ()l 5 J12 =[5 |23(REnd (v))12(REnd (v) )23 - (26)

So, the adjoint action
LT > L§ = [LT’ Lg]

is indeed a representation. By chance (!) the representation py gy« coincides with this adjoint
action.

Turn now to the question of the ”si-reduction”, that is, the passing from the mREA
L(R,,1) to the quotient algebra

SL(Ry) == L(Ry,1)/(TrgL),  TrgL:=Tr(CL), (27)

(see Section 2 for the operator C'). The element ¢ := TrgrL is central in the mREA, which
can be easily proved by calculating the R-trace in the second space of the matrix relation (8).
To describe the quotient algebra SL(R,) explicitly, we pass to a new set of generators

{ fZ] , 0}, connected with the initial one by a linear transformation:
U=f 4+ (Te(0)7 ¢ or L=F+(Tx(C)71¢, (28)

where F' = || ffH Hereafter we assume that TrC' = ¢! # 0. (So, the Lie super-algebras
gl(m|m) and their g-deformations are forbidden.) Obviously, TrpF = 0, i.e. the generators

[} are dependent.

In terms of the new generators, the commutation relations of the mREA read

RioF1Ri2Fy — FiR12F1 Ry2 = (ep — 0)(Ri2F1 — F1R12)

W
Tr(C)
(F=F¢,
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where w = ¢ — ¢~!. Now, it is easy to describe the quotient (27) . The matrix F' = ||fZJH of

SL(R,) generators satisfy the same commutation relations (8) as the matrix L
RigFi1RioFy — FiR12F1 Rig = RigFy — FilRo, (29)

but the generators flj are linearly dependent.

Rewriting this relation in the form similar to (24) we can introduce an sl-type bracket.
However for such a bracket the g-Jacobi identity fails. This is due to the fact the element /¢
comes in the relations for fZ] (at ¢ = 1 this effect disappears ). Nevertheless, we can construct

a representation
pvev+ : SL(R;) — End (V @ V7)

which is an analog of the adjoint representation. In order to do so, we rewrite the represen-
tation (20) in terms of the generators ff and ¢. Taking relation (28) into account, we find,

after a short calculation

pvev=(£)>L =0, pvev-(Fi1)>pL=0,
PV RV * (f) > F1 = —Ww TI‘(C) F1
PVeV* (FT) > F§ = F1Ri2 — RioF1 + legFlRl_21 . (30)

Namely, the last formula from this list defines the representation pygy+. However, in
contrast with the mREA £(Rg, 1), this map is different from that defined by the bracket |, ]
reduced to the space span ( fg ). This is reason why the ”g-adjoint” representation cannot be
presented in the form (25). (Also, note that though ¢ is central it acts in a non-trivial way
on the elements fZ] )

Moreover, any object U of the category SW(V) above such that
pu(l) = x1u, x €K

is a scalar operator, can be equipped with an SL(R,;)-module structure. First, let us observe

that for any representation pyr : L(Ry, 1) — End (U) and for any z € K the map
Pl L(Rg, 1) = End (U),  pi(t]) = zo0 (i) + 61 = 2)(a =) I

is a representation of this algebra as well.

By using this freedom we can convert a given representation py : L(R4,1) — End (U)
with the above property into that pf;, such that pf;(¢) = 0. Thus we get a representation of
the algebra SL(R,). Explicitly, this representation is given by the formula

_!
¢

The data (span ( fg ), @, ], ]) where the bracket stands for the L.h.s. of (24) restricted to
span ( ff ) is called the sl-type quantum (braided) Lie algebra.

o) = ¢ (o) = (@) Tp(0)6]) . E=1-(a—a HM(EC) X, (1)
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Note that in the particular case related to the QG U,(sl(n)) this quantum algebra can
be treated in terms of [LS] where an axiomatic approach to the corresponding Lie algebra-
like object is given. However, we think that any general axiomatic definition of such objects
is somewhat useless (unless the corresponding symmetry is involutive). Our viewpoint is
motivated by the fact that for B, C,, D, series there do not exist ”quantum Lie algebras”
such that their enveloping algebras have good deformation properties. As for the A,, series
(or more generally, for any skew-invertible Hecke symmetry) such objects exist and can be
explicitly exhibited via the mREA. Their properties differ from those listed in [W, GM] in
the framework of an axiomatic approach to Lie algebra-like objects.

Completing the paper, we want to emphasize that the above coproduct can be useful for
definition of a ”braided (co)adjoint vector field”. In the £L(R,, 1) case these fields are naturally
introduced through the above adjoint action extended to the symmetric algebra of the space
L1 by means of this coproduct. The symmetric algebra can be defined via the above operators
S, and A,. In the SL(R,) case a similar treatment is possible if Tr C' # 0.
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On the automorphism groups of ¢g-enveloping

algebras of nilpotent Lie algebras

Stéphane Launois*

Abstract

We investigate the automorphism group of the quantised enveloping algebra U(;r (9)
of the positive nilpotent part of certain simple complex Lie algebras g in the case where
the deformation parameter ¢ € C* is not a root of unity. Studying its action on the
set of minimal primitive ideals of U(;r (g) we compute this group in the cases where g =
sl3 and g = so05 confirming a Conjecture of Andruskiewitsch and Dumas regarding the
automorphism group of U(;r (g). In the case where g = sl3, we retrieve the description of the
automorphism group of the quantum Heisenberg algebra that was obtained independently
by Alev and Dumas, and Caldero. In the case where g = so05, the automorphism group of
U/ (g) was computed in [16] by using previous results of Andruskiewitsch and Dumas. In
this paper, we give a new (simpler) proof of the Conjecture of Andruskiewitsch and Dumas
in the case where g = so05 based both on the original proof and on graded arguments
developed in [17] and [18].

Introduction

In the classical situation, there are few results about the automorphism group of the envelop-
ing algebra U(L) of a Lie algebra £ over C; except when dim £ < 2, these groups are known
to possess “wild” automorphisms and are far from being understood. For instance, this is the
case when L is the three-dimensional abelian Lie algebra [22], when £ = sly [14] and when £
is the three-dimensional Heisenberg Lie algebra [1].

In this paper we study the quantum situation. More precisely, we study the automorphism
group of the quantised enveloping algebra U;’ (g) of the positive nilpotent part of a finite
dimensional simple complex Lie algebra g in the case where the deformation parameter ¢ € C*
is not a root of unity. Although it is a common belief that quantum algebras are ”rigid” and

so should possess few symmetries, little is known about the automorphism group of UqJr (9).
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Indeed, until recently, this group was known only in the case where g = sl3 whereas the
structure of the automorphism group of the augmented form Uq(b+), where b7 is the positive
Borel subalgebra of g, has been described in [9] in the general case.

The automorphism group of U/ (sl3) was computed independently by Alev-Dumas, [2],
and Caldero, [8], who showed that

Aut(Ujf (sl3)) ~ (C*)? x S,.

Recently, Andruskiewitsch and Dumas, [4] have obtained partial results on the automorphism
group of U (s05). In view of their results and the description of Aut(U, (sl3)), they have

proposed the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):
Aut(U; (g)) ~ (C*)™8(®) x4 autdiagr(g),

where autdiagr(g) denotes the group of automorphisms of the Dynkin diagram of g.

Recently we proved this conjecture in the case where g = so5, [16], and, in collaboration
with Samuel Lopes, in the case where g = sly, [18]. The techniques in these two cases are
very different. Our aim in this paper is to show how one can prove the Andruskiewitsch-
Dumas Conjecture in the cases where g = sl3 and g = so5 by first studying the action of
Aut(U, (g)) on the set of minimal primitive ideals of U/ (g) - this was the main idea in [16]
-, and then using graded arguments as developed in [17] and [18]. This strategy leads us to
a new (simpler) proof of the Andruskiewitsch-Dumas Conjecture in the case where g = so5.

Throughout this paper, N denotes the set of nonnegative integers, C* := C\ {0} and ¢ is

a nonzero complex number that is not a root of unity.

1 Preliminaries

In this section, we present the H-stratification theory of Goodearl and Letzter for the positive
part U;’ (g) of the quantised enveloping algebra of a simple finite-dimensional complex Lie
algebra g. In particular, we present a criterion (due to Goodearl and Letzter) that charac-
terises the primitive ideals of UqJr (g) among its prime ideals. In the next section, we will use
this criterion in order to describe the primitive spectrum of Uq+ (g) in the cases where g = sl3

and g = sos.

1.1 Quantised enveloping algebras and their positive parts.

Let g be a simple Lie C-algebra of rank n. We denote by m = {aq, ..., a,} the set of simple

roots associated to a triangular decomposition g = n~ @ h @ nT. Recall that 7 is a basis of
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an euclidean vector space E over R, whose inner product is denoted by (, ) (E is usually
denoted by b in Bourbaki). We denote by W the Weyl group of g, that is, the subgroup
of the orthogonal group of E generated by the reflections s; := s,,, for ¢ € {1,...,n}, with
reflecting hyperplanes H; := {f € E | (8,a;) = 0}, i € {1,...,n}. The length of w € W
is denoted by l(w). Further, we denote by wy the longest element of W. We denote by
R™ the set of positive roots and by R the set of roots. Set Q% := Nay @ --- @ Ney, and
Q :=Zo1 @ - @® Loy, Finally, we denote by A = (a;5) € M, (Z) the Cartan matrix associated
to these data. As g is simple, a;; € {0, —1, -2, -3} for all i # j.

Recall that the scalar product of two roots («, ) is always an integer. As in [5], we assume
that the short roots have length /2.

(aj,004)

Forallie {1,...,n},set ¢;:=¢q¢ 2 and

[m] _ (gi—q ) (@ =g ™M@ —q™)
kol @—a) @ =g - g ™)

for all integers 0 < k < m. By convention,

7]

The quantised enveloping algebra U,(g) of g over C associated to the previous data is the
C-algebra generated by the indeterminates FE1,..., E,, F1,... ,Fn,Klﬂ, ..., K:f! subject to

the following relations:

KiEjKi_l = q?ijEj and KZF}KZ—I _ qi—aiij
K, — K
EZ'F]' — F]Ez = 523%
and the quantum Serre relations:
l—aij 1
— A o
Z (_1)k [ k’ * Ez i EjEf: =0 (Z ?é j) (1)
k=0 i
and
' 1—a;; 1 k
2 [ L | BYRE =06 #)).
k=0 i

We refer the reader to [5, 13, 15] for more details on this (Hopf) algebra. Further, as
usual, we denote by U,f(g) (resp. U, (g)) the subalgebra of U,(g) generated by Ey,..., E,
(resp. Fi,...,F,) and by U° the subalgebra of U,(g) generated by Klﬂ, ..., K:F'. Moreover,

for all @« = aya1 + - - - + anay € Q, we set

Ko = K& Ko,

127



As in the classical case, there is a triangular decomposition as vector spaces:
Uy (9) @ U’ @ Uy (8) =~ Uy(g)-

In this paper we are concerned with the algebra UqJr (g) that admits the following presentation,
see [13, Theorem 4.21]. The algebra U, (g) is (isomorphic to) the C-algebra generated by n

indeterminates FE1,..., E, subject to the quantum Serre relations (1).

1.2 PBW-basis of U/ (g).

To each reduced decomposition of the longest element wq of the Weyl group W of g, Lusztig
has associated a PBW basis of U,f (g), see for instance [19, Chapter 37], [13, Chapter 8] or [5,
1.6.7]. The construction relates to a braid group action by automorphisms on Uq+ (g). Let us
first recall this action. For all s € Nand ¢ € {1,...,n}, we set

[s]; :% and  [sl:! = [1]; ... [s — 1i[s]s.

As in [5, 1.6.7], we denote by Tj, for 1 < i < n, the automorphism of U;(g) defined by:
T;(E;) = —FiK;,
T(E) = Y (-1~ BTV TV B EY, it
Ti(F) = ~K; "B,
T = S RE, ik

=0
Tz‘(Ka) = Ksi(a)a a€Q,

where EZ-(S) = [fi 7 and Fi(s) = % for all s € N. It was proved by Lusztig that the automor-

phisms T; satisfy the braid relations, that is, if s;s; has order m in W, then
T = Ty

where there are exactly m factors on each side of this equality.

The automorphisms 7; can be used in order to describe PBW bases of UqJr (g) as fol-
lows. It is well-known that the length of wg is equal to the number N of positive roots
of g. Let s;, ---s;y be a reduced decomposition of wy. For k € {1,..., N}, we set [ :=
Siy -+ Sip_y (). Then {B1,...,Bn} is exactly the set of positive roots of g. Similarly, we
define elements Eg, of Uy(g) by

Eﬁk =T ”'Ek—l (EZ )

Note that the elements Eg, depend on the reduced decomposition of wy. The following

well-known results were proved by Lusztig and Levendorskii-Soibelman.

128



Theorem 1.1 (Lusztig and Levendorskii-Soibelman).
1. Forallk € {1,...,N}, the element Eg,_ belongs to U (g).
2. If By = oy, then Eg, = E;.
3. The monomials E'Ei . EkN, with k1,...,kny € N, form a linear basis of U(j(g).

4. Forall1 <i<j <N, we have

s kl kj—
E E,Bz —4q (ﬁ ﬁ] EﬁlEﬁj Z akl+17 ok ﬁlj;i e Eﬁj,i’

where each ay, belongs to C.

i1y kj—1

As a consequence of this result, UqJr (g) can be presented as a skew-polynomial algebra:

U (9) = C[Eg,|[Ep,;02,02] - -+ [Egyion, 0n],

where each o; is a linear automorphism and each §; is a o;-derivation of the appropriate
subalgebra. In particular, Uq+ (g) is a noetherian domain and its group of invertible elements

is reduced to nonzero complex numbers.

1.3 Prime and primitive spectra of U, (g).

We denote by Spec(U; (g)) the set of prime ideals of U\ (g). First, as ¢ is not a root of unity,
it was proved by Ringel [21] (see also [10, Theorem 2.3]) that, as in the classical situation,
every prime ideal of U;’ (g) is completely prime.

In order to study the prime and primitive spectra of U(j (g), we will use the stratification
theory developed by Goodearl and Letzter. This theory allows the construction of a partition
of these two sets by using the action of a suitable torus on Uq+ (g). More precisely, the torus

H := (C*)" acts naturally by automorphisms on U (g) via:
(hiy...,hy).E; = hiE; for all i € {1,...,n}.

(It is easy to check that the quantum Serre relations are preserved by the group H.) Recall
(see [4, 3.4.1]) that this action is rational. (We refer the reader to [5, I1.2.] for the defintion of
a rational action.) A non-zero element z of U (g) is an H-eigenvector of U (g) if h.x € C*x
for all h € H. An ideal I of U, (g) is H-invariant if h.I = I for all h € H. We denote by H-
Spec(U,f (g)) the set of all H-invariant prime ideals of U, (g). It turns out that this is a finite
set by a theorem of Goodearl and Letzter about iterated Ore extensions, see [11, Proposition
4.2]. In fact, one can be even more precise in our situation. Indeed, in [12], Gorelik has
also constructed a stratification of the prime spectrum of U;’ (g) using tools coming from
representation theory. It turns out that her stratification coincides with the H-stratification,
so that we deduce from [12, Corollary 7.1.2] that

129



Proposition 1.2 (Gorelik). UJ (g) has exactly |W| H-invariant prime ideals.

The action of H on U/ (g) allows via the H-stratification theory of Goodearl and Letzter
(see [5, I1.2]) the construction of a partition of Spec(U, (g)) as follows. If J is an H-invariant
prime ideal of U (g), we denote by Spec; (U, (g)) the H-stratum of Spec(U, (g)) associated
to J. Recall that Spec; (U (g)) := {P € Spec(U, (g)) | Nyen h-P = J}. Then the H-strata
Spec; (U (g)) (J € H-Spec(U, (g))) form a partition of Spec(U; (g)) (see [5, I1.2]):

Spec(U;(g)) = |_| SpeCJ(U;(g))~
JGH—SpCC(UJL(g))

Naturally, this partition induces a partition of the set Prim(U;"(g)) of all (left) primitive ideals
of U/ (g) as follows. For all J € H-Spec(U, (g)), we set Prim;(UJ (g)) := Spec; (U, (g)) N
Prim(U;"(g)). Then it is obvious that the H-strata Prim (U, (g)) (J € H-Spec(U,; (g))) form
a partition of Prim(U,f (g)):

Prim(U (@) = || Prims(U7(9).
JGH—SpCC(Uj(g))

More interestingly, because of the finiteness of the set of H-invariant prime ideals of U, q+ (g), the
H-stratification theory provides a useful tool to recognise primitive ideals without having to
find all its irreductible representations! Indeed, following previous works of Hodges-Levasseur,
Joseph, and Brown-Goodearl, Goodearl and Letzter have characterised the primitive ideals
of U (g) as follows, see [11, Corollary 2.7] or [5, Theorem II1.8.4].

Theorem 1.3 (Goodearl-Letzter). Prim;(U; (g)) (J € H-Spec(U; (g))) coincides with those
primes in Spec; (U (g)) that are mazimal in Spec; (U (g)).

2 Automorphism group of U (g)

In this section, we investigate the automorphism group of U(j (g) viewed as the algebra gen-
erated by n indeterminates Ff1,..., F, subject to the quantum Serre relations. This algebra
has some well-identified automorphisms. First, there are the so-called torus automorphisms;
let H = (C*)", where n still denotes the rank of g. As U (g) is the C-algebra generated
by n indeterminates subject to the quantum Serre relations, it is easy to check that each
A= (A,...,,\n) € H determines an algebra automorphism ¢y of U (g) with ¢5(E;) = \iE;
for i € {1,...,n}, with inverse gb;_\l = ¢5-1. Next, there are the so-called diagram auto-
morphisms coming from the symmetries of the Dynkin diagram of g. Namely, let w be an
automorphism of the Dynkin diagram of g, that is, w is an element of the symmetric group 5,
such that (a;, aj) = (), Quw(j)) for all 4,5 € {1,...,n}. Then one defines an automorphism,
also denoted w, of U/ (g) by: w(E;) = Ey;). Observe that

¢5\ ow =wo (b(Aw(l)’""’Aw(n)).
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We denote by G the subgroup of Aut(U,f(g)) generated by the torus automorphisms and

the diagram automorphisms. Observe that
G ~ H x autdiagr(g),

where autdiagr(g) denotes the set of diagram automorphisms of g.

The group Aut(U; (sl3)) was computed independently by Alev and Dumas, see [2, Propo-
sition 2.3] , and Caldero, see [8, Proposition 4.4]; their results show that, in the case where
g = sl3, we have

Aut(U;(slg)) =G.
About ten years later, Andruskiewitsch and Dumas investigated the case where g = so5, see

[4]. In this case, they obtained partial results that lead them to the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

Aut(U; (g)) = G

This conjecture was recently confirmed in two new cases: g = so5, [16], and g = sly, [18].
Our aim in this section is to show how one can use the action of the automorphism group of
UqJr (g) on the primitive spectrum of this algebra in order to prove the Andruskiewitsch-Dumas

Conjecture in the cases where g = sl3 and g = sos.

2.1 Normal elements of U (g)

Recall that an element a of Uq+ (g) is normal provided the left and right ideals generated by
a in U/ (g) coincide, that is, if
aUy (g) = U, (9)a.
In the sequel, we will use several times the following well-known result concerning normal
elements of U/ (g).

Lemma 2.1. Let u and v be two nonzero normal elements of U (g) such that (u) = (v).

Then there exist A\, u € C* such that u = v and v = pu.

Proof. 1t is obvious that units A, p exist with these properties. However, the set of units of
U/ (g) is precisely C*. O
2.2 N-grading on U/ (g) and automorphisms

As the quantum Serre relations are homogeneous in the given generators, there is an N-grading

on U;(g) obtained by assigning to F; degree 1. Let

U () = DU, (0); (2)

i€EN
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be the corresponding decomposition, with UqJr (g); the subspace of homogeneous elements of
degree i. In particular, U (g)o = C and U, (g)1 is the n-dimensional space spanned by the
generators Ey,..., E,. For t € Nset Uf(g)>t = @;>, U, (9); and define U;"(g)<; similarly.

We say that the nonzero element u € U (g) has degree t, and write deg(u) = t, if
u € Uf(g)<t \ Uf (9)<i—1 (using the convention that Uf(g)<—1 = {0}). As Ujf(g) is a
domain, deg(uv) = deg(u) + deg(v) for u,v # 0.

Definition 2.2. Let A = @, Ai be an N-graded C-algebra with Ay = C which is generated
as an algebra by Ay = Cx1 @ --- ® Cxy,. If for each i € {1,...,n} there exist 0 A a € A and a
scalar q; o # 1 such that x;a = q; qax;, then we say that A is an N-graded algebra with enough

q-commutation relations.

The algebra U;’ (g), endowed with the grading just defined, is a connected N-graded al-
gebra with enough g-commutation relations. Indeed, if ¢ € {1,...,n}, then there exists
u € UqJr (g) such that E;u = ¢*uFE; where e is a nonzero integer. This can be proved as
follows. As g is simple, there exists an index j € {1,...,n} such that j # i and a;; # 0,
that is, a;; € {—1,—2,—3}. Then s;s; is a reduced expression in W, so that one can find a

reduced expression of wy starting with s;s;, that is, one can write
W0 = 5i5jSiy -+ - Siy-
With respect to this reduced expression of wy, we have with the notation of Section 1.2:
fr=ca; and [z =si(oy) = o — ajjay
Then it follows from Theorem 1.1 that Eg, = E;, Eg, = Ey,—q,;a; and
E;Ep, = ¢\*i~%%) Eg B,

that is,
E;Ep, = ¢~ @) By B,
As a;; # 0, we have (o, ;) # 0 and so ¢~ (@%) =£ 1 since ¢ is not a root of unity. So we

have just proved:

Proposition 2.3. U;(g) is a connected N-graded algebra with enough q-commutation rela-

tions.

One of the advantages of N-graded algebras with enough g-commutation relations is
that any automorphism of such an algebra must conserve the valuation associated to the
N-graduation. More precisely, as UqJr (g) is a connected N-graded algebra with enough ¢-
commutation relations, we deduce from [18] (see also [17, Proposition 3.2]) the following

result.

Corollary 2.4. Let o € Aut(U; (g)) and x € U (g)a \ {0}. Then o(x) = yq +ysa, for some
Ya € U (9)a \ {0} and y~q € US (g)>a+1-
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2.3 The case where g = sl;

In this section, we investigate the automorphism group of UqJr (g) in the case where g = sl3. In

2 -1
this case the Cartan matrix is A = L9 ) , So that U;’ (sl3) is the C-algebra generated
by two indeterminates F; and E5 subject to the following relations:
EiEy — (q+ ¢ YE|FoE, + E3EF =0 (3)
E3E) — (q+q Y)EQE By + E1FE3 =0 (4)

We often refer to this algebra as the quantum Heisenberg algebra, and sometimes we denote
it by H, as in the classical situation the enveloping algebra of 5@ is the so-called Heisenberg
algebra.

We now make explicit a PBW basis of H. The Weyl group of sl3 is isomorphic to the
symmetric group Ss3, where s; is identified with the transposition (1 2) and sy is identified
with (2 3). Its longest element is then wy = (13); it has two reduced decompositions: wy =
518281 = $28182. Let us choose the reduced decomposition s1s9s1 of wy in order to construct
a PBW basis of U, (sl3). According to Section 1.2, this reduced decomposition leads to the

following root vectors:
Ea1 = El, Ea1+a2 = Tl(EQ) = —E1E2 + q_lEgEl and EJOl2 = T1T2(E1) = Eg.

In order to simplify the notation, we set E3 := —FEFEy + ¢ 'EyFE;. Then, it follows from
Theorem 1.1 that

e The monomials EflEé%Egz, with k1, ko, k3 nonnegative integers, form a PBW-basis of
U ;— (5[3).

e H is the iterated Ore extension over C generated by the indeterminates Fi, E3, Fo

subject to the following relations:
E3Ey = q 'E\FE3, FyE3=q 'E3E;, FEyEy =qE\Ey+ qFE;.

In particular, H is a Noetherian domain, and its group of invertible elements is reduced
to C*.

e It follows from the previous commutation relations between the root vectors that Ej is
a normal element in H, that is, F3H = HEj3.

In order to describe the prime and primitive spectra of H, we need to introduce two other
elements. The first one is the root vector Ef := Ty(Ey) = —E2Ey + ¢ 'E{E5. This root
vector would have appeared if we have choosen the reduced decomposition s9s152 of wq in
order to construct a PBW basis of H. It follows from Theorem 1.1 that E% g-commutes with

E; and E», so that E} is also a normal element of H. Moreover, one can describe the centre
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of H using the two normal elements E3 and Ej. Indeed, in [3, Corollaire 2.16], Alev and
Dumas have described the centre of U; (sl,); independently Caldero has described the centre
of U (g) for arbitrary g, see [7]. In our particular situation, their results show that the centre
Z(H) of H is a polynomial ring in one variable Z(H) = C[Q2], where Q2 = E3E.

We are now in position to describe the prime and primitive spectra of H = UqJr (sl(3));
this was first achieved by Malliavin who obtained the following picture for the poset of prime
ideals of H, see [20, Théoreme 2.4]:

((Er, By — ) ((En, E)) ((Er — «a, Eg))

where «, 3,7 € C*.

Recall from Section 1.3 that the torus H = (C*)? acts on U/ (sl3) by automorphisms and
that the H-stratification theory of Goodearl and Letzter constructs a partition of the prime
spectrum of U;’ (sl3) into so-called H-strata, this partition being indexed by the H-invariant
prime ideals of U (sl3). Using this description of Spec(U; (sl3)), it is easy to identify the
6 = |W| H-invariant prime ideals of H and their corresponding H-strata. As Ey, E,, E5 and

EY are H-eigenvectors, the 6 H-invariant primes are:
<O>7 <E3>7 (EZ/S>7 <E1>7 <E2> and <E17E2>’

Moreover the corresponding H-strata are:

Specgy (H) = {(0)} U{(Q —~) [y € C},

(
Spec,) (H) = {(£3)},
Spec gy (H) = {(E3)},
Spec(p,) (H) = {(E1)} U{(E1, B> — B) | B € C*},
Spec g,y (H) = {(E2)} U {(E1 — o, Ep) |« € C*}
(

and Specp, i,y (H) = {(E1, E2)}.
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We deduce from this description of the H-strata and the the fact that primitive ideals
are exactly those primes that are maximal within their H-strata, see Theorem 1.3, that the
primitive ideals of UqJr (sl3) are exactly those primes that appear in double brackets in the
previous picture.

We now investigate the group of automorphisms of H = Uq+ (sl3). In that case, the torus
acting naturally on UqJr (sl3) is H = (C*)?, there is only one non-trivial diagram automorphism
w that exchanges F1 and FE», and so the subgroup G of Aut(UqJr (sl3)) generated by the torus
and diagram automorphisms is isomorphic to the semi-direct product (C*)? x Sy. We want
to prove that Aut(U/ (sl3)) = G.

In order to do this, we study the action of Aut(U, (sl3)) on the set of primitive ideals that
are not maximal. As there are only two of them, (E3) and (Ej), an automorphism of H will
either fix them or permute them.

Let o be an automorphism of U (sl3). It follows from the previous observation that
cither o((E3)) = (Es) and o((E4)) = (E}),

or o((Es)) = (E}) and o((E})) = (Bs).

As it is clear that the diagram automorphism w permutes the ideals (E3) and (Ej%), we get

that there exists an automorphism g € G such that
goo((Es)) = (E3) and g o o((Es)) = (E3).

Then, as E3 and E% are normal, we deduce from Lemma 2.1 that there exist A, A’ € C* such
that
goo(E3) = AE3 and go o(E}) = N E.

In order to prove that g o o is an element of G, we now use the N-graduation of U(j (sl3)
introduced in Section 2.2. With respect to this graduation, £, and Es are homogeneous of
degree 1, and so E3 and E} are homogeneous of degree 2. Moreover, as (¢72 — 1)E1Ey =
FEs + q_lEé, we deduce from the above discussion that

goo(ELEy) = (\Bs + ¢ "N EY)

1
g2 —1
has degree two. On the other hand, as Uq+ (sl3) is a connected N-graded algebra with enough
g-commutation relations by Proposition 2.3, it follows from Corollary 2.4 that o(E;) = a1 E1+
asFy + u and o(E3) = b1 Ey + byFEy + v, where (ay,az), (b1,b2) € C?\ {(0,0)}, and u,v €
U/ (sl3) are linear combinations of homogeneous elements of degree greater than one. As
goo(Ey).goo(Ey) has degree two, it is clear that u = v = 0. To conclude that go o € G,
it just remains to prove that as = 0 = b;. This can be easily shown by using the fact that
goo(—E\Fy+q ' EyEy) = goo(E3) = AE3; replacing goo(E1) and goo(Esy) by a1 Fy +asEs
and by Eq + by F5 respectively, and then identifying the coefficients in the PBW basis, leads to
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as = 0 = by, as required. Hence we have just proved that goo € G, so that o itself belongs to
G the subgroup of Aut(U; (sl3)) generated by the torus and diagram automorphisms. Hence

one can state the following result that confirms the Andruskiewitsch-Dumas Conjecture.
Proposition 2.5. Aut(U; (sl3)) ~ (C*)? x autdiagr(sls)

This result was first obtained independently by Alev and Dumas, [2, Proposition 2.3],
and Caldero, [8, Proposition 4.4], but using somehow different methods; they studied this

automorphism group by looking at its action on the set of normal elements of UqJr (sl3).

2.4 The case where g = so;

In this section we investigate the automorphism group of U;’ (g) in the case where g =
s505. In this case there are no diagram automorphisms, so that the Andruskiewitsch-Dumas
Conjecture asks whether every automorphism of UqJr (s05) is a torus automorphism. In [16]
we have proved their conjecture when g = s05. The aim of this section is to present a slightly
different proof based both on the original proof and on the recent proof by S.A. Lopes and

the author of the Andruskiewitsch-Dumas Conjecture in the case where g is of type As.

2 =2
In the case where g = so5, the Cartan matrix is A = Lo ) so that U (so5) is

the C-algebra generated by two indeterminates E1 and Fs subject to the following relations:

EYEy — (" + 1+ ¢ *)E{B2E1 + (¢ + 1+ ¢ ) E1 B2 B} + B2 B} = 0 (5)
E2E, — (¢* + ¢ 2)EyE\Ey + E1F2 =0 (6)

We now make explicit a PBW basis of U(j (s05). The Weyl group of sos5 is isomorphic to
the dihedral group D(4). Its longest element is wg = —id; it has two reduced decompositions:
Wy = S1895182 = S9515951. Let us choose the reduced decomposition s1598182 of wy in order
to construct a PBW basis of UqJr (s05). According to Section 1.2, this reduced decomposition

leads to the following root vectors:

1

Ea1 = E17 E2a1+a2 = Tl(Ez) = m

(EYE> — ¢ (¢ + ¢ ") E1Es By + ¢ 2EREY)

Ea1+a2 = Tng(El) = —E1E2 + q_2E2E1 and EJOl2 = TlTQTl(EQ) = EQ.

In order to simplify the notation, we set E3 := —FEq, +q, and Ey 1= Esy,4q,. Then, it

follows from Theorem 1.1 that

e The monomials Efl Ef4E§3E§2, with k1, ke, k3, k4 nonnegative integers, form a PBW-
basis of U, (s05).
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. UqJr (s05) is the iterated Ore extension over C generated by the indeterminates Fy, Ey,
E3, Es subject to the following relations:

EyEy = ¢ ?E1Ey
EsEy = E\E3— (q+q Y Es, E3Ey=q 2E.F;,
2
EyEy = ¢*E\Ey — ¢*Fs, EyEy = E B — %E‘%, EyEs = g ?E3E».

In particular, UqJr (s05) is a Noetherian domain, and its group of invertible elements is
reduced to C*.

Before describing the automorphism group of U ; (s05), we first describe the centre and the
primitive ideals of U, (s05). The centre of U (g) has been described in general by Caldero,
[7]. In the case where g = so5, his result shows that Z(U,/ (s05)) is a polynomial algebra in
two indeterminates

2(Uf (s05)) = [z, 7).

where
z=(1-)EEs+¢*(q+q )Es

and
Y=~ (g +q VEE +¢*(¢* - 1)E3.

Recall from Section 1.3 that the torus H = (C*)? acts on U, (s05) by automorphisms and
that the H-stratification theory of Goodearl and Letzter constructs a partition of the prime
spectrum of U,f(so5) into so-called H-strata, this partition being indexed by the 8 = [WW|
‘H-invariant prime ideals of UqJr (s05). In [16], we have described these eight H-strata. More
precisely, we have obtained the following picture for the poset Spec(U, (so05)),
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((E1, BEa — B3)) ((E1, E2)) ((E1 — a, Eg))

{0)

where , 3,7,8 € C*, E}, := E1Ey — ¢? 2 E1 and

T ={(P(z,7')) | P is a unitary irreductible polynomial of C[z,2'], P # z,2'}.

As the primitive ideals are those primes that are maximal in their H-strata, see Theorem
1.3, we deduced from this description of the prime spectrum that the primitive ideals of
U,/ (s05) are the following:

o (z —a,2 — B3) with (o, 3) € C2\ {(0,0)}.

o (B) and (E}).

o (B] — a, By — 3) with (a, 3) € C? such that af = 0.

(They correspond to the “double brackets” prime ideals in the above picture.)

Among them, two only are not maximal, (E3) and (F%). Unfortunately, as E5 and Ef are
not normal in U, ; (s05), one cannot easily obtain information using the fact that any automor-
phism of UqJr (s05) will either preserve or exchange these two prime ideals. Rather than using
this observation, we will use the action of Aut(U,f (s05)) on the set of maximal ideals of height
two. Because of the previous description of the primitive spectrum of UqJr (s05), the height two
maximal ideals in U;"(s05) are those (z — v, 2" — ) with («, §) € C2\{(0,0)}. In [16, Proposi-
tion 3.6, we have proved that the group of units of the factor algebra U, (s05)/(z — a, 2’ — 3)

is reduced to C* if and only if both « and ( are nonzero. Consequently, if ¢ is an automor-
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phism of U (so5) and o € C*, we get that:
o({z—a,2")) = (2 —d, 2y or (2,2 — 3),
where o/, 3’ € C*. Similarly, if o is an automorphism of Uq+ (s05) and B € C*, we get that:
o((z,2 = B)) = (z —a',2) or (2, = ), (7)

where o/, 3’ € C*.
We now use this information to prove that the action of Aut(U[ (s05)) on the centre of

UqJr (s05) is trivial. More precisely, we are now in position to prove the following result.

Proposition 2.6. Let 0 € Aut(U, (s05)). There exist \,\' € C* such that
o(z) =Xz and o(Z)= N7\

Proof. We only prove the result for z. First, using the fact that UqJr (s05) is noetherian, it is
easy to show that, for any family {3;};cn of pairwise distinct nonzero complex numbers, we

have:

<Z> = m P()ﬂi and <Z/> = ﬂ P5i70,

1€EN 1€EN

where P, g := (z — o, 2/ — 3). Indeed, if the inclusion

(z) C1:= ﬂ Pog;
€N
is not an equality, then any P g, is a minimal prime over I for height reasons. As the P g, are
pairwise distinct, [ is a two-sided ideal of UqJr (s05) with infinitely many prime ideals minimal

over it. This contradicts the noetherianity of U (so5). Hence
(z) = () Pog, and (') = () Ps.0,
ieN ieN

and so

o ((2) = [ o(Pos)-

1€EN
It follows from (7) that, for all i € N, there exists (v;,d;) # (0,0) with v; = 0 or §; = 0
such that
o(Po,;) = Py, ;-

Naturally, we can choose the family {; };en such that either ; = 0 for alli € N, or §; =0

for all © € N. Moreover, observe that, as the [; are pairwise distinct, so are the ~; or the d;.
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Hence, either

o ({2)) = ﬂ Py, 0,

€N
or
o ((2)) = () Pos:»
1€N
that is,

either (0(2)) = o ((2)) = (') or (0(2)) = 0 ((2)) = (2).

As z, 0(z) and 2’ are all central, it follows from Lemma 2.1 that there exists A € C* such
that either o(z) = Az or o(z) = A2/,

To conclude, it just remains to show that the second case cannot happen. In order to do
this, we use a graded argument. Observe that, with respect to the N-graduation of Uq+ (s05)
defined in Section 2.2, z and 2’ are homogeneous of degree 3 and 4 respectively. Thus, if
o(z) = A2/, then we would obtain a contradiction with the fact that every automorphism
of U (s05) preserves the valuation, see Corollary 2.4. Hence o(z) = Mz, as desired. The

corresponding result for 2’ can be proved in a similar way, so we omit it. O

Andruskiewitsch and Dumas, [4, Proposition 3.3|, have proved that the subgroup of those
automorphisms of Ut (s05) that stabilize (z) is isomorphic to (C*)?. Thus, as we have just
shown that every automorphism of UJ (so5) fixes (2), we get that Aut(U,f (so5)) itself is
isomorphic to (C*)2. This is the route that we have followed in [16] in order to prove the
Andruskiewitsch-Dumas Conjecture in the case where g = s05. Recently, with Samuel Lopes,
we proved this Conjecture in the case where g = sly using different methods and in particular
graded arguments. We are now using (similar) graded arguments to prove that every auto-
morphism of UqJr (s05) is a torus automorphism (witout using results of Andruskiewitsch and
Dumas).

In the proof, we will need the following relation that is easily obtained by straightforward

computations.
Lemma 2.7. (¢ — 1)E3E; = (¢* — 1)2E2 + ¢%7'.

Proposition 2.8. Let o be an automorphism of U;’(sog,). Then there exist ai,bs € C* such
that
o(E1) =a1Ey and o(Es) = byFEs.

Proof. For alli € {1,...,4}, we set d; := deg(o(E;)). We also set df := deg(o(E})). It follows
from Corollary 2.4 that di,dy > 1, d3,d5 > 2 and dy > 3. First we prove that d; = dy = 1.

Assume first that dy +d3 > 3. As 2 = (1 — ¢®>)E1E3 + ¢*(¢ + ¢~ ') Ey and o(2) = Az with
A € C* by Proposition 2.6, we get:

Ao = (1—¢Do(ENo(Es) + (g +q Do(Ey). (8)
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Recall that deg(uv) = deg(u) + deg(v) for u,v # 0, as U, (g) is a domain. Thus, as deg(z) =
3 < deg(o(E1)o(E3)) = di +ds, we deduce from (8) that di+ds = dy. As 2’ = —(¢*—q~2)(q+
¢ YDE Fy + ¢?(¢? — 1)E? and deg(2') = 4 < dy + d3 + da = dy + do = deg(o(Ey)o(Ey)), we
get in a similar manner that dy + dgy = 2d3. Thus dy + dy = d3. As dy + d3 > 3, this forces
ds > 2 and so d3 + d5 > 4. Thus we deduce from Lemma 2.7 that ds + dy = 3 + da. Hence
di +dy =3. As dy > 1 and df > 2, this implies d; = 1 and df = 2.

Thus we have just proved that d; = deg(c(E1)) = 1 and either d3 = 2 or dy = 2. To prove
that do = 1, we distinguish between these two cases.

If d3 = 2, then as previously we deduce from the relation 2’ = —(¢> — ¢ 2)(q+q ') EsEs +
q*(q?> — 1)E3 that dy + dy = 4, so that dy = 1, as desired.

If d = 2, then one can use the definition of E4 and the previous expression of 2’ in order to
prove that 2’ = ¢~ 2(¢? — 1)Ey? + Eau, where u is a nonzero homogeneous element of U (s05)
of degree 3. (u is nonzero since (z’) is a completely prime ideal and E} ¢ (z) for degree
reasons.) As dj = 2 and deg(o(2')) = 4, we get as previously that do = 1.

To summarise, we have just proved that deg(c(F1)) = 1 = deg(o(E2)), so that o(F;) =
a1Ey + agFy and o(Fs) = by Ey + by Es, where (a1, az), (b1,b2) € C?\ {(0,0)}. To conclude
that ag = by = 0, one can for instance use the fact that o(E;) and o(E3) must satisfy the

quantum Serre relations. O

We have just confirmed the Andruskiewitsch-Dumas Conjecture in the case where g = so5.
Theorem 2.9. Every automorphism of UqJr (s05) is a torus automorphism, so that

Aut(U; (s05)) ~ (C*)2,

2.5 Beyond these two cases

To finish this overview paper, let us mention that recently the Andruskiewitsch-Dumas Con-
jecture was confirmed by Samuel Lopes and the author, [18], in the case where g = sly. The
crucial step of the proof is to prove that, up to an element of G, every normal element of
UqJr (sly) is fixed by every automorphism. This step was dealt with by first computing the Lie

algebra of derivations of UqJr (sly), and this already requires a lot of computations!
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An Artinian theory for Lie algebras

Antonio Fernandez Lopez* Esther Garcial Miguel Gémez Lozano?

Abstract

We summarize in this contribution the main results of our paper [5]. Only those
definitions which are necessary to understand the statements are provided, but no proofs,
which can be found in [5].

1 Lie algebras and Jordan pairs

1. Throughout this paper, and at least otherwise specified, we will be dealing with Lie al-
gebras L [7], [11], and Jordan pairs V = (V,V ~) [8], over a ring of scalars ® containing
1

30.

2. Let V.= (V*,V™) be a Jordan pair. An element x € V7, o = =+, is called an absolute
zero divisor if @, = 0, and V is said to be nondegenerate if it has no nonzero absolute
zero divisors. Similarly, given a Lie algebra L, x € L is an absolute zero divisor if

ad? = 0, L is nondegenerate if it has no nonzero absolute zero divisors.

3. Given a Jordan pair V = (VT,V ™), an inner ideal of V is any ®-submodule B of
V9 such that {B,V~7,B} C B. Similarly, an inner ideal of a Lie algebra L is a ®-
submodule B of L such that [B,[B, L]] C B. An abelian inner ideal is an inner ideal B

which is also an abelian subalgebra, i.e., [B, B] = 0.

4. (a) Recall that the socle of a nondegenerate Jordan pair V is Soc V = (Soc V*t,Soc V™)
where Soc V7 is the sum of all minimal inner ideals of V' contained in V7 [9]. The
socle of a nondegenerate Lie algebra L is Soc L, defined as the sum of all minimal

inner ideals of L [3].
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(b) By [9, Theorem 2] (for the Jordan pair case) and [3, Theorem 2.5] (for the Lie
case), the socle of a nondegenerate Jordan pair or Lie algebra is the direct sum of
its simple ideals. Moreover, each simple component of Soc L is either inner simple

or contains an abelian minimal inner ideal [2, Theorem 1.12].

(c) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the descending

chain condition on all inner ideals.

(d) By definition, a properly ascending chain 0 C M; C My C -+ C M, of inner ideals
of a Lie algebra L has length n. The length of an inner ideal M is the supremum

of the lengths of chains of inner ideals of L contained in M.

2 Complemented Lie algebras

The module-theoretic characterization of semiprime Artinian rings (R is unital and completely
reducible as a left R-module) cannot be translated to Jordan systems by merely replacing
left ideals by inner ideals: if we take, for instance, the Jordan algebra My(F)) of 2 x 2-
matrices over a field F', any nontrivial inner ideal of Mj(F)(*) has dimension 1, so it cannot be
complemented as a F-subspace by any other inner ideal. Nevertheless, O. Loos and E. Neher
succeeded in getting the appropriate characterization by introducing the notion of kernel of
an inner ideal [10]:

A Jordan pair V = (V*,V ™) (over an arbitrary ring of scalars) is a direct sum of simple
Artinian nondegenerate Jordan pairs if and only if it is complemented in the following sense:
for any inner ideal B of V7 there exists an inner ideal C' of V=7 such that each of them
is complemented as a submodule by the kernel of the other. In particular, a simple Jordan
pair is complemented if and only if is nondegenerate and Artinian. A similar characterization

works for Lie algebras.
1.
Let M be an inner ideal of a Lie algebra L. The kernel of M
KerM ={x € L:[M,[M,z]] =0}
is a ®-submodule of L. An inner complement of M is an inner ideal N of L such that
L=M@&KerN =N & Ker M.

A Lie algebra L will be called complemented if any inner ideal of L has an inner comple-
ment, and abelian complemented if any abelian inner ideal has an inner complement which is
abelian. Our main result, which can be regarded as a Lie analogue of the module-theoretic

characterization of semiprime Artinian rings, proves.

Theorem 2. For a Lie algebra L, the following notions are equivalent:
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(i) L is complemented.

(ii) L is a direct sum of ideals each of which is a simple nondegenerate Artinian Lie algebra.
Moreover,

(iii) Complemented Lie algebras are abelian complemented.

A key tool used in the proof of (i) = (ii) is the notion of subquotient of a Lie algebra with

respect to an abelian inner ideal:
3.

For any abelian inner ideal M of L, the pair of ®-modules
V =(M,L/Kery M)
with the triple products given by

{m,a,n} := [[m,a|,n] forevery m,ne€ M and a€L

{@,m,b} = [[a,m],b] forevery me& M and a,b€ L,

where T denotes the coset of x relative to the submodule Kery, M, is a Jordan pair called the
subquotient of L with respect to M.

Subquotients inherit, on the one hand, regularity conditions from the Lie algebra, and,
on the other hand, keep the inner ideal structure of L within them. This fact turns out to
be crucial for using results of Jordan theory. For instance, it is used to prove that any prime
abelian complemented Lie algebra satisfies the ascending and descending chain conditions on
abelian inner ideals. Moreover, as proved in [6], an abelian inner ideal B of finite length in
a nondegenerate Lie algebra L is not just complemented by abelian inner ideals, but there
exists a short grading L = L_,, ®---® Lo P --- ® L,, such that B = L,, and hence B is
complemented by L_,,.

It must be noted that, while any nondegenerate Artinian Jordan pair is a direct sum
of finitely many simple nondegenerate Artinian Jordan pairs, a nondegenerate Artinian Lie
algebra does only have essential socle [3, Corollary 2.6]. In fact, there exist strongly prime
finite dimensional Lie algebras (over a field of characteristic p > 5) with nontrivial ideals
[12, p. 152]. Therefore, unlike the Jordan case, nondegenerate Artinian Lie algebras are not

necessarily complemented: they are only abelian complemented.

3 Simple nondegenerate Artinian Lie algebras

Let L be a simple nondegenerate Lie algebra containing an abelian minimal inner ideal. Then

L has a 5-grading. Hence, by [13, Theorem 1], L is one of the following: (i) a simple Lie algebra
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of type Go, Fy, Eg, E7 or Eg, (ii) L = R = [R, R]/Z(R)N[R, R], where R is a simple associative
algebra such that [R, R] is not contained in Z(R), or (iii) L = K = [K,K]/Z(R) N |K, K],
where K = Skew (R, %) and R is a simple associative algebra, * is an involution of R, and either
Z(R) = 0 or the dimension of R over Z(R) is greater than 16. (Actually, the list of simple
Lie algebras with gradings given in [13, Theorem 1], contains two additional algebras: the
Tits-Kantor-Koecher algebra of a nondegenerate symmetric bilinear form and D4. However,
because of we are not interested in describing the gradings, both algebras can be included
in case (iii): K =K =K = Skew(R, x), where R is a simple algebra with orthogonal
involution.)

By using the inner ideal structure of Lie algebras of traceless operators of finite rank which
are continuous with respect to an infinite dimensional pair of dual vector spaces over a division
algebra, and that of the Lie algebras of finite rank skew operators on an infinite dimensional
self dual vector space (extending the work of G. Benkart [1] for the finite dimensional case,
and a previous one of the authors [4] for finitary Lie algebras), we can refine the above list in

the case of a simple nondegenerate Artinian Lie algebra.
4.

A Lie algebra L will be called a division Lie algebra if it is nonzero, nondegenerate and

has no nontrivial inner ideals. Two examples are given below:

1. Let A be a division associative algebra such that [[A, A], A] # 0. Then [A, A]/[A, A]N
Z(A) is a division Lie algebra, [1, Corollary 3.15].

2. Let R be a simple associative algebra with involution * and nonzero socle. Suppose that
Z(R) = 0 or the dimension of R over Z(R) is greater than 16, and set K := Skew (R, x).
Then L = [K,K]|/[K,K] N Z(R) is a division Lie algebra if and only if (R,*) has no
nonzero isotropic right ideals, i.e., those right ideals I such that I*I = 0. This is a direct
consequence of the inner ideal structure of L: [1, Theorem 5.5] when R is Artinian, and

[4] when R is not Artinian.

Theorem 5. Let L be a simple Lie algebra over a field F' of characteristic 0 or greater than

7. Then L is Artinian and nondegenerate if and only if it is one of the following:
1. A division Lie algebra.

2. A simple Lie algebra of type Go, Fy, Eg, E7 or Eg containing abelian minimal inner

tdeals.
3. [R,R]/[R, RINZ(R), where R is a simple Artinian (but not division) associative algebra.
4. |[K,K]/[K,K|NZ(R), where K = Skew(R, *) and R is a simple associative algebra with

involution x which coincides with its socle, such that Z(R) = 0 or the dimension of
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R over Z(R) is greater than 16, and (R, *) satisfies the descending chain condition on

1sotropic right ideals.

Summarizing, we can say that, as conjectured by G. Benkart in the introduction of [2],
inner ideals in Lie algebras play a role analogous to Jordan inner ideals in the development

of an Artinian theory for Lie algebras.
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Quantum groupoids with projection

J.N. Alonso Alvarez* J.M. Ferndndez Vilaboaf R. Gonzalez Rodriguez?*

Abstract

In this survey we explain in detail how Radford’s ideas and results about Hopf algebras
with projection can be generalized to quantum groupoids in a strict symmetric monoidal

category with split idempotents.

Introduction

Let H be a Hopf algebra over a field K and let A be a K-algebra. A well-known result of
Radford [23] gives equivalent conditions for an object A ® H equipped with smash product
algebra and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra
projections. Majid in [16] interpreted this result in the modern context of Yetter-Drinfeld
modules and stated that there is a correspondence between Hopf algebras in this category,
denoted by gyD, and Hopf algebras B with morphisms of Hopf algebras f : H — B,
g : B — H such that g o f = idy. Later, Bespalov proved the same result for braided
categories with split idempotents in [5]. The key point in Radford-Majid-Bespalov’s theorem
is to define an object By, called the algebra of coinvariants, as the equalizer of (B ® g) o dp
and B ® ny. This object is a Hopf algebra in the category gyD and there exists a Hopf
algebra isomorphism between B and By <t H (the smash (co)product of By and H). It is
important to point out that in the construction of By <t H they use that By is the image of
the idempotent morphism ¢5 = ug o (B® (f o Ag o g)) o dp.

In [11], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with
projection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras
with bijective antipode and with morphisms of quasi-Hopf algebras f : H - B, g: B — H
such that g o f = idy, then they define a subalgebra B’ (the generalization of By to this
setting) and with some additional structures B* becomes, a Hopf algebra in the category
of left-left Yetter-Drinfeld modules YD defined by Majid in [17]. Moreover, as the main
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result in [11], Bulacu and Nauwelaerts state that B x H is isomorphic to B as quasi-Hopf
algebras where the algebra structure of B® x H is the smash product defined in [10] and the
quasi-coalgebra structure is the one introduced in [11].

The basic motivation of this survey is to explain in detail how the above ideas and results
can be generalized to quantum groupoids in a strict symmetric monoidal category with split
idempotents. Quantum groupoids or weak Hopf algebras have been introduced by Bohm, Nill
and Szlachényi [7] as a new generalization of Hopf algebras and groupoid algebras. Roughly
speaking, a weak Hopf algebra H in a symmetric monoidal category is an object that has
both algebra and coalgebra structures with some relations between them and that possesses
an antipode Ag which does not necessarily verify Ag Aidg = idg AN Ag = eg @ ng where e,
ny are the counity and unity morphisms respectively and A denotes the usual convolution
product. The main differences with other Hopf algebraic constructions, such as quasi-Hopf
algebras and rational Hopf algebras, are the following: weak Hopf algebras are coassociative
but the coproduct is not required to preserve the unity ng or, equivalently, the counity is
not an algebra morphism. Some motivations to study weak Hopf algebras come from their
connection with the theory of algebra extensions, the important applications in the study of
dynamical twists of Hopf algebras and their link with quantum field theories and operator
algebras (see [20]).

The survey is organized as follows.

In Section 1 we give basis definitions and examples of quantum groupoids without finite-
ness conditions. Also we introduce the category of left-left Yetter-Drinfeld modules defined
by Bohm for a quantum groupoid with invertible antipode. As in the case of Hopf algebras
this category is braided monoidal but in this case is not strict.

The exposition of the theory of crossed products associated to projections of quantum
groupoids in Section 2 follows [2] and is the good generalization of the classical theory devel-
oped by Blattner, Cohen and Montgomery in [6]. The main theorem in this section generalizes
a well know result, due to Blattner, Cohen and Montgomery, which shows that if B — H — 0
is an exact sequence of Hopf algebras with coalgebra splitting then B = Af#, H, where A is the
left Hopf kernel of 7 and o is a suitable cocycle (see Theorem (4.14) of [6]). In this section we
show that if g : B — H is a morphism of quantum groupoids and there exists a morphism of
coalgebras f : H — B such that go f = idy and fonyg = np, using the idempotent morphism
qg =upo(B® (Apofog))odp: B — B itis possible to construct an equalizer diagram
and an algebra By, i.e, the algebra of coinvariants or the Hopf kernel of g, and morphisms
vB, : H® By — Bp (the weak measuring), op, : H ® H — By (the weak cocycle) such
that there exists an idempotent endomorphism of By ® H which image, denoted by By x H,

is isomorphic with B as algebras being the algebra structure (crossed product algebra)
NBgxH = TBO (nBH ®nu),

UByxH =TB O (UBy @ H) o (U, ® 0B, @ pg) o (By ® B,y @ dHgH )0
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(Br ®H ®cppy ® H)o(By ® g ® By ® H) o (sp ® sp),

where sp is the inclusion of By x H in By ® H and rp the projection of By ® H on
Bp x H. Of course, when H, B are Hopf algebras we recover the result of Blattner, Cohen
and Montgomery. For this reason, we denote the algebra By x H by By, By H. If moreover f
is an algebra morphism, the cocycle is trivial in a weak sense and then we obtain that up, <
is the weak version of the smash product used by Radford in the Hopf algebra setting. Also,
we prove the dual results using similar arguments but passing to the opposite category, for a
morphism of quantum groupoids h : H — B and an algebra morphism ¢ : B — H such that
toh=1tidy and egot =cp.

Finally, in Section 3, linking the information of section 2 with the results of [1], [2], [3] and
[4], we obtain our version of Radford’s Theorem for quantum groupoids with projection. In
this section we prove that the algebra of coinvariants By associated to a quantum groupoid
projection (i.e. a pair of morphisms of quantum groupoids f : H — B, g : B — H such that
go f =idpy) can be obtained as an equalizer or, by duality, as a coequalizer (in this case the
classical theory developed in Section 2 and the dual one provide the same object By with dual
algebraic structures, algebra-coalgebra, module-comodule, etc...). Therefore, it is possible to
find an algebra coalgebra structure for By and morphisms ¢p, = pg oupo (f® zg) :
H ® By — By and gop,, = (g®pg) odp oig : By — H ® By such that (By,¢p,, ) is a left
H-module and (By, 0B,,) is a left H-comodule. We show that By is a Hopf algebra in the
category of left-left Yetter-Drinfeld modules ZJ}D and, using the the the weak smash product
and the weak smash coproduct of By and H we give a good weak Hopf algebra interpretation
of the theorems proved by Radford [23] and Majid [16] in the Hopf algebra setting, obtaining

an isomorphism of quantum groupoids between By x H and B.

1 Quantum groupoids in monoidal categories

In this section we give definitions and discuss basic properties of quantum groupoids in
monoidal categories.

Let C be a category. We denote the class of objects of C by |C| and for each object X € |C|,
the identity morphism by idx : X — X.

A monoidal category (C,®, K,a,l,r) is a category C which is equipped with a tensor
product ® : C x C — C, with an object K, called the unit of the monoidal category, with a
natural isomorphism a : ®(id X ®) — ®(® X id), called the associativity constrain, and with
natural isomorphisms ! : ®(K X id) — id, 7 : ®(id x K) — id, called left unit constraint and

right unit constraint respectively, such that the Pentagon Axiom

(avvw ®idx) o ayvewx © (idy ® av,w,.x) = GUueV,w,X © AUV.WaX

and the Triangle Axiom

idy @ ly = (rv @ idw) o av xw
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are satisfied.

The monoidal category is said to be strict if the associativity and the unit constraints a,
[, r are all identities of the category.

Let U : CxC — CxC be the flip functor defined by U(V, W) = (W, V') on any pair of objects
of C. A commutativity constrain is a natural isomorphism ¢ : ® — ®@V. If (C,®, K,a,l,r)
is a monoidal category, a braiding in C is a commutativity constraint satisfying the Hexagon

Axiom
aw,u,v © cugv,w © auy,w = (cuw ®idy) o ayw,v o (idy ® cv,w),
a\j'}W,U o cyvew © a[_]}V’W = (idy ® cuw) o a\j',lU,W o (cyy @ idw).

A braided monoidal category is a monoidal category with a braiding c. These categories
generalizes the classical notion of symmetric monoidal category introduced earlier by category
theorists. A braided monoidal category is symmetric if the braiding satisfies cy v o cyw =
idyew for all V.W € |C|.

From now on we assume that C is strict symmetric and admits split idempotents, i.e.,
for every morphism Vy : Y — Y such that Vy = Vy o Vy there exist an object Z and
morphisms iy : Z — Y and py : Y — Z such that Vy = iy o py and py oty = idz. There
is not loss of generality in assuming the strict character for C because it is well know that
given a monoidal category we can construct a strict monoidal category C*' which is tensor
equivalent to C (see [15] for the details). For simplicity of notation, given objects M, N, P
in C and a morphism f: M — N, we write P® f for idp ® f and f ® P for f ® idp.

Definition 1.1. An algebra in C is a triple A = (A,n4,pna) where A is an object in C and
na: K — A (unit), pa: A® A — A (product) are morphisms in C such that p40(A®na) =
idg = paoMa®A), pao(A®ua) = pao(pua® A). Given two algebras A = (A, n4, pa) and
B = (B,np,uB), f: A — B is an algebra morphism if ugo (f ® f) = fopua, fonas =ns.
Also, if A, B are algebras in C, the object A ® B is an algebra in C where nagp = 14 @ nB
and piagB = (ua @ pp) 0 (A® cpa ® B).

A coalgebra in C is a triple D = (D, ep,dp) where D is an object in C and ep : D — K
(counit), p : D — D ® D (coproduct) are morphisms in C such that (ep ® D) odp = idp =
(D®ep)odp, (bp®D)odp = (D®dp)odp. If D = (D,ep,dp) and E = (E,eg,dp)
are coalgebras, f : D — E is a coalgebra morphism if (f ® f)odp = dgo f, ego f =ep.
When D, E are coalgebras in C, D ® E is a coalgebra in C where epgr = ¢p ® ep and
dper = (D®cprp®E)o (dp ®0E).

If A is an algebra, B is a coalgebra and a: B — A, §: B — A are morphisms, we define

the convolution product by a A 3 = us 0 (a® ) odp.

By quantum groupoids or weak Hopf algebras we understand the objects introduced in
[7], as a generalization of ordinary Hopf algebras. Here, for the convenience of the reader, we
recall the definition of these objects and some relevant results from [7] without proof, thus

making our exposition self-contained.
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Definition 1.2. A quantum groupoid H is an object in C with an algebra structure (H, ng, i)
and a coalgebra structure (H,ep,0z) such that the following axioms hold:

(al) 0y o pu = (@ p) © dueH,
(a2) egopmo(py @ H) = (eg ®em) o (pg @ pg) o (H @ oy @ H)
=(eg®em)o (g @ pu)o (H® (cypodn) ® H),
(a3) bg®@H)odgony =(H @pg @ H)o (6g ®dn)o (M @ nu)
= (H @ (pr o cam) @ H) o (6m ® 6u) o (ng © np)-
(ad4) There exists a morphism Ay : H — H in C (called the antipode of H) verifiying:

(ad-1) idg AN)Ag = ((egopr) ® H)o (H® cap)o ((0monm) ® H),
(ad-2) Ag ANidg = (H® (egopm)) o (cap @ H) o (H ® (0 o nm)),
(a4—3) Ag Nidg AN g = Ag.

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplica-
tivity of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra
definition. On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of
the antipode in a Hopf algebra. Therefore, a quantum groupoid is a Hopf algebra if an only
if the morphism 0y (comultiplication) is unit-preserving and if and only if the counit is a

homomorphism of algebras.

1.3. If H is a quantum groupoid in C, the antipode Ay is unique, antimultiplicative, antico-

multiplicative and leaves the unit ny and the counit ey invariant:
Amopg =prgoAg ®@Ag)ocama, Odgodg=cauo Ay ®Ag)odm,

AHONH =MNH, EHOAH =€EH.

If we define the morphisms IT¥ (target morphism), II£ (source morphism), ﬁé and ﬁff
by

Il = ((egopn) ® H) o (H® cym) o ((6m onu) @ H),
NE =(H® (egopm))o (cuu®H)o (H® (6monm)),
My = (H ® (e 0 ) o (31 0 nr) ® H),

Ty = ((eir o prr) @ H) o (H ® (857 0 ).
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it is straightforward to show that they are idempotent and H%, Hg satisfy the equalities
Il =idy Ay, TR =Xy Addy.
Moreover, we have that
Ik oTly =11k, TLoTly =Ty, NRoMy =T, oI, =1k,
Oy olll =T, Tholf =1k, Thomk =1k, TOpolf =T
Also it is easy to show the formulas
Ik :ﬁffo/\H :/\Hoﬁé, 1 :ﬁéo/\H :/\Hoﬁg,
o g =T oI = Mg oI, TR o Ny =& o ITh = Ay o TIE,.
If A\j is an isomorphism (for example, when H is finite), we have the equalities:
Ty = par o (H @A) o e o0, Tpe = ppr o (A ® H) 0 cappr o 6.

If the antipode of H is an isomorphism, the opposite operator and the coopposite operator
produce quantum groupoids from quantum groupoids. In the first one the product pg is
replaced by the opposite product pigeor = i o g, g while in the second the coproduct dg is
replaced by dpcoor = ¢,y 0 5. In both cases the antipode Ap is replaced by )\I_f.

A morphism between quantum groupoids H and B is a morphism f : H — B which is
both algebra and coalgebra morphism. If f: H — B is a weak Hopf algebra morphism, then
Apo f = foAm (see Proposition 1.4 of [1]).

Examples 1.4. (i) As group algebras and their duals are the natural examples of Hopf
algebras, groupoid algebras and their duals provide examples of quantum groupoids. Recall
that a groupoid G is simply a category in which every morphism is an isomorphism. In this
example, we consider finite groupoids, i.e. groupoids with a finite number of objects. The
set of objects of G will be denoted by Gy and the set of morphisms by G;. The identity
morphism on z € Gy will also be denoted by id, and for a morphism o : z — y in Gy, we
write s(o) and t(o), respectively for the source and the target of o.

Let G be a groupoid, and R a commutative ring. The groupoid algebra is the direct

RG= P Ro

oeGy

product

with the product of two morphisms being equal to their composition if the latter is defined
and 0 in otherwise, i.e. o7 = o o7 if s(0) =t(7) and o7 =0 if s(o) # ¢(7). The unit element
islpg = ExeGo id;. The algebra RG is a cocommutative quantum groupoid, with coproduct

dra, counit epe and antipode A given by the formulas:

Sra(0) =0 ®o0, eraloc) =1, Arglo) =0 "
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For the quantum groupoid RG the morphisms target and source are respectively,

HéG(J) = Zdt(a)) HEG(J) = Z.ds(a)

and Arg o Ara = idRrq, i.e. the antipode is involutive.
If Gy is finite, then RG is free of a finite rank as a R-module, hence GR = (RG)* =

Homp(RG, R) is a commutative quantum groupoid with involutory antipode. As R-module

GR = P Rf,
oeGy
with (fy,7) = ds,r. The algebra structure is given by the formulas f, f; = 05+ f, and 1lgr =
ZUEGl fo. The coalgebra structure is

Sar(fo) =D 1@ fo= D fop1 @ fp ear(fo) = baid,,)-

Tp=0 peGr

The antipode is given by A\gr(fs) = f,-1.

(ii) It is known that any group action on a set gives rise to a groupoid (see [24]). In [20]
Nikshych and Vainerman extend this construction associating a quantum groupoid with any
action of a Hopf algebra on a separable algebra.

(iii) It was shown in [19] that any inclusion of type II; factors with finite index and depth
give rise to a quantum groupoid describing the symmetry of this inclusion. In [20] can be
found an example of this construction applied to the case of Temperley-Lieb algebras (see
[13]).

(iv) In [22] Nill proved that Hayashi’s face algebras [14] are examples of quantum groupoids
whose counital subalgebras, i.e., the images of HILLI and Hg, are commutative. Also, in [22]
we can find that Yamanouchi’s generalized Kac algebras (see [25]) are exactly C*-quantum

groupoids with involutive antipode.

1.5. Let H be a quantum groupoid. We say that (M, pys) is a left H-module if M is an
object in C and ¢y : H ® M — M is a morphism in C satisfying ¢p o (ng @ M) = idyy,
emo(HRpp) = epo(pg@M). Given two left H-modules (M, pp) and (N, on), f: M — N
is a morphism of left H-modules if o o (H ® f) = f o ppr. We denote the category of right
H-modules by gC. In an analogous way we define the category of right H-modules and we
denote it by Cp.

If (M,pn) and (N, oy ) are left H-modules we denote by ¢prgn the morphism ppgn :
HRM®N — M ® N defined by

omenN = (o @ on) o (H® ey @ N)o (0g ® M ® N).

We say that (M, opr) is a left H-comodule if M is an object in C and opy : M — H®@ M
is a morphism in C satisfying (e ® M) o opr = idps, (H ® opr) 0 o = (g @ M) 0 gpy. Given
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two left H-comodules (M, ops) and (N, on), f: M — N is a morphism of left H-comodules
if oy o f = (H ® f)o oar. We denote the category of left H-comodules by “C. Analogously,
CH denotes the category of right H-comodules.

For two left H-comodules (M, gopr) and (IV, on ), we denote by gpren the morphism opren :
M®N — H® M ® N defined by

omenN = (pr @M @ N) o (H ®cypg @ N)o(on @ on).
Let (M, ¢nr), (N, on) be left H-modules. Then the morphism
Vmen =pueno (Mg @M @N): M@ N — M e N

is idempotent. In this setting we denote by M x N the image of Vygn and by parn :
M®N — MxN,iyn:MxN— M®N the morphisms such that iy, v o pyny = Vien
and pyr,n oty N = idyxN. Using the definition of X we obtain that the object M x N is a
left H-module with action parxn = pu,n © puen o (H Qiyn) : H® (M x N) — M x N
(see [20]). Note that, if f: M — M’" and g : N — N’ are morphisms of left H-modules then

(f®9)oVuegn = Vmgn o (f®@g).
In a similar way, if (M, ops) and (IV, o) are left H-comodules the morphism

Viven =(Eag @M @N)ooygm: M@N — M e N

is idempotent. We denote by M © N the image of V', v and by p, v : M @ N — M O N,
iy N MON — M@ N the morphisms such that iy, y o plyy vy = Vign and piy, y o i)y, y =
idpronN- Using the definition of ©® we obtain that the object M ® N is a left H-comodule with
coaction omen = (H @ plyy y)oomen iy y : MON - H® (Mo N). If f: M — M’ and
g: N — N’ are morphisms of left H-comodules then (f ® g) o Vi,on = Vipgn o (f @ g).

Let (M, onr), (N,on), (P,op) be left H-modules. Then the following equalities hold
(Lemma 1.7 of [3]):

emen © (H® Vurgn) = oMenN,
VMeN © 9MeN = $MaN = $MaN © VMeN;
(im,n @ P)oVurxngp © (puny @ P) = (M ®in,p) o Viygvxp) © (M @ pn,p),
(M®in,p)oVmgnxp)o(M&pN,p) = (VMen®P)o(MRVNgr) = (M&VNep)o(VMeN&P).

Furthermore, by a similar calculus, if (M, opr), (N, on), (P, op) be left H-comodules we

have

(H @ Vign) © OMa&N = OMeN

! /
OM®N © VM@]\/ = OM®N = vM@N ©C OM®N,
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(i Ny ®P)o V/(MQN)®P o (Pun®P)=(M®iyp)o V/M®(N®P) o (M ®plyp),
(M®i/1V,P)°V/z\4®(N@P)O(M®P/N,P) = (Viuon®@P)o(M@Viyep) = (M&Vivgp)o(Viign®P).

Yetter-Drinfeld modules over finite dimensional weak Hopf algebras over fields have been
introduced by Bohm in [9]. It is shown in [9] that the category of finite dimensional Yetter-
Drinfeld modules is monoidal and in [18] it is proved that this category is isomorphic to the
category of finite dimensional modules over the Drinfeld double. In [12], the results of [18] are
generalized, using duality results between entwining structures and smash product structures,

and more properties are given.

Definition 1.6. Let H be a weak Hopf algebra. We shall denote by gyD the category of
left-left Yetter-Drinfeld modules over H. That is, M = (M, pur, oar) is an object in gyD if
(M, ppr) is a left H-module, (M, opr) is a left H-comodule and

(bl) (g @ M)o(H®cyu)o ((omopm)®@H)o(H ®cp)o (0 @ M)
= (ug @pm)o (H®@cuug @ M)o (dg ® om).
(b2) (@ om)o(H @cagu@M)o((0gony)®om) = om-

Let M, N in gyp. The morphism f : M — N is a morphism of left-left Yetter-Drinfeld
modules if foyy =pnyo(H® f)and (H® f)oom =ono f.

Note that if (M, onr, opr) is a left-left Yetter-Drinfeld module then (b2) is equivalent to
(b3)  ((eaopn)®@em)o(HQcaum®@M)o (6p ® om) = pum-

and we have the identity s o (Hf{ ® M) o oy = idyy.

The conditions (bl) and (b2) of the last definition can also be restated (see Proposition
2.2 of [12]) in the following way: suppose that (M, @y) € | gC| and (M, opr) € | C|, then
M is a left-left Yetter-Drinfeld module if and only if

omopn = (g @ M) o (H ® cpyi)o

(((,UH ® @) o (H@CH,H ®M) o(0g ® QM)) ®)\H) o (H@CH,M) o (5H ® M).

Moreover, the following Proposition, proved in [4], guaranties the equality between the
morphisms V gy and Vo defined in 1.5 for all M,N € | HYD|.

Proposition 1.7. Let H be a weak Hopf algebra. Let (M, o, onr) and (N, N, on) be left-left

Yetter-Drinfeld modules over H. Then we have the following assertions.

(i) Varon = ((par o (T ® M) o earr) ® N) o (M ® o).
(i1) Vian = (M @ on) o (M @TI) o ciaro oar) ® N).
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(iii) Varon = Vien-

(iv) Viron = (par o (T @ M) o ey i) @ H) o (M @ 6gr).
(v) Vier = (M @ pm)o (M ®TIp) 0 crrar 0 onr) ® H).
(UZ) vZ\4®H = v/]W®H

1.8. It is a well know fact that, if the antipode of a weak Hopf algebra H is invertible, gyD
is a non-strict braided monoidal category. In the following lines we give a brief resume of the
braided monoidal structure that we can construct in the category g:))D (see Proposition 2.7

of [18] for modules over a field K or Theorem 2.6 of [12] for modules over a commutative

ring).

For two left-left Yetter-Drinfeld modules (M, var, oar), (N, N, on) the tensor product is
defined as object as the image of V gy (see 1.5). As a consequence, by (iii) of Proposition
1.7, M x N = M ® N and this object is a left-left Yetter-Drinfeld module with the following

action and coaction:

©MxN =DPM,N ©PumeN © (H®ivN), omxn = (H @pu,N) o omeN ©imN-

The base object is Hy, = I m(HILLI) or, equivalently, the equalizer of dy and C}{ = (H®
L) o 5 (see (9)) or the equalizer of i and (%4 = (H ® ﬁg) o dp. The structure of left-left
Yetter-Drinfeld module for Hy, is the one derived of the following morphisms

o, =propmo(H®ir), ou, =(HQpr)odgoir.

where p;, : H — Hjy and iy, : H, — H are the morphism such that H% = iz, o pr, and
PL © iL = idHL .
The unit constrains are:

lM:(PMO(Z‘L@)M)OiHL,M:HLXM—>M7
=L . .
rav=¢@mocpmo(M® (Ilgoir))oinm, : M x Hy — M.
These morphisms are isomorphisms with inverses:
m = pa,a 0 (pL © o) o (O omur) @ M) : M — Hp, x M,

T‘]T/[l =pma, © (e @pr)o (H®@cam)o (dgonu) @ M): M — M x Hy,.

If M, N, P are objects in the category gyD, the associativity constrains are defined by
aMN,P =PMxN),p° (PuN @ P)o (M @inp)oinnxp): M X (N x P)— (MxN)xP
where the inverse is the morphism
CLJT;’N’P = apm,N,p = Pu,(NxP)(M®pN,p)o(ing N @P)oinrxny,p i (MXN)XP — Mx(NxP).
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If y: M — M and ¢ : N — N’ are morphisms in the category, then
YX¢=puxno(y®¢)oiyn:MxN—M xN

is a morphism in #YD and (7' x ¢') o (v x ¢) = (v 07) x (¢' 0 ¢), where v/ : M' — M" and
¢' : N’ — N are morphisms in ZYD.

Finally, the braiding is
TMN =DPNMOtmuN oty N : M XN — NxM

where ty v = (pyn @ M) o (H® cyn)o (o @ N): M ® N — N ® M. The morphism 7/ n

is a natural isomorphism with inverse:
Ty =M oty yoina i Nx M — M x N

where t); :CN7MO(@N@M)O(CN7H®M)O(N®/\I_{1®M) o (N ® onm)-

2 Projections, quantum groupoids and crossed products

In this section we give basic properties of quantum groupoids with projection. The material
presented here can be found in [1] and [2]. For example, in Theorem 2.2 we will show that if
H, B are quantum groupoids in C and g : B — H is a quantum groupoid morphism such that
there exist a coalgebra morphism f : H — B verifiying g o f = idy and f o ng = np then,
it is possible to find an object By, defined by an equalizer diagram an called the algebra of
coinvariants, morphisms ¢p,, : H ® Bg — Bg, 0B, : H ® H — By and an isomorphism of
algebras and comodules by : B — By X H being By x H a subobject of By ® H with its
algebra structure twisted by the morphism op,,. Of course, the multiplication in By x H is
a generalization of the crossed product and in the Hopf algebra case the Theorem 2.2 is the
classical and well know result obtained by Blattner, Cohen and Montgomery in [6].

The following Proposition is a generalization to the quantum groupoid setting of classic
result obtained by Radford in [23].

Proposition 2.1. Let H, B be quantum groupoids in C. Let g : B — H be a morphism of
quantum groupoids and f : H — B be a morphism of coalgebras such that go f = idgy. Then

the following morphism is an idempotent in C:
g8 =ppo(B®(\gofog))odp: B — B.

Proof. See Proposition 2.1 of [2].
As a consequence of this proposition, we obtain that there exist an epimorphism pg, a

monomorphism ig and an object By such that the diagram

ai
B B
By



commutes and p5 o2 = idp, . Moreover, we have that
iB (B®g)odp
Bu B B® H
(B @ (I 0 g)) o dp

is an equalizer diagram.

Now, let ng, and pup, be the factorizations, through the equalizer ig, of the morphisms
np and pupg o (sz ® zg) Then (B, np, = pg ONB, UBy = pg oupo (zg ® zg)) is an algebra
in C.

On the other hand, by Proposition 2.4 of [2] we have that there exists an unique morphism
¢By : H ® By — By such that ig o 9B, = yB wWhere yg : H ® By — B is the morphism
defined by yg = pupo (B® (upocpp)) o (f® (Apo f)® B) o (6y ®i8). The morphism ¢p,,
satisfies:

By =i oo (f ®if),
By © (nu ® By) = idp,,,
0By © (H@npy) = @py o (T @ npy,),
By © (¢By ® Br)o (H ®np, @ By) = @B, © (H% ® Bpg),
¢By © (H® ppy) = 1By © (¢By ® ¥By) © (H ® ¢,y ® Bi) o (0y ® B @ By),
1By © ¢By.By © (9, 0 (H ®1p,)) @ By) = ¢, o ([ © By).

and, if f is an algebra morphism, (Bg, ¢p,, ) is a left H-module (Proposition 2.5 of [1]).
Moreover, in this setting, there exists an unique morphism op,, : H ® H — By such that

ig oop, = op where op : H® H — B is the morphism defined by:

op=ppo((upo(f®f))®@(Apofoun)) odusn-

Then, as a consequence, we have the equality op,, = pg oop (Proposition 2.6, [2]).

Now let wp : By ® H — B be the morphism defined by wp = pup o (i8 ® f). If we define
wh B — By ® H by wy = (b8 @ g) 0 65 we have wp o wly = idg. Then, the morphism
Qp =whowp: By ®H — By ® H is idempotent and there exists a diagram

BH x H
where sgorp =Qp, rposp =1idp,xH, bp = rpowy.
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It is easy to prove that the morphism bp is an isomorphism with inverse bgl = wposp.
Therefore, the object By x H is an algebra with unit and product defined by g, xg = bpons,
UByxH = bpopupo (b];1 ® b]_31) respectively. Also, By x H is a right H-comodule where
pByxH = (bp®H)o(B®g)odpo bg,l. Of course, with these structures bp is an isomorphism
of algebras and right H-comodules being pp = (B ® g) 0 0p.

On the other hand, we can define the following morphisms:
nBHﬁoBHH K — BHXH, ’uBHﬁUBHH :BgpxH®BpgxH — BHXH, pBHﬁUBHH :Byg — BgxH®H

where

NButey, H = T80 (NBy @ 1N1),
HBute, H =780 (kB ® H) o (upy ® 05y @ par) o (B © ppy ® dngn)o
(Bnr ®H ®cppy ® H)o(By ®6ég ® By ® H) o (sp ® sp),
PBitey, 1= (15 @ H) o (B @ 611) 0 5.
Finally, if we denote by Bufs, H (the crossed product of By and H) the triple

(Br % H,NByt,, H:HBato, H)
we have the following theorem.

Theorem 2.2. Let H, B be quantum groupoids in C. Let g : B — H be a morphism of

quantum groupoids and f : H — B be a morphism of coalgebras such that g o f = idyg and

fong =np. Then, BHﬁUBHH is an algebra, (By x H, PBrtoy 1) is a right H-comodule and
H

bp: B — BHﬁUBHH is an isomorphism of algebras and right H-comodules.

Proof: The proof of this Theorem is a consequence of the following identities (see Theorem
2.8 of [2] for the complete details)

nBHﬁ"BHH = nBHXHa ’uBHﬁUBHH = ,uBHXHy pBHﬁUBHH = pBHXH'

Remark 2.3. We point out that if H and B are Hopf algebras, Theorem 2.2 is the result
obtained by Blattner, Cohen and Montgomery in [6]. Moreover, if f is an algebra morphism,

we have op, = ey ® ey ® 7B, and then BHjjoBHH is the smash product of By and H,
denoted by BrtiH. Observe that the product of BgffH is

pBysa = (B ® p) o (Bu @ ((vpy @ H) o (H @ ¢y py) © (05 @ Bi)) ® H)

Let H, B be quantum groupoids in C. Let g : B — H, f : H — B be morphisms of
quantum groupoids such that g o f = idy. In this case o = Hf o fopug and then, using
B o (Hé ® B)odp = idp, we obtain

HButey, H = TBO 1By @pm)o(Br @ (ppy @ H)o(H@cnpy)o(0n ®Bu))@ H)o(sp@sp)
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As a consequence, for analogy with the Hopf algebra case, when o = Hf ofopug, we
will denote the triple BHﬁJBHH by BpfH (the smash product of By and H).

Therefore, if f and g are morphisms of quantum groupoids, we have the following partic-

ular case of 2.2.

Corollary 2.4. Let H, B be quantum groupoids in C. Let g : B — H, f : H — B be
morphisms of quantum groupoids such that g o f = idy. Then ByfH is an algebra, (By X
H,pp,tr) is a right H-comodule and bp : B — BytH is an isomorphism of algebras and
right H -comodules.

In a similar way we can obtain a dual theory. The arguments are similar to the ones
used previously in this section, but passing to the opposite category. Let H, B be quantum
groupoids in C. Let h : H — B be a morphism of quantum groupoids and ¢t : B — H be a
morphism of algebras such that t o h = idy and ey ot = eg. The morphism k:g :B— B
defined by

kB =ppo(B® (hotolp))odp

is idempotent in C and, as a consequence, we obtain that there exist an epimorphism [Z, a

monomorphism ng and an object B such that the diagram

ki
B B
ZE\A /:1g
BH

commutes and lfl o ng = idgn. Moreover, using the next coequalizer diagram in C
ppo (B®h) 1B
B®H B L

o (B (hollh))

it is possible to obtain a coalgebra structure for B¥. This structure is given by

BH

(B epn = epong,pn = (If @ 1i7) 0 dp o ngj)).
Let y® : B — H ® BY be the morphism defined by:
y? = (ur @) o (t® (toAp) ® B) o (B® (cp,p 0dp)) 0 dp.

The morphism y? verifies that y® o g o (B® h) = y® o up o (B ® (115 o h)) and then,

there exists an unique morphism 7z : BY — H ® B such that rgu o 18 = yP.

Moreover the morphism ppr satisfies:

opH = (t®l§)0530n§,
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(e ® B") o opn =idpn,
(H®epn)oopn = (Ilf © epn) o opa,
(H®egn @ B) o (opn @ B) 0 b, = (I ® BY) 0 opu
(H®bpn)oopn = (g © BT @ BY) o (H @ cpn g @ BY) o (0pn © opn) 0 S,
((H ®epn) o opn) @ BY) o cpn pr o dpn = (ﬁILLI ® B™) o gpn,

and, if ¢ is a morphism of quantum groupoids, (B, ogu) is a left H-comodule. Let v5 : B —
H ® H be the morphism defined by

Y8 = pHeH © (t®t)odp)® (g otoAp))odp.

The morphism g verifies that yg o pg o (B® h) = yg 0 up o (B ® (115 o h)) and then,
there exists an unique morphism ygr : B — H ® H such that ygu o lfl =pB.
It is not difficult to see that the morphism Yp: BY ® H — B ® H defined by

TB :w/BO'WB,

being wp = pup o (n @ h) and @l = (I8 @t) 0 dp, is idempotent and there exists a diagram

BEOH

where vgoup = Vg, ugp ovp = idgumy, dg = up © wjg. Moreover, dg is an isomorphism
with inverse dg,l = wpowvp and the object BY 0 H is a coalgebra with counit and coproduct
defined by

EBHE’H:EBOdél, 5BHDH:(dB®dB)O(5BOd§1

respectively.
Also, B" [0 H is a right H-module where

Yy = dp o pp o (dg' ® h).

With these structures dp is an isomorphism of coalgebras and right H-modules being

Yp = pup o (B ® h). Finally, we define the morphisms:
epre,  n:BTOH = K, dgng, p:B"OH - BYOHeB"HH,
B B
. pH H
Vpno, niBTEHEH - BTOH

where
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EBHO, ,H = (epn ®en) ovg,
5BH@WBHH: (’LLB®’LLB)O(BH®MH®BH®H)O(BH®H®CBH’H®H)O
(B @ opn @ prom) o (0gn @ ygr @ 6g) o (gr @ H) o vp,
wBHG«,BHH =ugo (B @ py) o (v @ H).
If we denote by B O~y H (the crossed coproduct of BH and H) the triple

H
(B L H, EBH@’YBH H> 6BH®’YBH H)?
we have the following theorem:

Theorem 2.5. Let H, B be quantum groupoids in C. Let h : H — B be a morphism of

quantum groupoids and t : B — H be a morphism of algebras such that t o h = idy and

egot =ep. Then, BY Or,u H is a coalgebra, (B O H, Vpro, HH) is a right H-module
B

and dg : B — BH Oyyu H 1s an isomorphism of coalgebras and right H-modules.

Remark 2.6. In the Hopf algebra case (H and B Hopf algebras) Theorem 2.5 is the dual
of the result obtained by Blattner, Cohen and Montgomery. In this case, if ¢ is an algebra-
coalgebra morphism, we have ygu = egr ® ng ® ng and then BY Oy,n H is the smash
coproduct of B¥ and H, denoted by B¥ © H. In B¥ © H the coproduct is

Spron = (B" @ ((ng ® BM) o (H @ cgn i) o (0pn ® H)) © H) o (0pn ® 0pr).
If ¢ is a morphism of quantum groupoids we have yg = 0 onf ot and then the expression
Of 5BH@73HH is:

Opre, ,m=(up@up)o(BY&((un@B")o(Hecpn )o(opn ©H))®H)o (6pn ®dn)ovp.

As a consequence, for analogy with the Hopf algebra case, when vp = g o Hf ot, we will
denote the triple BY Oy H by B © H (the smash coproduct of B and H).

Therefore, if h and ¢ are morphisms of quantum groupoids, we have:

Corollary 2.7. Let H, B be quantum groupoids in C. Lett : B — H, h : H — B be
morphisms of quantum groupoids such that t o h = idy. Then, BY © H is a coalgebra,
(BHOH, Yproy) is a right H-module and dp : B — BHY o H is an isomorphism of coalgebras
and right H-modules.
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3 Quantum groupoids, projections and Hopf algebras in Z)D

In this section we give the connection between projection of quantum groupoids an Hopf
algebras in the category YD. The results presented here can be found in [3].
Suppose that g : B — H and f: H — B are morphisms of weak Hopf algebras such that
go f=1idyg. Then qff = k:g and therefore By = BH, pg = lff and ig = ng. Thus
B (B®@g)odp

1
By H, p B® H
(B® (Il 0 g)) 0 bp

is an equalizer diagram and

ppo (B f) H
B H B

pp o (B® (follf))

is a coequalizer diagram.

Then (By,nB, = pf o 0B, B, = ph o pp o (i ® i5)) is an algebra in C, (By,ep,, =

epoib, op, = (P8 @ pB)odpoill)) is a coalgebra in C, (Bp, g, ) is a left H-module and

(Bu,0By) is a left H-comodule.
Also, wp = wp, wp = @y and then By x H = BT [0 H. Moreover, the morphism
g = wiz owp admits a new formulation. Note that by the usual arguments in the quantum

groupoid calculus, we have

Qp = (pf; @ pr) o (up® H@ g) o (B®cup® B)o((B®g)odpoil)® (dpof))
= (PP oum)o(up@HOH)o(Bocy g H)o(((Bo (T 1yog))odzoid)@((f@H)odx)))
= (P ®en @ H) o (upen ® H) o (B®g) o dp oify) ® ((f ®du) 0 0n)))
= (pf ® (eg o g) ® H) o (upep ® H) o (05 ® 65 ® H) o (i @ ((f ® H) 0 0p))
= ((pf o np) @ H) o (if; ® ((f ® H) 0 6py))
= ((pfonpo(B@ag)) @ H)o (ify ® ((f ® H) 0 dp))
= (pg @ H)o ((upo (B® (Lo f))® H)o (if ® dp)
= (pf @ H) o ((upocppo (o f)®if) ® H)o(cp,,n ® H)o (By @ dn)
= (0 0 if; 0 ¢, © (M © Bir)) ® H) o (et @ H) © (B © 3ir)

— (ppy @ H) o (cpyn © H) o (By @ Ty © H) o (Byr ® 857)
= (¢By @ pu) o (H @ chpy @ H) o (6 ©nw) ® By @ H).

- VBH®H.
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Therefore, the object By x H is the tensor product of By and H in the representation
category of H, i.e. the category of left H-modules, studied in [8] and [21].

Proposition 3.1. Let g: B — H and f : H — B be morphisms of quantum groupoids such
that g o f =idy. Then, if the antipode of H is an isomorphism, (Bm,¢By,0By) belongs to
HyD
gyD.

Proof: In Proposition 2.8 of [1] we prove that (By, ¢By, 0B, ) satisfy
(kH ® Bu) o (H® cpy,m) o ((0By ©¢By) ® H) o (H ® cupy) © (6n © Bh)
= (g @ By)o(H®cpy ) o (un @¢p, @ H)o(H® ey ©Br® H)o (6 ® 0p, ®11f)o

(H ® cu,y)© (0 ® Bg).

Moreover, the following identity
(wi ® B)o (H® cpym) o (n @ ¢y @ H) o (H @ ey ® By ® H) o (6 ® op, @ II17)o
(H®cu,By)©° (0g ® By)
=L =R
= (1a ® vBy) o (H @ e ® (¢By © (g o ly) ® Bu) o 0By )) © (6u ® 0By)-
is true because By is a left H-module and a left H-comodule. Then, using the identity
=L =R .
¢y © (Lg olly) ® By) o opy, = idpy,

we prove (bl). The prove for (b2) is easy and we leave the details to the reader.

3.2. As a consequence of the previous proposition we obtain Vp,ep, = ,BH®BH and

_ / _
Vet = Vi, on = 05

3.3. Let g: B— H and f : H — B be morphisms of quantum groupoids such that gof = idy.
Put ug, = pgofoiL : Hy, — By and ep,, = pr, ogoig : By — Hp. This morphisms belong
to gyD and we have the same for mp, «B, : By X By — By defined by

MByxBy = MBy © By, By
and Ap, : By — By x By defined by Ap,, = pB, By © 0By -
Then, we have the following result.

Proposition 3.4. Let g: B — H and f : H — B be morphisms of quantum groupoids such
that g o f =idg. Then, if the antipode of H is an isomorphism, we have the following:

(i) (Bu,up,,mpy) is an algebra in LYD.

(i) (Bu,epy,Apy) is a coalgebra in HYD.
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Proof: See Proposition 2.6 in [3].

3.5. Let g : B — H and f : H — B be morphisms of weak Hopf algebras such that gof = idy.
Let ©F be the morphism ©F = ((fog) AAp)oiB : By — B. Following Proposition 2.9 of [1]
we have that (B® g)odp o008 = (B® (Il 0g)) 065008 and, as a consequence, there exists
an unique morphism Ap,, : By — By such that ig oABy = @fl. Therefore, A\p,, = pg o @fl
and Ap, belongs to the category of left-left Yetter-Drinfeld modules.

The remainder of this section will be devoted to the proof of the main Theorem of this

paper.

Theorem 3.6. Let g : B — H and f : H — B be morphisms of weak Hopf algebras
satisfying the equality g o f = idyg and suppose that the antipode of H is an isomorphism.
Let up,, mBy, By, ABy, AB, be the morphisms defined in 3.3 and 3.5 respectively. Then
(BH,UBy ,MBys€By, ABy, ABy ) 15 a Hopf algebra in the category of left-left Yetter-Drinfeld
modules.

Proof: By Proposition 3.4 we know that (By, up,, , mp,, ) is an algebra and (By, e, , Ay, )
is a coalgebra in gyp.

First we prove that mp,, is a coalgebra morphism. That is:

(c1) Ap, omp, = (mpy, X mpy) © aBy,By,ByxBy © (BH X GEL,BH,BH)O
—1
(Bu X (TBy,By % Bu))o(Bu XaBHyBHvBH)OaB}LB}LBHxBHO(ABH xApy),
(c2) epy ompy =lu, o (epy X epy).

Indeed:

(mB,, X MBy) © By By.BuxBy © (Bu X agithBH) o (Bu X (TBy,By % BH))o
(B X Ay By.By) © aéi[yBHvBHXBH o (Ap, x Ap,,)

= PBy,By © (By @ By) © (Br ®iBy By ® Br) o (VB,e(BuyxBy) @ BH)o
(BE®V (ByxBy)2By ) (BH®(PBy By 0By By 1By By ) O BH)(BEOV (B, By 2By
(VByaBuxBy) © Br) o (Bu ® ppy By @ Bu) o (0B, ®0By) 0By By

= PBy.By © (1LBy @ 1By) © (Ba @ (VByeBy ©tBy.By © VByeBy) ©® Ba) o (0, @ 0B, )0
By, Br

= PBy.By © (1By @ By ) © (Ba @tpy,By ® Br) o 0By ® 0By ) 0 iBy, By

= PBy,By °© 5BH © By © 1By, By
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= Ap, omp,.

In the last computations, the first and the second equalities follow from Lemma 1.7 of
[3] and by pup, © VByeBy = HBys» VByeBy © 0By = 0By. In the third one we use the
following result: if M is a left-left Yetter-Drinfeld module then ¢y a7 © Viign = tuw,
Vmem oty = tarm. The fourth equality follows from Proposition 2.9 of [1] and, finally,
the fifth one follows by definition.

On the other hand,

lu, o (eBy X eBy)
=propno(ip®ir)oVi,em, ©(pL®@pr)o ((goif) ® (goif))oiny, By
=propumo (I ogoif)® (I ogoif)) oin,, ny
=propumo((goap oif) ®(goqpoif)) ©in, By
=propmo((goif)® (90if)) iy, by
=pr ogoig o By OiBH,BH

= eBy O MBy-

The first equality follows from definition, the second one from
propmo(ir®ir)oVu,en, o (pL®pr) =pr o pg o (I @ If)

and the third one from Hﬁ og=go qg. Finally, the fourth one follows from the idempotent
character of qg, the fifth one from the properties of g and the definition of up, and the sixth
one from definition.

To finish the proof we only need to show

mpy, © (ABy X Br)oAp, =lp, o (e, X upy) or;{ =mp, o (By X Ap,) o Ap,.
We begin by proving g, o (e, X up,)© rgil = upy, ©epy. Indeed:
Ipy o (eBy X uBy)oTh,
= pRoupo(f®B)o(iL®if)oVH,oB, o (PLOPH) (9 f)o(if;®iL)oV ByeH, o (PERPL)O
(upo (f®@if) @ H) o (H ® cupy) o (0m 00 ) ® Br)
=ppoppo (g ATl @TI5) o (fogoay) ® (up o (M5 ® (fogolly)))) o (dp ® B)o
B

(5BOiH

=ppoppo((llofogoqy) ® (follfogolly))odpoiy
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=ppofopno (i @Ilg)odyogoiy
:pgofol_[f{ogoig
=Up, O €By-

The first equality follows from definition, the second one from

(o (f@if)®@H)o(H ®cupy) o ((0g onu) ® By) = (B® (gollp))odpoif,

(i ®iL) o VByeu, o (ph ©p1) = (g ® (L ogoup)) o (BRIE® f)o (65 ® H)

and
(ir @ i) o Vieny © (00 @ pf) = (T 0 g) ® (¢ 0 pp)) o (BT @ B) o ((0p 0 f) © B).

In the third one we use Hé A Hé = Hé. The fourth one follows from H% og=go qfl and from
the idempotent character of Hﬁ. Finally, in the fifth one we apply (75) for Hff A Hff = Hﬁ.
On the other hand,

mpy © (ABy X Bg)o Ap,
= By © VByoBy © (ABy @ Br) oV,eBy © 0By
= 1By © (ABy © Br) 0 0py,
= ((eBy © tBy) @ Br) o (By @ tpy.By) © (0B, ©1NBy) @ BH)
= ((epoqhopp)@ph)o((upo(qgh @ (fog))odp)@cpn)o((Bpoqhons) ®il)
=pP ol oil
=pBofollhogoill
= UB, C€By-

In these computations, the first equality follows from definition, the second one from
UBy © VByeBy = By and Vp,eB, © 0B, = 0By, the third one from (4-1) of Proposition
2.9 of [1] and the fourth one is a consequence of the coassociativity of dp. The fifth equality
follows from pp o (qfl ®(fog))odp =idp and qg ong =N, ERO qg = ¢p. In the sixth one
we use f o H% og= Hé and the last one follows from definition.

Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:
mpy © (B X Ay, ) o A,
= By © VByoBy © (BH @ ABy) © VByeBy © 0By
= upy © (A, @ Bi)odp,
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= (Bu ® (eBy © wBy)) © (tBy,By @ Br) © (Bu ® (0B, ©nBy))
=phoupo((fog) @) obpoil
=piioupo((fog) @ (follfog)odpoif

=pho fo(idy NIIE)ogoil

=pPofogoil

=pPofollhogoill

= UB, ©€Ry-

Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version
of Radford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the
category of Yetter-Drinfeld modules over H.

Theorem 3.7. Let H, B be weak Hopf algebras in C. Let g : B — H and f: H — B be
morphisms of weak Hopf algebras such that go f = idy and suppose that the antipode of H is
an isomorphism. Then there exists a Hopf algebra By living in the braided monoidal category
gyD such that B is isomorphic to By x H as weak Hopf algebras, being the (co)algebra
structure in By x H the smash (co)product, that is the (co)product defined in 2.3, 2.6. The
expression for the antipode of By x H is

AByxH = PBy.H° (pBy ® H)o
(H®@cuBy)o ((0moAmopn)®Apy)o (H ®cpy m)o

(QBH ® H) o /iBHvH’
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Shifted determinants over universal enveloping

algebra

Natasha Rozhkovskaya*

Abstract

We present a family of polynomials with coefficients in the universal enveloping algebra.
These polynomials are shifted analogues of a determinant of a certain non-commutative
matrix, labeled by irreducible representations of gl,,(C). We show plethysm relation with
Capelli polynomials and compute the polynomials explicitly for gl,(C).

Keywords: Casimir element, universal enveloping algebra, irreducible representation, deter-

minant, characteristic polynomial, Capelli polynomial, shifted symmetric functions.

1 Introduction

Let g = gl,,(C) with the standard basis {E;;}, let V), be an irreducible representation of g.
The matrix 2y, defined by
Q= Z Eij @ m\(Eji),
=1,y
naturally appears in many problems of representation theory. We will call it braided Casimir
element.

Consider the symmetric algebra S(g) of g. The algebra S(g) is commutative. So if we
think of Q) as an element of S(g) ® EndV), the determinant py(u) = det(Q2\ — u) is a well-
defined polynomial. The coefficients of Dy (u) are invariant under the ajoint action of g on
S(g). The determinant also serves as a characteristic polynomial for ) (namely, p)(2)) = 0).

Now let us consider 2 as a matrix with coefficients in the universal enveloping algebra
U(g). This is non-commutative algebra, and it can be viewed as a deformation of S(g).
Due to B. Kostant’s theorem [6], the matrix §2) (now as a matrix with coefficients in U(g)),
satisfies a characteristics equation with coefficients in the center of the universal enveloping
algebra. We also define in Section 2 a (shifted) analogue of determinant 2(A). Thus, we
have two deformations of the polynomial D) (u): a shifted determinant and a characteristic
polynomial. It is well-known, that in case of V) - vector representation of gl(n,C), both

deformations coincide: the shifted determinant is a characteristic polynomial of ). But

*Department of Mathematics, Harvard Univeristy. E-mail: rozhkovs@math.harvard.edu
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it turns out, that in general, these two deformations are different, which follows from the
results of Section 3. There we prove the centrality of shifted determinant and find the explicit
formula in the case of gly(C).

With every new nice example of central elements it is natural to ask, how it is related
to the known ones. One of the most well-studied families of central polynomials is the set
of Capelli polynomials. These polynomials are parametrized by dominant weights of gl,,(C).
Their theory is developed in the series of works [5], [8],[11],[12],[13], etc. Again, the shifted
determinant coincides with a Capelli polynomial only in the case of vector representations,
when A = (1). In Section 5 we prove that there is a plethysm-like relation between Capelli
polynomials and shifted determinants.

In Section 2 we define shifted determinant for a non-commutative matrix. In Section 3
we study the case of gly(C). In Section 4 we discuss relations with characteristic polynomials
and state two conjectures about centrality of shifted determinants in general. In Section 5 we

give a formula for relation with Capelli polynomials.

Acknowledgements. It is my pleasure to express my gratitude to A.Molev and A.Ram for
interesting and valuable discussions. I would like to thank also IHES and IHP for their
hospitality, and L. V. Zharkova for special support.

2 Definitions

Let g = gl,,(C) with the universal enveloping algebra U(g). Denote by Z(g) the center of
U(g). Fix the basis {E;;} of gl,,(C), which consists of standard unit matrices.

Let A = (A1,..., Ap) with A\; — A\jyq € Zy, for i = 1, ..., n — 1, be a dominant weight
of gl,,(C). Denote by 7y be the corresponding irreducible rational gl, (C)-representation, and
by V) the space of this representation. We assume that dim V), = m + 1. Then we define an
element Q) of U(g) ® End(V)), which we call braided Casimir element.

Definition.
M=E;® Y m(Ep).
,j=1,...,mn
We will think of Q) as a matrix of size (m + 1) x (m + 1) with coefficients in U(gl,,(C)).
Next we define a shifted determinant of €2,.
Let A be an element of A ® End (C™*!), where A is a non-commutative algebra. We

again think of A as a non-commutative matrix of size (m + 1) x (m + 1) with coefficients

Aij c A.
Definition. The (column)-determinant of A is the following element of A:

det(A) = Z (—1)UAU(1)1AU(2)2...Aa(m+1)(m+1). (1)

O'ESerl
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Here the sum is taken over all elements o of the symmetric group Sy,+1, and (—1)7 is the

sign of the permutation o.

Put Q) (u) = Q) + u®id. Define L as a diagonal matrix of the size (m + 1) x (m + 1) of
the form:
L = diag(m,m —1, ..., 0).

Definition. The shifted determinant of Q) (u) is the column-determinant det(€2y(u) — L).
We will use notation Dy (u) for this polynomial with coefficients in U(gl,,(C)):

Dy (u) = det(Qx(u) — L).

There is another way to define the same determinant. Let Ay, ..., Ag be a set of matrices
of size (m 4 1) x (m + 1) with coefficients in some associative (non-commutative) algebra A.
Let 4 be the multiplication in .A. Consider an element of A ® End(C™*1)

A (A @ @A) = (1) @ Asym,) (A1 @ - @ Ay),

where Asym, = éxaess(—l)"a. By Young’s construction, the antisymmetrizer can be
realized as an element of End ((C™+1)®9),

Lemma 2.1. Fors=m+1
A" AL @ ® Apg1) = a(A1, ..., A1) © Asymup 1, (2)
where a(Aq, ..., Ant1) € A,

a(A17 ce 7Am+1) = Z (_1)0[A1]0(1),1 e [Am-l-l]o(m—l—l),m—l—la
O'ESerl
and [Ag]; ; are matriz elements of Ay.

Proof. (cf[9].) Let {e;}, (i =1, ..., m+1), be abasis of V= C™*!. Observe that Asym (m+1)

is a one-dimensional projector to

1 ag
v = mE1)! Z (=1)7€r1) @ @ €x(m+1)-
UESm+1

We apply A" (A1 @ -+ @ Apy1) to €1 @ -+ @ epppr € VE™TL:

A"HA @ @ Apir)(e1 ® - @ epy)
3
= Z (A1) i1 (A1) iy, mr1 ASYM (1) (€, @ - @iy )- (3)

015000k

The vector Asym (41 (ei; ® -+ ®e;,,,,) # 0 only if all indices {i1, ..., ims1} are pairwise
distinct. In this case denote by o be a permutation defined by o(k) = ix. Then

Asym (1) (€ @ - @e,,,) = (=1)7 v,
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and (3) gives

A™HA @ @ A1) (€1 @ - @ emy1) = a(Ar, ooy Amg1)v
= (A, .y Amg) Asym (g (€1 @ - @ emr).

Corollary 2.2.

3 Case of gl,(C)

In this section we prove the centrality of polynomials D) (u) for g = gly(C) an write them
explicitly.
The center Z(gly(C)) of the universal enveloping algebra U(gly(C)) is generated by two
elements:
Ay = By + B, Ay = (En1 — 1)Ey — EraEo.

Let A = (A1 > A\2) be a dominant weight. Put m = A\j—X2, d = A;+A2. Then dimV) = m+1

and 2y is a "tridiagonal” matrix: all entries [2,];; of the matrix €2y are zeros, except

[Q)\]k,k = ()\1 —k+ 1)E11 + ()\2 +k— 1)E22, k= 1, oo, m A+ 1,
k1 =m+1—k)Ey, k=1,...,m,
U ]ks1,k = kB2, k=1,...,m.

Proposition 3.1. a) Polynomial Dy(u) is central.
b) Let = (u1 > p2) be another dominant weight of gl,,(C). The image of Dy(u) under
Harish - Chandra isomorphism x is the following function of p:

m

X(Da() = [T+ A1 = B)pa + g + kg — k). (4)
k=0

Proof. a) Let X = X(a,b,c) be a matrix of size (m + 1) x (m + 1) of the form

am by 0 0O 0 0
Cm Om—1 bm—l 0 0 0

0 0 0 ca ar by

0 0 0 0 ca a

where a;,b;, ¢, are elements of some (noncommutative) algebra. Define det X as in Section

2. Using the principle k-minors of X, the determinant of X can be computed by recursion
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formula. Denote by X} the matrix obtained from X by deleting the first (m — k + 1) rows
and the first (m — k 4 1) columns, and by I*) the determinant of X;. Then det X = ™+

and we have the following recursion:
Lemma 3.2. The determinants I'®) satisfy the recursion realtion

TR+ — g 1) — by, TR, (k=2,..,n—1) (5)
with initial conditions IM = ag, I® = ajag — c1by.
Lemma 3.3. If X(a,b,c) is a tri-diagonal matriz with coefficients {a;, bj, ¢} and X (a’, V', )
is another tri-diagonal matriz with coefficients {a;,b’, ¢} } with the property

!
a; = a;

1
79 Cjb]—C]b]

foralli=0,...,n j=1,...n, then det X (a,b,c) = det X (a’, b, ).
Proof. Follows from the recursion relation. O

We apply these observations to compute the determinant of the matrix X(a,b,c) =
O (u) — L.

The following obvious lemma allows to reduce the determinant of non-commutative matrix
(Q\(u) — L) to a determinant of a matrix with commutative coefficients.

Lemma 3.4. The subalgebra of U(gly(C)) generated by {Ev1, Eaa, (E12 E21)} is commutative.

Put h = E11 — E92, a = E19E5. Due to Lemma 3.3 the tridiagonal matrix X (a’,¥’, )
with coefficients
af,f:ak:)\1E11+)\2E22+u—m+(/<;—m)(h—1), k=0,...,m,
. =ka, ¢ =(m—k+1), kE=1,...,m,
has the same determinant as (Q)(u) — L). By Lemma 3.4, X(a',V/,c) has commutative

coefficients. Hence det (Q2)(u) — L) equals det (A1 E11 + Ao E9s +u —m+ A,,) where A,, is the

following matrix:

0 ma 0 0 0
1 —(h—=1) (m—-1)a 0 0
Ay =
0 0 0 (I—=m)(h—1) a
0 0 0 m —m(h —1)

with h and a as above.

Lemma 3.5.

. T (1) (m—2k) -
det A, kl;[g( 5 + (h—1) +4>.
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Proof. By Lemma 3.3 det A,,, = (h — 1)™*!det A, with

0 ms 0 0 0
I(s—=1) =1 (m—1)s ... 0 0
Al =
0 0 0 N S
0 0 0 . om(s—1) —m

and s is such that s(s — 1) = a/(h — 1)2. This reduces to

. 1i\/1+é;a/(h—1)2. (6)

The determinant of A/ is a variant of Sylvester determinant ([1], [4]). It equals

det Al = H((m —2k)s —m+ k).
k=0

With s as in (6) we have:

—m(h —1) L (m — 2k)

(h—1)((m—2k)s—m+k) = ((h—1)% + 4a)

2 2
and lemma follows. Note that both values of s give the same value of det A,,. O
We obtain from calculations above
i d m m — 2k 1
det (Q\(u)— L) = H <u + §(En + Eg) — -5+ %((E11 — B9y — 1)* + 4E)5E5) 2> )
k=0

(7)

N
[NIE

Observe that ((En — By —1)2 + 4E12E21) = ((Al —1)2 - 4A2) , and finally we get

). 5)

The quantity in (8) has coefficients in W -extension of Z(gl,(C)), where W is the translated

[NIES

D)\(u) = H <u+dTAl — %_ﬁ_(ﬂl—%k) ((Al —1)2—4A2)
k=0

Weyl group. But it is easy to see that after expanding the product, we get a polynomial in «
with coefficients in Z(gl,,(C). We proved the first part of the proposition.

b) The images of the generators of Z(gl,,(C)) under Harish-Chandra homomorphism y
are

X(A1) =+ p2,  X(A2) = pa(pz — 1)
This together with (8) implies (4). O
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4  Characteristic polynomial

Proposition 4.1. For any dominant weight A of gl,,(C) there exists a polynomial

m
Py(u) = Z zu®
k=0

with coefficients z, € Z(gl,,(C)), such that P\(—y) = 0.

This proposition follows from the similar statements for central elements of semisimple
Lie algebras, proved in [6],[2]. In [2] the Harish-Chandra-image of the polynomial Py(u) is
also obtained:

X(Pr(@)) = [T+ (0 00) + 520+ i 0) = 520+ A),

where p is the half-sum of positive roots, and the product is taken over all weights {\;} of V.

Corollary 4.2. In case of gly(C) the image of the polynomial Py(u) under Harish-Chandra
homomorphism is

m

X(Pa() = [ (w+ (1 = k) + (A2 + kg — k(m +1— k), (9)
k=0

where m = A1 — Ag.

Comparing (9) with (4), we can see that the polynomials Py(u) and D) (u) are different.

Recall that for a semi-simple Lie algebra g, the algebra U(g) is a deformation of the sym-
metric algebra S(g). Hence, the central polynomials Py(u) and Dy (u) are the deformations
of a polynomial py(u), which has coefficients in the ring of invariants I(g) of the adjoint
action of g on S(g). Since I(g) ~ C[h*]", where W is a Weyl group, and h* is a dual to
the Cartan subalgebra b, the polynomial py(u) can be represented as a polynomial of u with
coefficients in the ring C[h*]". We can extend these observations for the case of gl,(C). Let
{A1,.. ., Am+1} be the set of weights of V. Then we can write that

pa(u) = [T+ (M),
Ai

as a (symmetric) function of p € h*.

Let us summarize the facts about D)y (u) and Py (u):

a) Dy(u) and Py(u) are deformations of py(u), and the case of gl,(C) shows that in general
these are different deformations.

b) In case of vector representation A = (1), D(yy(u) = Py)(u) for any gl,(C). This is
proved, for example, in [7].

c) P\(u) is known to be a central polynomial for all A for any gl,(C).

d) The centrality of D) (u) is proved in two cases: for all A for gl,(C), and for A = (1) for

gl,,(C). However, we state the following two conjectures.
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Conjecture 4.3. For any dominant weight A there exists a basis of the vector space V) such
that the polynomial Dy(u) has coefficients in the center Z(gl,(C)).

Conjecture 4.4. The Harish-Chandra image of Dy(u) is given by polynomial

[T+ (u+p.00) =5,

where the product is taken over all weights {\;} of the representation Vy, and dimV\ = m+1.

5 Capelli elements

In this section we show that the shifted determinant can be viewed as some sort of plethysm
applied to Capelli elements.

Consider an element S of U(g) ® End V', defined by S = }_,; Ei; ® E;;. Using the abbre-
viated notation S = S(1) ® S(2), put

S =S(1) ®1°07Y g §(2) @ 19(m=)

(viewed as an element of U(g) ® End(C™)®™).
Let {c1, ..., car} be the set of contents of the standard Young tableau of shape A, and

let F be a Young symmetrizer that corresponds to the diagram A:
Fy: (CMH®M oy, Vi C (CM)®M,
Following [11], define an element Sy (u) of U(gl,(C)) ® EndV) by
Sxy(u) = ((S12—u—-c1) ... (S1pm+1—u—cp)) (id® F)). (10)

Then
ex(u) = tr (Sx(u))

is the Capelli polynomial, associated to A. It has coefficients in Z(gl,(C)). The theory of

Capelli elements is developed in the papers, mentioned in the Introduction.

Now let my be a vector representation, let Sy (u) = (mo ® id)Sy(u), and let Asymy be the

antisymmetrizer, defined as in Section 2.
Proposition 5.1. For A\- M, dimVy = (m+ 1),

Dy (u) = f(u)tr (g)\(m )18y (m =1 — Wiz ... Sr(—w) ma2 - ASymmi ) . 1)
where

_-7n M (u__s)
f(u)_HHu—s—ck'

s=0k=1
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Remark. The formula (11) tells that in order to obtain a shifted determinant for dominant
weight A, one has to do the following;:

1) Take (m + 1) copies of elements Sy (u).

2) Shift the variable u in each copy by (m — s), s =0,...,m.

3) Apply antisymmetrizer of order m + 1 to these shifted (m + 1) copies.

4) Multiply by certain rational function and take the trace.

The result is a shifted analogue of plethysm of two Schur functors: Fy and F(ym+1y (com-
pare with the definition of Sy (10)).

Proof. Let (m, Vyp = C™) be the vector representation of gl,,(C). Using the Young symmetrizer
F), we construct the element (1 ® F)) of End (V{"), which is a projector from VO®M to VoV,.
We use Proposition 2.12 from [10]:

Proposition 5.2. Let P =) E;; @ Ej; be a permutation matriz on C*@C". Let Py denote
the action of this operator on the kth and lth components of the tensor product (C™)®M . Then

M M
Pk (4 J N
k];[l (1 - m) (1® F\) = (1 kZ:l - ) (1 ® Fy), (12)

where Fy is the Young symmertrizer, and {c1,...c,} are the contents of the standard tableau
of shape \.

With the standard coproduct § in U(gl,,(C)) we obtain:

Q=Y mo(Ey) ® m(Eji) = ZEZJ ©dM(Ep) | Qe Fy) = Y Py | (1R,
i =1..M,

This implies

—u H < uf*;) (1® F\) € EndV, ® EndV. (13)

Let ¢ : gl,(C) — gl,(C) be an automorphism, defined by ¢(X) = —X . Put my» = m) 0 ¢.
Observe that (¢ @ my) Q =id @ (m) 0 ¢) 2, so

M
e —uH( ) (1) - 11 C) (o m sy, ()

U+ cg

In other words, Qy«(u) is proportional to the image of S)(u) under the map (my ® Id) :
U(g!,(C)) ® End V) — EndVj ® EndV,.
The representation X — —(m\«(X))", X € gl,,(C) is isomorphic to 7y. Thus we can write

in some basis

03 (u) = — Qe (—u). (15)
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Recall from Section 2 that
Dy(u) = a(Qx(u—m), ..., Q(u)) = tr(Asympm+1 Qx(u—m)i2 ... Qx(w)1m2)-
It is easy to see that
tr(AsymA; @ - @ Ag) = tr(A] @ --- @ Al Asym,)
Hence,

Dy =tr (Q;\r(u — m)lg ... QI(u)lmH Asymm+1)

= (=)™t (s (—u+m)12 . Uyw (1)1 ) Asymms1)

., “ M (S ks (U5 —m — ) ®(m+1)
=tr| [Jw-9]] (mo ® Fy) - Asymm 1

s=0 k=1 U—s—C
Comparing the last formula with the definition of Sy(u), we obtain (11) O
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Graded-simple Lie algebras of type By and Jordan

systems covered by a triangle

Erhard Neher* Maribel Tocén®

Abstract

We announce a classification of graded-simple Jordan systems covered by a compat-
ible triangle, under some natural assumptions on the abelian group, in order to get the

corresponding classification of graded-simple Lie algebras of type Ba.

Keywords: Root-graded Lie algebra, Jordan system, idempotent.

1 Introduction

Graded-simple Lie algebras which also have second compatible grading by a root system
appear in the structure theory of extended affine Lie algebras, which generalize affine Lie
algebras and toroidal Lie algebras. If the root system in question is 3-graded, these Lie

algebras are Tits-Kantor-Koecher algebras of Jordan pairs covered by a grid.

In this note we will consider the case of the root system Bs. A centreless Bo-graded Lie
algebra is the Tits-Kantor-Koecher algebra of a Jordan pair covered by a triangle. Such a Lie
algebra is graded-simple with respect to a compatible A-grading if and only if the Jordan pair
is graded-simple with respect to a A-grading which is compatible with the covering triangle
[8]. In [10] we give a classification of graded-simple Jordan systems covered by a triangle that
is compatible with the grading, under some natural assumptions on the abelian group, as
well as the corresponding classification of graded-simple Lie algebras of type By. Our work
generalizes earlier results of Allison-Gao [1] and Benkart-Yoshii [2], and is an extension of the
structure theory of simple Jordan pairs and Jordan triple systems covered by a triangle due
to McCrimmon-Neher [7].
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The aim of this note is to provide an outline of our results for Jordan systems. The details

of proofs will appear in [10]. For unexplained notation we refer the reader to [3] and [4].

2 Graded-simple Lie algebras of type B

The motivation for our research is two-fold. On the one hand, we would like to advance the
theory of graded Jordan structures, and on the other hand we are interested in certain types
of root-graded Lie algebras. In this section we will describe the second part of our motivation
and how it is related to the first.

Let R be a reduced root system. In the following only the case R = By will be of interest,
but the definition below works for any finite, even locally finite reduced root system. We will
assume that 0 € R and denote by Q(R) = Z[R] the root lattice of R. We will consider Lie

algebras defined over a ring of scalars k containing % and % Let A be an arbitrary abelian

group.
Definition 2.1. ([9]) A Lie algebra L over k is called (R, A)-graded if
(1) L has a compatible Q(R)- and A-gradings,
L=ayeal? and L= ®uecqr)Las
i.e., using the notation L) = L* N L, we have

Lo =@xeald, L' =@acomla, and [Ly, L5 € LY,

for \,k € A, a, 8 € Q(R),
(2) {a€ Q(R) : Lo, #0} CR,
(3) Ly = ZO#aGR [La, L_s], and

(4) for every 0 # o € R the homogeneous space LY contains an element e, that is invertible,
i.e., there exists f_, € LY, such that hy := [ea, f—q] acts on Lg, B € R, by

[hasxg] = (B, )xg, x5 € Lg.
In particular, (eq, ha, fo) is an sla-triple.

An (R, A)-graded Lie algebra is said to be graded-simple if it does not contain proper

nontrivial A-graded ideals and graded-division if every nonzero element in L), o # 0, is

invertible.

Let now L be a centerless (Bs, {0})-graded Lie algebra. It then follows from [8] that L is

the Tits-Kantor-Koecher algebra of a Jordan pair V' covered by a triangle: i.e.,

V=VieMal,,
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where V; = Va(e;), i = 1,2, and M = Vi(e1) N Vi(ez), for a triangle (u;eq,e2). Recall that a

triple (u;eq,e2) of nonzero idempotents of V' is a triangle if
e € Volej), i #j, e € Va(u),i=1,2, and wue Vi(er)NVi(e2),
and the following multiplication rules hold for ¢ = +:
Q(u”)e;” =e€j,i#j, and Q(e],eq)u” " =u’.

If moreover, L is (B, A)-graded, then V' is also A-graded, i.e., as k-module V7 = @, ., V[A], 0 =
+, with

QVIMIVTul CVIRA+ ] and  {VINL VT[], VIr]} CVIA+ p+ v

for all A\, u,v € A, 0 = +. A Jordan pair that is A-graded and covered by a triangle which
lies in the homogeneous 0-space V[0] is called A-triangulated. It therefore follows from the
above that if L is a centerless (Bg, A)-graded Lie algebra, then L is the Tits-Kantor-Koecher
algebra of a A-triangulated Jordan pair V. Moreover, L is graded-simple if and only if V is
graded-simple.

Therefore, one can get a description of graded-simple (Bg, A)-graded Lie algebras from
the corresponding classification of graded-simple A-triangulated Jordan pairs. However, the
classification of graded-simple A-triangulated Jordan pairs is only known for A = {0} [7].
In what follows, we extend this classification to more general A. In doing so, we work with
Jordan structures over arbitrary rings of scalars k. This generality is of independent interest
from the point of view of Jordan theory. Moreover, the simplifications that would arise from
assuming % and % € k are minimal, e.g., we could avoid working with ample subspaces in our

two basic examples 3.1 and 3.2.

3 Graded-simple triangulated Jordan triple systems

Let k£ be an arbitrary ring of scalars and let J be a Jordan triple system over k. Recall that
a triple of nonzero tripotents (u;eq,ez) is called a triangle if e; € Jy(ej), i # j, e; € Jo(u),
i=1,2, u e Ji(er) NJi(e2), and the following multiplication rules hold: P(u)e; = e;, i # j,
and P(ej,e2)u = u. In this case, e := e; + eg is a tripotent such that e and u have the same
Peirce spaces. A Jordan triple system with a triangle (u;e,e) is said to be triangulated if
J = Jo(e1)® (Jl(el) N Jl(eg)) @ Ja(e2) which is equivalent to J = Ja(e). In this case, we will
use the notation J; = Ja(e;) and M = Jy(e1) N Ji(e2). Hence

J=J1 0 MO Js.

Note that * := P(e)P(u) = P(u)P(e) is an automorphism of J of period 2 such that u* = u,

X . X .
e; = ej, and so J = J;.
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Let A be an abelian group. We say that J is A-graded if the underlying module is A-graded,
say J = @y, J*, and the family (J* : A € A) of k-submodules satisfies P(J*)J* C J2F#
and {JA, J#, JV} C JME for all A\, u,v € A. We call J A-triangulated if it is A-graded and
triangulated by (u;er,ep) € JO and faithfully A-triangulated if any z1 € Jy with 21 -u = 0

vanishes, where the product - is defined as follows:
Jix M — M : (x;,m) — z; -m = L(x;)m = {x;,e;,m}.
There are two basic models for A-triangulated Jordan triple systems:

Example 3.1. A-triangulated hermitian matriz systems Ho(A, Ag,7,~). A A-graded (as-
sociative) coordinate system (A, Ag,m, ) consists of a unital associative A-graded k-algebra
A= @,cp A, a graded submodule Ay = @, 4) for A) = AgN A, an involution 7 and
an automorphism ~ of period 2 of A. These data satisfy the following conditions: 7 and ~
commute and are both of degree 0, i.e., (AM)™ = A = AX for all A € A, Ag is ~-stable and
m-ample in the sense that Ag = Ag C H(A,n), 1 € Ag and aapa™ C Ap for all a € A and
ap € Ag.

To a A-graded coordinate system (A, Ay, 7,” ) we associate the A-triangulated hermitian
matriz system H = Ho(A, Ag, ™, ) which, by definition, is the Jordan triple system of 2 x 2-
matrices over A which are hermitian (X = X™) and have diagonal entries in Ay, with triple
product P(X)Y = XY™X = XY X. This system is clearly A-graded: H = @, H*, where
H* = span{a}Ei;,a*E1s + (a*)"Ea : a € A),a* € A*i = 1,2}, and A-triangulated by
(u= B3+ Ea1; e1 = E11, e = Eyy) C HY.

One can prove that Hs(A, Ag,m,” ) is graded-simple if and only if (A, 7, ) is graded-
simple. In this case, Hy(A, Ag,m,” ) is graded isomorphic to one of the following:

(I) Ho(A, Ag,m,” ) for a graded-simple associative unital A;

(IT) Maty(B) for a graded-simple associative unital B with graded automorphism ~, where
(bij) = (bij) for (b;;) € Mata(B) and P(x)y = a¥a;

(IIT) Mato(B) for a graded-simple associative unital B with graded involution ¢, where (b;;) =
(by;) for (bij) € Mata(B) and P(z)y = 27'w;

(IV) polarized Hs(B, By, ) ® Ha(B, By, ) for a graded-simple B with graded involution ;

(V) polarized Maty(B)@®Maty(B) for a graded-simple associative unital B and P(z)y = zyx.

The examples (IV) and (V) are special cases of polarized Jordan triple systems. Recall
that a Jordan triple system 7' is called polarized if there exist submodules TF such that
T=T"®T and for 0 = £ we have P(T?)T° =0 = {T°,7°,T7°} and P(T°)T~° C T°.
In this case, V = (T",T7) is a Jordan pair. Conversely, to any Jordan pair V = (V7 , V™)
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we can associate a polarized Jordan triple system T(V) = V* @& V'~ with quadratic map P
defined by P(z)y = Q(x1)y~ @ Q(z7)yT for x = 2T @2~ and y = y* @ y~. In particular,
for any Jordan triple system T the pair (7',T') is a Jordan pair and hence it has an associated
polarized Jordan triple system which we denote T@T. It is clear that if T is a A-triangulated
Jordan triple system then sois T @ T.

Example 3.2. A-triangulated ample Clifford systems AC(q, S, Dg). This example is a sub-

triple of a full Clifford system which we will define first. It is given in terms of

(i) a A-graded unital commutative associative k-algebra D = @y, D?* endowed with an

involution ~ of degree 0,
(ii) a A-graded D-module M = @, ., M?*,
(iii) a A-graded D-quadratic form q : M — D, hence ¢(M?*) C D?** and g(M*, M*) C M+,

(iv) a hermitian isometry S : M — M of ¢ of order 2 and degree 0, i.e., S(dx) = dS(x) for
d€ D, q(5(z)) = q(z), S? = Id and S(M?*) = M*, and

(v) u € M° with q(u) =1 and S(u) = u.

Given these data, we define
V :=De; & M @ Des,

where Dej; @ Dey is a free A-graded D-module with basis (e, e2) of degree 0. Then V is a
Jordan triple system, called a full Clifford system and denoted by FC(q,S), with respect to
the product

P(cre1 ®m @ caez) (bieg ®n @ byeg) = dieg © p @ doea, where

di = cbi+ciq(m,S(n))+bjq(m)
p = [0154-625-1-(](”%5(”))]7”4‘[0162—Q(m)]5(n)-

It is easily seen that F'C(q,S) is A-triangulated by (u;eq,es).

But in general we need not take the full Peirce spaces De; in order to get a A-triangulated
Jordan triple system. Indeed, let us define a Clifford-ample subspace of (D, ~, q) as above as a
A-graded k-submodule Dy = @, (Do N D*) such that Dy = Dy, 1 € Dy and Dyq(M) C Dy.
Then

AC(q,S,Dy) := Dgey & M @& Dy es,

also denoted AC(q, M, S, D, ™, Dy) if more precision is helpful, is a A-graded subsystem of the
full Clifford system F'C(q, S) which is triangulated by (u;eq,e2). It is called a A-triangulated
ample Clifford system.
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One can prove that AC(q, S, Dy) is graded-simple if and only if ¢ is graded-nondegenerate
(in the obvious sense) and (D, ~) is graded-simple. In this case, either D = F'is a graded-
division algebra or D is graded isomorphic to F'H F' for a graded-division algebra F’ with ~
the exchange automorphism. In the latter case AC(q, S, Do) = AC(q, S, Fy) @ AC(q, S, Fp) is
polarized with a Clifford ample subspace Fy C F.

It is an important fact that one can find the above two examples of A-triangulated Jordan
triple systems inside any faithfully A-triangulated Jordan triple system. More precisely, let
J = J, & M @ Jy be faithfully A-triangulated by (u;e;,e2), put Cy = L(J;) and let C
be the subalgebra of Endy(M) generated by Cy. Then C' is naturally A-graded, ¢ — ¢ =
P(e)ocoP(e) is an automorphism of C of degree 0 and L(xz1) - - L(zy,) — (L(z1) -+ L(zy))™ =
L(zy,) -+ L(z1) induces a (well-defined) involution of C' of degree 0. One can prove that the
A-graded subsystem

Jh=J18Cu® Jp

is A-triangulated by (u;e1, e2) and graded isomorphic to Ha(A, Ag,m,” ) under the map

L(z1) c
r1 @ cudys — - .
c L(Z/2)

for A = C|cw, Ao = Colcw. Moreover, J has a A-graded subsystem
Jq =K &N K,y

for appropriately defined submodules K; C J; and N C M, which is A-triangulated by
(u;eq,e2) and graded isomorphic to AC(q, S, D) under the map

1 ®ndxe— L(x1) ®n® L(x3)

where Dy = L(K7), D is the subalgebra of Endy (V) generated by Dy, g(n) = L(P(n)es) and
S(n) = P(e)n. (Roughly speaking, .J, is the biggest graded subsystem of J where the identity
(x1 — %) - N = 0 holds). Moreover, the two isomorphisms above map the triangle (u;e;,e2)
of J onto the standard triangle of Ha(A, Ag,m,~ ) or AC(q, S, Dy), respectively. We note that

for A = {0} these two partial coordinatization theorems were proven in [7].

A question that arises naturally is the following: Let J be faithfully A-triangulated by
(ujer,ez). When is Jy, or J, the whole J?

(i) If M = Cu, then J = Jj, and thus J is graded isomorphic to a hermitian matrix system,

(ii) If w is C-faithful and (z1 — 27) - m = 0 for all z; € J; and m € M, then J = J, and

thus J is graded isomorphic to an ample Clifford system.

One can show that (i) holds whenever C' is commutative and ~-simple. In fact, (i) or (ii)

above holds if (C, 7, ~) is graded-simple.
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Proposition 3.3. Let J be a graded-simple A-triangulated Jordan triple system satisfying
one of the following conditions

(a) every m € M is a linear combination of invertible homogeneous elements, or
(b) A is torsion-free.

Then (C,m, ™) is graded-simple. In this case, u is C-faithful and M = Cu or C is commuta-
tive.

All together, we have the following result:

Theorem 3.4. A graded-simple A-triangulated Jordan triple system satisfying (a) or (b) of
Prop. 3.3 is graded isomorphic to one of the following:

a non polarized Jordan triple system
(I) Ho(A, Ag,m,~) for a graded-simple A with graded involution 7™ and automorphism ~;

(IT) Maty(B) with P(x)y = xgz for a graded-simple associative unital B with graded auto-
morphism ~ and (y;j) = (Ti;) for (vij) € Mata(B);

(II1) Mato(B) with P(z)y = 2ytx for a graded-simple associative unital B with graded invo-
= (yi;) for (yi;) € Mato(B);

lution v and (y;;)

(IV) AC(q, S, Fy) for a graded-nondegenerate q over a graded-division F with Clifford-ample
subspace Fy;

or a polarized Jordan triple system

(V) Ho(B, By, m) ® Ha(B, By, ) for a graded-simple B with graded involution ;
(VI) Mate(B) @ Mata(B) for a graded-simple associative unital B with P(x)y = xyx;
(VII) AC(q, S, Fy) ® AC(q, S, Fy) for AC(q, S, Fy) as in (IV).

Conversely, all Jordan triple systems in (I1)-(VII) are graded-simple A-triangulated.

Since A = {0} is a special case of our assumption (b), the theorem above generalizes [7,
Prop. 4.4].

4 Graded-simple triangulated Jordan pairs and algebras

We consider Jordan algebras and Jordan pairs over arbitrary rings of scalars. In order to apply
our results, we will view Jordan algebras as Jordan triple systems with identity elements.
Thus, to a Jordan algebra J we associate the Jordan triple system T'(J) defined on the k-
module J with Jordan triple product P,y = U,y. The element 1; € J satisfies P(1;) = Id.
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Conversely, every Jordan triple system T containing an element 1 € T with P(1) = Id is
a Jordan algebra with unit element 1 and multiplication U,y = P,y. A A-graded Jordan
algebra J is called A-triangulated by (u;eq,eq) if e; = e? e J% i = 1,2, are supplementary
orthogonal idempotents and u € Jy(e1)? N Ji(e2)? with u? = 1 and u® = u. Thus, with
our definition of a triangle in a Jordan algebra, J is A-triangulated by (u;e;,eq) iff T'(J) is
A-triangulated by (u;eq,es).

This close relation to A-triangulated Jordan triple systems also indicates how to get exam-
ples of A-triangulated Jordan algebras: We take a Jordan triple system which is A-triangulated
by (u;eq,e2) and require P(e) = Id for e = e; + e3. Doing this for our two basic examples 3.1

and 3.2, yields the following examples of A-triangulated Jordan algebras.

(A) Hermitian matriz algebra: This is the Jordan triple system Hy(A, Ag,7,” ) with ~— =
Id, which we will write as Hs(A, Ag, 7). Note that this is a Jordan algebra with product
U(z)y = P(x)y = zyz and identity element E = Ej + E9o. If, for example, A = B B B°P
with 7 the exchange involution, then Hy(A, Ag, ) is graded isomorphic to Maty(B) where
Matq(B) is the Jordan algebra with product U,y = zyx.

(B) Quadratic form Jordan algebra: This is the ample Clifford system AC(q, S, D, ~, Dy)
with = = Id and S|y = Id. Since then P(e) = Id we get indeed a A-triangulated Jordan
algebra denoted AC,s(q, D, Dy). Note that this Jordan algebra is defined on Dye; @ M @ Dyes
and has product U,y = q(z,9)z — q(z)y where q(die; & m @ daeg) = dide — q(m) and
(drer @ m @ daey) = doey & —m @ dyeq. (If % € k it is therefore a reduced spin factor in the
sense of [6, II, §3.4].)

From the classification given in Th. 3.4 we get:
Theorem 4.1. A graded-simple A-triangulated Jordan algebra satisfying
(a) every m € M is a linear combination of invertible homogeneous elements of M, or
(b) A is torsion-free,
is graded isomorphic to one of the following Jordan algebras:
(I) Ho(A, Ay, m) for a graded-simple A with graded involution ;
(IT) Mate(B) for a graded-simple associative unital B;

(IIT) ACqag(q, F, Fy) for a graded-nondegenerate q : M — F over a commutative graded-
division algebra F and a Clifford-ample subspace Fy.

Conversely, all Jordan algebras in (I)—(I11) are graded-simple A-triangulated.

Note that for A = {0} this theorem generalizes the well known Capacity Two Theorem

for Jordan algebras.
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With the above algebra classification at hand and taking into account that a A-triangulated
Jordan pair can be viewed as a disguised A-triangulated Jordan algebra, we get the following

classification of A-triangulated Jordan pairs:

Theorem 4.2. A graded-simple A-triangulated Jordan pair satisfying
(a) every m € M7 is a linear combination of invertible homogeneous elements of M, or
(b) A is torsion-free,

is graded isomorphic to a Jordan pair (J,J) where

(I) J = Hy(A, Ay, ) is the hermitian matriz algebra of a graded-simple A with graded

involution ;
(IT) J = Mato(B) for a graded-simple associative unital B;

(ITI1) J = AC(q,1d, Fy) for a graded-nondegenerate q over a graded-division algebra F with
Clifford-ample subspace Fy.

Conversely, all Jordan pairs described above are graded-simple A-triangulated.

Note that a Jordan pair V satisfies assumption (a) if it is the Jordan pair associated to a

graded-division (Bs, A)-graded Lie algebra for an arbitrary A (cf. §1).
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Restricted simple Lie algebras and their

infinitesimal deformations

Filippo Viviani*

Abstract

In the first two sections, we review the Block-Wilson-Premet-Strade classification of
restricted simple Lie algebras. In the third section, we compute their infinitesimal de-
formations. In the last section, we indicate some possible generalizations by formulating

some open problems.

Keywords: Restricted simple Lie algebras, Deformations.

1 Restricted Lie algebras

We fix a field F' of characteristic p > 0 and we denote with F,, the prime field with p elements.
All the Lie algebras that we will consider are of finite dimension over F. We are interested

in particular class of Lie algebras, called restricted (or p-Lie algebras).

Definition 1.1 (Jacobson [JAC37]). A Lie algebra L over F is said to be restricted (or a
p-Lie algebra) if there exits a map (called p-map), [p] : L — L, x — xP), which verifies the

following conditions:
1. ad(zP)) = ad(z)?! for every z € L.
2. (am)[f”] = oPzlP! for every x € L and every a € F.

3. (zg + z)lP) = ajg’} + x[lp} + Zf:_ll si(xo, 1) for every x,y € L, where the element
si(xo,x1) € L is defined by

1
si(xo, 1) = - > " adwy, ) 0 aday(z) o -+ 0 adwy 1) (71),

the summation being over all the maps u : [1,--- ,p — 1] — {0,1} taking r-times the

value 0.

*Universitd degli studi di Roma Tor Vergata, Dipartimento di Matematica, via della Ricerca Scientifica 1,
00133 Rome. E-mail: viviani@mat.uniroma2.it. The author was supported by a grant from the Mittag-
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Example. 1. Let A an associative F'-algebra. Then the Lie algebra Derp A of F'-derivations
of A is a restricted Lie algebra with respect to the p-map D +— DP := Do---0D.

2. Let G a group scheme over F. Then the Lie algebra Lie(G) associated to G is a restricted
Lie algebra with respect to the p-map given by the differential of the homomorphism

G—-G, rz—aP.=xo0- - 0.

One can naturally ask when a F-Lie algebra can acquire the structure of a restricted Lie
algebra and how many such structures there can be. The following criterion of Jacobson

answers to that question.
Proposition 1.2 (Jacobson). Let L be a Lie algebra over F. Then

1. It is possible to define a p-map on L if and only if, for every element x € L, the p-th

iterate of ad(x) is still an inner derivation.

2. Two such p-maps differ by a semilinear map from L to the center Z(L) of L, that is a
map f: L — Z(L) such that f(ax) = oP f(x) for every x € L and o € F.

Proof. See [JAC62, Chapter V.7]. O

Many of the modular Lie algebras that arise “in nature” are restricted. As an example of
this principle, we would like to recall the following two results from the theory of finite group

schemes and the theory of inseparable field extensions.

Theorem 1.3. There is a bijective correspondence
{Restricted Lie algebras/F'} «— {Finite group schemes/F of height 1},

where a finite group scheme G has height 1 if the Frobenius F : G — G®) is zero. Ezxplicitly
to a finite group scheme G of height 1, one associates the restricted Lie algebra Lie(G) :=
ToG. Conversely, to a restricted Lie algebra (L, [p]), one associates the finite group scheme
corresponding to the dual of the restricted enveloping Hopf algebra UP(L) := U(L)/(a? —z[P)).

Proof. See [DGT70, Chapter 2.7]. O
Theorem 1.4. Suppose that [F : FP] < oco. There is a bijective correspondence
{Inseparable subextensions of exponent 1} «— {Restricted subalgebras of Der(F')}

where the inseparable subextensions of exponent 1 are the subfields E C F such that FP C E C
F and Der(F) := Derp,(F) = Derpp(F). Explicitly to any field FP C E C F one associates
the restricted subalgebra Derg(F'). Conversely, to any restricted subalgebra L C Der(F'), one
associates the subfield Er, :={x € F | D(z) =0 for all D € L}.

Proof. See [JAC80, Chapter 8.16]. O
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2 Classification of restricted simple Lie algebras

Simple Lie algebras over an algebraically closed field of characteristic zero were classified
at the beginning of the XIX century by Killing and Cartan. The classification proceeds
as follows: first the non-degeneracy of the Killing form is used to establish a correspondence
between simple Lie algebras and irreducible root systems and then the irreducible root systems
are classified by mean of their associated Dynkin diagrams. It turns out that there are four
infinite families of Dynkin diagrams, called A,, B,, C,, D,, and five exceptional Dynkin
diagram, called Eg, E7, Eg, F4 and G5. The four infinite families correspond, respectively, to
the the special linear algebra sl(n + 1), the special orthogonal algebra of odd rank so(2n + 1),
the symplectic algebra sp(2n) and the special orthogonal algebra of even rank so(2n). For the
simple Lie algebras corresponding to the exceptional Dynkin diagrams, see the book [JACT1]
or the nice account in [BAE02].

These simple Lie algebras admits a model over the integers via the (so-called) Chevalley
bases. Therefore, via reduction modulo a prime p, one obtains a restricted Lie algebra over
F,, which is simple up to a quotient by a small ideal. For example sl(n) is not simple if p
divide n, but its quotient psl(n) = sl(n)/(I,) by the unit matrix I,, becomes simple. There
are similar phenomena occuring only for p = 2,3 for the other Lie algebras (see [STR04,
Page 209] or [SEL67]). The restricted simple algebras obtained in this way are called alge-
bras of classical type. Their Killing form is non-degenerate except at a finite number of
primes. Moreover, they can be characterized as those restricted simple Lie algebras admitting
a projective representation with nondegenerate trace form (see [BLO62], [KAP71]).

However, there are restricted simple Lie algebras which have no analogous in charac-
teristic zero and therefore are called nonclassical. The first example of a nonclassical re-
stricted simple Lie algebra is due to E. Witt, who in 1937 realized that the derivation algebra
W (1) := Derp(F[X]/(XP)) over a field F' of characteristic p > 3 is simple with a degener-
ate Killing form. In the succeeding three decades, many more nonclassical restricted simple
Lie algebras have been found (see [JAC43|, [FRA54|, [AF54], [FRA64]). The first compre-
hensive conceptual approach to constructing these nonclassical restricted simple Lie algebras
was proposed by Kostrikin and Shafarevich in 1966 (see [KS66]). They showed that all the
known examples can be constructed as finite-dimensional analogues of the four classes of
infinite-dimensional complex simple Lie algebras, which occurred in Cartan’s classification
of Lie pseudogroups (see [CAR09]). These restricted simple Lie algebras, called of Cartan-
type, are divided into four families, called Witt-Jacobson, Special, Hamiltonian and Contact

algebras.

Definition 2.1. Let A(n) := Flz1, - ,z,)/(2},--- ,2h) the algebra of p-truncated polyno-
mials in n variables. Then the Witt-Jacobson Lie algebra W (n) is the derivation algebra of
A(n):

W(n) = DerpA(n).
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For every j € {1,...,n}, we put D; := %. The Witt-Jacobson algebra W (n) is a free
A(n)-module with basis {D1,...,D,}. Hence dimpW (n) = np™ with a basis over F' given by
{z°D;|1<j<n,z* e A(n)}.

The other three families are defined as m-th derived algebras of the subalgebras of deriva-
tions fixing a volume form, a Hamiltonian form and a contact form, respectively. More
precisely, consider the natural action of W (n) on the exterior algebra of differential forms in
dzq,--- ,dz, over A(n). Define the following three forms, called volume form, Hamiltonian

form and contact form:

wg =dxy A---dxy,

m
wyg = dei ANdxiry, if n=2m,
i=1

m
WK = d$2m+1 + Z(l‘2+mdl‘2 — :EZdl‘H_m) ifn=2m+1.
=1

Definition 2.2. Consider the following three subalgebras of W (n):

S(n) = {D € W(n)| Dws = 0},

H(n) ={D € W(n)| Dwg = 0},
K(n)={D e W(n) | Dwg € A(n)wk}.
Then the Special algebra S(n) (n > 3) is the derived algebra of S(n), while the Hamiltonian

algebra H(n) (n = 2m > 2) and the Contact algebra K(n) (n =2m +1 > 3) are the second
derived algebras of H(n) and K (n), respectively.

We want to describe more explicitly the above algebras, starting from the Special algebra

S(n). For every 1 <i,j < n consider the following maps
An) — W(n
Dij:_Dﬁ:{ (n) — W(n)
f = Dj(f)Di — Di(f)D;.

Proposition 2.3. The algebra S(n) has F-dimension equal to (n—1)(p™—1) and is generated
by the elements D;j(x®) for x* € A(n) and 1 <i < j < n.

Proof. See [FS88, Chapter 4.3]. O

Suppose now that n = 2m > 2 and consider the map Dy : A(n) — W(n) defined by

Dir(f) = 3 [Di(f)Dism — Divan(f)Di].

i=1

where, as before, D; := 8%2_ € W(n). Then the Hamiltonian algebra can be described as

follows:
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Proposition 2.4. The above map Dy induces an isomorphism

D : A(n) 100 — H(n),
where A(n)41 .0 = {2 € A(n) | 2® # 1,2% # 27 := 3:1_1---3:%_1}. Therefore H(n) has
dimension p"™ — 2.

Proof. See [FS88, Chapter 4.4]. O

Suppose finally that n = 2m + 1 > 3. Consider the map Dk : A(n) — K(n) defined by

= Z[Di(f)Di—i-m - H—m +ij Dj _Dj(f)Dn] +2f Dy,

i=1
Then the Contact algebra can be described as follows:

Proposition 2.5. The above map Dy induces an isomorphism

K = {A<n> ifp [ (m+2)
AW)sr i pl(m+2)

where A(n)zy = {2 € A(n) | 2® # 2" = o Lo 2B Therefore K(n) has dimension p"
ifp f(m+2) and p" —1 if p/| (m+2).
Proof. See [FS88, Chapter 4.5]. O

Kostrikin and Shafarevich (in the above mentioned paper [KS66]) conjectured that a
restricted simple Lie algebras (that is a restricted algebras without proper ideals) over an
algebraically closed field of characteristic p > 5 is either of classical or Cartan type. The
Kostrikin-Shafarevich conjecture was proved by Block-Wilson (see [BW84] and [BW88|)
for p > 7, building upon the work of Kostrikin-Shafarevich ([KS66] and [KS69]), Kac ([KAC70]
and [KACT4]), Wilson ([WIL76]) and Weisfailer ([WEI78]).

Recently, Premet and Strade (see [PS97], [PS99], [PS01], [PS04]) proved the Kostrikin-
Shafarevich conjecture for p = 7. Moreover they showed that for p = 5 there is only one

exception, the Melikian algebra ([MELS80]), whose definition is given below.

Definition 2.6. Let p = char(F) = 5. Let W(2) be a copy of W(2) and for an element
D € W(2) we indicate with D the corresponding element inside W(2). The Melikian algebra
M s defined as

M=A2)eW(2) & W(2),
with Lie bracket defined by the following rules (for all D,E € W(2) and f,g € A(2)):
D,E] = [D, E] + 2div(D)E,
Df] (f)—2d1V( )f

[ [f. 9] :=2(9Da(f) — fD2(9)) D1 + 2 (f D1(g) — gD1(f)) Do,
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where div(f1 Dy + foD2) := D1(f1) + Da(f2) € A(2).

In characteristic p = 2,3, there are many exceptional restricted simple Lie algebras (see

[STRO4, page 209]) and the classification seems still far away.

3 Infinitesimal Deformations

An infinitesimal deformation of a Lie algebra L over a field F is a Lie algebra L’ over F[e]/(e?)
such that L' x piq/(2) F' = L. Explicitly, L' = L + ¢L with Lie bracket [—, —]" defined by (for
any two elements X,Y € L C L'):

(X, Y] =[X,Y]+ef(X,Y),

where [—.—] is the Lie bracket of L and f(—, —) is an 2-alternating function from L to L, con-
sidered a module over itself via adjoint representation. The Jacobi identity for [—, —]’ forces
f to be a cocycle and moreover one can check that two cocycles differing by a coboundary
define isomorphic Lie algebras. Therefore the infinitesimal deformations of a Lie algebra L
are parametrized by the second cohomology H?(L, L) of the Lie algebra with values in the
adjoint representation (see [GER64] for a rigorous treatment).

It is a classical result that simple Lie algebras in characteristic zero are rigid. We want to
give a sketch of the proof of the following Theorem (see [HS97] for details).

Theorem 3.1. Let L be a simple Lie algebra over a field F of characteristic 0. Then, for

every i > 0, we have that
HYL,L) = 0.

Sketch of the Proof. Since the Killing form ((x,y) = tr(ad(x)ad(y)) is non-degenerate (by
Cartan’s criterion), we can choose two bases {e;} and {e;} of L such that B(e;,e}) = dj;.
Consider the Casimir element C' := ). e; ® €} inside the enveloping algebra 4(L). One can
check that:

1. C belongs to the center of the enveloping algebra and therefore it induces an L-
homomorphism C : L — L, where L is a consider a module over itself via adjoint
action. Moreover since trz,(C) = dim(L) # 0, C is non-zero and hence is an isomor-

phism by the simplicity of L.
2. The map induced by C on the exact complex {{(L) ®; A" L}, — F is homotopic to 0.

Therefore the induced map on cohomology Cy : H*(L,L) — H*(L, L) is an isomorphism by
(1) and the zero map by (2), which implies that H*(L, L) = 0. O

The above proof uses the non-degeneracy of the Killing form and the non-vanishing of the

trace of the Casimir element, which is equal to the dimension of the Lie algebra. Therefore
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the same proof works also for the restricted simple Lie algebras of classical type over a field
of characteristic not dividing the determinant of the Killing form and the dimension of the
Lie algebra. Actually Rudakov (see [RUDT71]) showed that such Lie algebras are rigid if the
characteristic of the base field is greater or equal to 5 while in characteristic 2 and 3 there
are non-rigid classical Lie algebras (see [CHE05], [CK00], [CKKO00]).

It was already observed by Kostrikin and Dzumadildaev ([DK78], [DZUS80], [DZU81] and
[DZU89]) that Witt-Jacobson Lie algebras admit infinitesimal deformations. More precisely:
in [DK78] the authors compute the infinitesimal deformations of the Jacobson-Witt algebras
of rank 1, while in [DZU80, Theorem 4], [DZU81] and [DZU89] the author describes the
infinitesimal deformations of the Jacobson-Witt algebras of any rank but without a detailed
proof.

In the papers [VIV1], [VIV2] and [VIV3], we computed the infinitesimal deformations
of the restricted simple Lie algebras of Cartan type in characteristic p > 5, showing in
particular that they are non-rigid. Before stating the results, we need to recall the definition
of the Squaring operators ([GER64]). The Squaring of a derivation D : L — L is the 2-cochain
defined, for any x,y € L as it follows

Dp Z( )

(3.1)

=1

where D' is the i-iteration of D. Using the Jacobi identity, it is straightforward to check that
Sq(D) is a 2-cocycle and therefore it defines a class in the cohomology group H?(L, L), which
we will continue to call Sq(D) (by abuse of notation). Moreover for an element v € L, we
define Sq(v) := Sq(ad(y)).

Theorem 3.2. We have that

where O is defined by O(D;, D;) = D;;(x7).

Theorem 3.4. Let n =2m + 1 > 3. Then we have that

2m

H?(K(n), K(n)) = @(Sa(Dk (2:))) r P(Sa(Dx (1)) -

1=1

Before stating the next theorem, we need some notations about n-tuples of natural num-

bers. We consider the order relation inside N™ given by a = (a1,--- ,an) < b= (b1, -+ ,bp)
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if a; < b; for every i = 1,--- ,n. We define the degree of a € N" as |a] = > " ;a; and
the factorial as a! = [[;_;a;!. For two multindex a,b € N™ such that b < a, we set
() =TI, (gz) = Wib)!. For every integer j € {1,---,n} we call ¢; the n-tuple having
1 at the j-th entry and 0 outside. We denote with o the multindex (p —1,--- ,p —1).

Assuming now that n = 2m, we define the sign o(j) and the conjugate j" of 1 < j < 2m
as follows:

1 if1<j<m, , j+m ifl1<j<m,
o(j) = and j =
-1 ifm<j<2m, j—m ifm<j<2m.
Given a multindex a = (ay,--- ,a2,) € N?", we define the sign of a as o(a) = [[o(i)% and

the conjugate of a as the multindex a such that a; = ay for every 1 < i < 2m.

Theorem 3.5. Let n =2m > 2. Then if n > 4 we have that

n

H(H(n), H(n)) = P)(Sa(Da (2:)))r PIy)r DI @D(@) .

i=1 i<j =1

J#

where the above cocycles are defined (and vanish outside) by

I;j(Dp (2*), D (2*)) = Dy (a8 2% [Di(2*) D;(a) — Di(”) D;(2))),

Hi(DH($i$a),DH($i/$ ) = DH($a+b+(p—1)5i+(p—l)5i/)
(D (), Dy (a7~ =V = —o (k) Dy (277V)
<I>(DH(33‘1)7DH(;EI’)) = Z <§> <g> (8) 8! Dy (z atb—6— 3)

5<ab
15]=3

IA
IA
S

If n = 2 then we have that

=1
Theorem 3.6. We have that
2 2 s
H*(M, M) (1) r EP(Sa(Di)) r E Sa(Dy))
=1 =1

4 Open Problems

Simple Lie algebras (not necessarily restricted) over an algebraically closed field F' of
characteristic p # 2,3 have been classified by Strade and Wilson for p > 7 (see [SW91],
[STR89], [STRI2|, [STRI1], [STRI3], [STRI4], [STRI8]) and by Premet-Strade for p = 5,7
(see [PSI7], [PS99], [PSO1], [PS04]). The classification says that for p > 7 a simple Lie algebra
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is of classical type (and hence restricted) or of generalized Cartan type. Those latter are
generalizations of the Lie algebras of Cartan type, obtained by considering higher truncations
of divided power algebras (not just p-truncated polynomial algebras) and by considering only
the subalgebra of (the so called) special derivations (see [FS88] or [STR04] for the precise
definitions). Again in characteristic p = 5, the only exception is represented by the generalized

Melikian algebras. Therefore an interesting problem would be the following:
Problem 1. Compute the infinitesimal deformations of the simple Lie algebras.

Note that there is an important distinction between restricted simple Lie algebras and
simple restricted Lie algebras. The former algebras are the restricted Lie algebras which do
not have any nonzero proper ideal, while the second ones are the restricted Lie algebras which
do not have any nonzero proper restricted ideal (or p-ideal), that is an ideal closed under the
p-map. Clearly every restricted simple Lie algebra is a simple restricted Lie algebra, but a

simple restricted Lie algebra need not be a simple Lie algebras. Indeed we have the following

Proposition 4.1. There is a bijection
{Simple restricted Lie algebras} «— {Simple Lie algebras}.

Ezxplicitly to a simple restricted Lie algebra (L, [p]) we associates its derived algebra [L, L].
Conversely to a simple Lie algebra M we associate the restricted subalgebra MP! of Derp(M)
generated by ad(M) (which is called the universal p-envelope of M ).

Proof. We have to prove that the above maps are well-defined and are inverse one of the
other.

e Consider a simple restricted Lie algebra (L, [p]). The derived subalgebra [L, L] < L is a
non-zero ideal (since L can not be abelian) and therefore [L, L], = L, where [L, L], denotes
the p-closure of [L, L] inside L.

Take a non-zero ideal 0 # I < [L, L]. Since [L, L], = L, we deduce from [FS88, Chapter 2,
Prop. 1.3] that I is also an ideal of L and therefore I, = L by restricted simplicity of (L, [p]).
From loc. cit., it follows also that [L, L] = [Ip, I,] = [I,I] C I from which we deduce that
I = L. Therefore [L, L] is simple.

Since ad : L — Derp(L) is injective and [L, L], = L, it follows by loc. cit. that ad :
L — Derp([L, L)) is injective. Therefore we have that [L,L] C L C Derp([L, L]) and hence
(L, L] =[L, L], = L.

e Conversely, start with a simple Lie algebra M and consider its universal p-envelop
M < M < Derp(M).

Take any restricted ideal I <i,, MP). By loc. cit., we deduce [I, MP)] ¢ T n [MIP! plPl] =
IN[M,M]=1INnM <M. Therefore, by the simplicity of M, either INM = M or INM = 0.

In the first case, we have that M C I and therefore MP) = I. in the second case, we have
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that [I, MPI] = 0 and therefore I = 0 because MP! has trivial center. We conclude that M)
is simple restricted.
Moreover, by loc. cit., we have that [MP!, MIPl] = [M, M] = M.
O

Therefore the preceding classifications of simple Lie algebras (for p # 2,3) give a classifi-

cation of simple restricted Lie algebras.
Problem 2. Compute the infinitesimal deformations of the simple restricted Lie algebras.

There is an important connection between simple restricted Lie algebras and simple

finite group schemes.

Proposition 4.2. Over an algebraically closed field F' of characteristic p > 0, a simple finite
group scheme is either the constant group scheme associated to a simple finite group or it is

the finite group scheme of height 1 associated to a simple restricted Lie algebra.

Proof. Let G be a simple finite group scheme. The kernel of the Frobenius map F : G — G®)
is a normal subgroup and therefore, by the simplicity of G, we have that either Ker(F') = 0
or Ker(F) = G. In the first case, the group G is constant (since F = F), and therefore it
corresponds to an (abstract) simple finite group. In the second case, the group G is of height

1 and therefore the result follows from Proposition 1.3. O
The following problem seems very interesting.

Problem 3. Compute the infinitesimal deformations of the simple finite group schemes.

Since constant finite group schemes (or more generally étale group schemes) are rigid,
one can restrict to the simple finite group schemes of height 1 associated to the simple re-
stricted Lie algebras. Moreover, if (L, [p]) is the simple restricted Lie algebra corresponding
to the simple finite group scheme G, then the infinitesimal deformations of G correspond to
restricted infinitesimal deformations of (L, [p]), that are infinitesimal deformations that admit

a restricted structure. These are parametrized by the second restricted cohomology group
H2(L,L) (defined in [HOC54]). Therefore the above Problem 3 is equivalent to the following:

Problem 4. Compute the restricted infinitesimal deformations of the simple restricted Lie

algebras.

The above Problem 4 is closely related to Problem 2 because of the following spectral

sequence relating the restricted cohomology to the ordinary one (see [FAR91)):
q
EL = Hompyop < AL HY(L, L)) = HPT(L, L),

where Homp,o, denote the homomorphisms that are semilinear with respect to the Frobenius.
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