

ROBOMAT 07

Helder Araújo
Maria Isabel Ribeiro

Coimbra, Portugal,
17-19 September, 2007

29

ISBN: 978-989-95011-3-3
Título: ROBOMAT07
Autor: Araújo, Helder e Ribeiro, Maria Isabel
Data: 11-03-2008
Editor: Centro Internacional de Matemática
Morada: Almas de Freire, Coimbra
Código Postal: 3040 COIMBRA
Correio Electrónico: cim@mat.uc.pt
Telefone: 239 802 370
Fax: 239 445 38

Contents

Invited Presentations 1

Magnus Egerestedt,

Graph-theoretic methods for multi-agent coordination 3

David Mumford,

Grammars and their many incarnations 13

Other Presentations 25

Francisco S. Melo and Isabel Ribeiro,

A POMDP approach to cooperative localization in sparse environments 27

Rui Cortesão, Walid Zarrad, Philippe Poignet, Olivier Company, and Etienne

Dombre,

Task-space and null-space control design for robotic-assisted minimally invasive

surgery 35

Kim Steenstrup Pedersen and Peter Johansen,

A curious robot: an explorative-exploitive inference algorithm 51

Nzoji Hipólito, Lúıs Louro, Estela Bicho, and Wolfram Erlhagen,

A neuro-inspired architecture for goal inference and decision making in joint action

tasks 59

Yaniv Altshuler, Vladimir Yanovsky, Israel A. Wagner, and Alfred M. Bruckstein,

Ant–swarm robotics for a dynamic cleaning problem 73

Gonçalo Neto and Pedro U. Lima,

Q-learning applied to a stochastic timed automaton with deterministic transitions

and clock resets 83

Milan Kvasnica,

Algorithmic approach for the sampling of six degrees of freedom information using

floating 2-D coordinate frame 99

Matthew Howard and Sethu Vijayakumar,

Reconstructing null-space policies subject to dynamic task constraints in redundant

manipulators 109

K. Hüper, M. Kleinsteuber, and F. Silva Leite,

On the geometry of rolling maps and applications to Robotics 117

Krzysztof A. Krakowski, Knut Hüper, and Jonathan H. Manton,

On the computation of the Karcher mean on spheres

and special orthogonal groups 119

Marie Bro and Maria Mose,

Reorienting a quasi-rigid body using shape changes 125

Benjamı́n Tovar, Fred Cohen, and Steven M. LaValle,

Path and environment information from relative crossings of landmarks 131

Bruno Damas and Manuel Lopes,

Robot manifolds for direct and inverse kinematics solutions 139

Christian Reinl and Oskar von Stryk,

Optimal control of cooperative multi-robot systems using mixed-integer linear pro-

gramming 145

Carla M. A. Pinto,

Central pattern generator for legged locomotion: a mathematical approach 153

João P. Barreto,

Lifted fundamental matrices for mixtures of central projection systems 161

M. Rostami,

On topology of G-configuration spaces of polyhedra 177

L. Machado, F. Silva Leite, and K. Hüper,

Generalized least squares problems on Riemannian manifolds 183

Amélia C. D. Caldeira and Fernando A. C. C. Fontes,

Model predictive control of under-actuated mechanical systems 189

Peter Michael Goebel and Markus Vincze,

Perceptual grouping of edges and corners: grammatical inference for implicit object

reconstruction from 2-manifold 3D-data 197

Mónica Ballesta, Arturo Gil, and Óscar Reinoso,

Local descriptors for visual SLAM 209

Joerg Rett and Jorge Dias,

Computational Laban movement analysis using probability calculus 217

Fredrik Larsson, Erik Jonsson, and Michael Felsberg,

Visual servoing for floppy robots using LWPR 225

Invited Presentations

1

2

Graph-theoretic methods for multi-agent

coordination

Magnus Egerestedt∗

Abstract

By ignoring the geometric constraints that inevitably govern inter-robot interactions

in decentralized robot networks, a purely combinatorial description of the network is

obtained. In fact, it can be described as a graph, with vertices corresponding to the indi-

vidual robots, and edges corresponding to the existence of an inter-robot communication

(or sensing) link. In this note, we report on some of the recent results that have emerged

in the general area of graph-based multi-agent control. Most notably of these might be

the consensus equation that allows us to drive a scalar state value to the same value for

the different robots, in a completely decentralized fashion.

1 Introduction: combinatorics vs. geometry

The emergence of decentralized, mobile multi-agent networks, such as distributed robots, mo-

bile sensor networks, or mobile ad-hoc communications networks, has imposed new challenges

when designing control algorithms. These challenges are due to the fact that the individual

agents have limited computational, communications, sensing, and mobility resources. In

particular, the information flow between nodes of the network must be taken into account

explicitly already at the design phase and a number of approaches have been proposed for

addressing this problem, e.g. [6, 7, 8, 9, 10, 13, 18].

Regardless of whether the information flow is generated over communication channels or

through sensory inputs, the underlying geometry is playing an important role. For example, if

an agent is equipped with omnidirectional range sensors, it can only detect neighboring agents

if they are located in a disk around the agent. Similarly, if the sensor is a camera, the area

becomes a wedge rather than a disk. But, to make the interaction geometry explicit when

designing control laws is not an easy task, and an alternative view is to treat interactions as

purely combinatorial. In other words, all that matters is whether or not an interaction exists

∗School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

E-mail:magnus@ece.gatech.edu. This work was supported by the U.S. Army Research Office through the grant

99838.

3

between agents, and under certain assumptions on the global interaction topology, one can

derive remarkably strong and elegant results. (For a representative sample, see [6, 13, 18].)

What then remains to be shown is that the actual geometry in fact satisfies the combinatorial

assumptions.

This view, i.e. that the geometry is abstracted down to a purely combinatorial relationship

allows the control laws to be designed based without explicit dependency on the geometry

of the system. Rather, the control laws will end up depending solely on certain topological

properties of the network, such as connectivity or balancing. As such, one has effectively

traded away a hard problem (the geometric problems are for example addressed in [1, 9])

for a simple problem under some assumptions that may or may not always be valid (e.g.

[7]). And, in this note, we discuss some of the main results in the area of graph-based (or

combinatorial) multi-agent control in the domain of multi-agent robotics.

2 Algebraic graph theory and proximity graphs

2.1 Basic notation

Assume that the multi-robot system consists of N agents, evolving in a d-dimensional state

space, i.e. that xi ∈ <
d, i = 1, . . . , N . Let V = {1, . . . , N} be a set of vertices in a graph G,

corresponding to the identity of the robots. Moreover, let the graph G = (V,E), where the

edge set E ⊂ V ×V is a set of unordered pairs of vertices. The interpretation is that an edge

(vi, vj) is in E if agents i and j can interact with each other.1

Graphs are combinatorial objects (sets and pairwise relations between elements in he sets).

In order to endow these objects with algebraically manipulable items, such as matrices, one

has to look at the area of algebraic graph theory. (See for example [5].) For example, some

standard matrices associated with G are the degree matrix D and the adjacency matrix A.

The degree matrix is a diagonal matrix D = diag(deg(v1), . . . ,deg(vN)), where deg(vj) is the

degree of vertex vj, i.e. the number of vertices adjacent to vj. We will let Nj denote the set

of adjacent, or neighboring nodes, i.e. Nj = {vi | (vi, vj) ∈ E} and hence |Nj | = deg(vj). The

adjacency matrix A = [aij] ∈ {0, 1}
N×N , where

aij =

{

1 if (vi, vj) ∈ E

0 otherwise.

Another matrix of fundamental importance in algebraic graph theory is the graph Lapla-

cian L = D −A, which has the following key properties:

� L = LT � 0, i.e. it is positive semi-definite.

� If the graph is connected, i.e. there exists a path between any two vertices, then

1In this note, we will assume that the edges are undirected, i.e. that (vi, vj) ∈ E ⇔ (vj , vi) ∈ E.

4

– The (ordered), non-negative, real eigenvalues of L satisfies 0 = λ1 < λ2 ≤ λ3 ≤

· · · ≤ λN .

– null(L) = span{1}, i.e. L1 = 0, where 1 = (1, . . . , 1)T .

These facts about the graph Laplacian will play an important role in subsequent sections.

2.2 Proximity graphs

The way geometry enters into the picture is through so-called proximity graphs [9]. The idea

here is that edges in the graph exist when the underlying geometry satisfies certain properties.

For example, if the robots, whose positions are x1, . . . , xN ∈ <
d, are all equipped with omni-

directional range sensor, with an effective range δ, the induced δ-disk proximity graph is

G(t) = (V,E(t)). Here the vertex set is V = {v1, . . . , vN}, and (vi, vj) ∈ E(t) ⇔ ‖xi(t) −

xj(t)‖ ≤ δ. An example of such a graph is given in Figure 1.

Figure 1: δ-disk proximity graph.

One should note that as the agents move around, neighbors (i.e. adjacent vertices) may

be introduced or lost. As such, the graph is no-longer a static structure and this type of graph

is referred to as a dynamic graph. Other types of recently studied proximity graphs are the

Gabriel graphs, Vornoi graphs, and DeLaunay graphs, just to name a few [9, 16].

3 Consensus problems

3.1 Static networks

The consensus problem is in essence a problem involving having multiple agents reach an

agreement about a scalar state value over a network. This problem is a canonical problem in

decentralized coordination and it can be solved quite elegantly using algebraic graph theory.

5

One instantiation of the consensus problem is the so-called rendezvous problem where a

collection of agents are supposed to meet at an unspecified common location. In particular,

we will assume that each agent is located at xi and that it can only measure the relative

position of its neighboring agents, i.e. it can measure xi − xj , ∀j ∈ Ni. Moreover, assuming

that each agent has single-integrator dynamics, i.e. ẋi = ui one reasonable control strategy

is to drive each agent towards the centroid of its neighboring set as

ẋi = −
∑

j∈Ni

(xi − xj),

where Ni is the set of robots adjacent to robot i. In fact, in the proceeding paragraphs, we

will assume that the underlying graph is static. Based on this assumption, the above equation

can be rewritten as

ẋi = −deg(vi)xi +
N

∑

i=1

aijxj ,

where, as before, deg(vi) is the degree of node i, and aij is the (i, j):th entry in the adjacency

matrix.

Now, if we for the sake of argument, assume that xi ∈ <, i.e. each robot evolves in a

one-dimensional space, then by recalling that L = D−A, the above equation can be rewritten

as

ẋ = −Lx,

where x = (xi, . . . , xN)T . Note that this is a standard, linear, time-invariant system whose

stability properties are entirely given by the eigenvalues to −L. But, we already know that

as long as G is connected, then L is positive semidefinite, and, as such, −L is negative

semidefinite. In fact, we know that −L has a single 0 eigenvalue and all other eigenvalues

are negative and real. As such, we have that the system is stable and that x will tend to

the null-space of L asymptotically. In other words, xi → α as t → ∞, ∀i, where α ∈ <.

This, by now widely utilized consensus-equation has appeared with a number of variations,

e.g. [6, 10, 13, 15].

The interpretation here is that all components of x (i.e. the scalar positions of all the

robots) will tend to the same value. And hence the rendezvous problem is solved. In fact, it

is easy to establish that the centroid

x̄ =
1

N

N
∑

i=1

xi

is static. And as a consequence α = x̄, i.e. all agents will tend asymptotically to the static

centroid of the robot team. In fact, in [11], it was shown that the rate of convergence to the

centroid is given by

‖x(t)− x̄1‖ ≤ ‖x(0) − x̄1‖e−λ2t,

6

where λ2 is the second smallest eigenvalue of the graph Laplacian.

If xi ∈ <
d one can directly note that it is possible to decouple the dynamics along each

dimension, i.e. if we let comp(x, j) = (x1,j , . . . , xN,j)
T , where xi = (xi,1, . . . , xi,N)T , then we

have
dcomp(x, j)

dt
= −Lcomp(x, j), j = 1, . . . , d.

As such, the previous argument can be applied in this case as well. An example of running

the consensus algorithm is shown in Figure 2, where 10 agents have to reach an agreement

(or consensus). Note that even though they all start out with different values, they quickly

converge to a common value based solely on local information.

Figure 2: Application of the consensus algorithm.

3.2 Dynamic networks

Note that so far we have assumed that G is connected and static. However, as shown in [6, 7,

8, 18], the above argument still holds as long as the graph stays connected. The connection

between combinatorics and geometry is thus made through the assumption that the underlying

geometry satisfies this key assumption. However, if we assume that the underlying graph is

a disk graph, this assumption may not always hold, as shown below, in Figure 3.

3.3 Linear formation control

One reason why the consensus idea is so powerful is that even though the rendezvous problem

may be of limited use per se, we can still apply the same thinking to a number of problem

7

−10 −5 0 5 10
−2

0

2
0 sec

−5 0 5
−2

0

2
0.1sec

−5 0 5
−2

0

2
0.2sec

−5 0 5
−2

0

2
0.3sec

−5 0 5
−2

0

2
0.4sec

−5 0 5
−2

0

2
0.5sec

−5 0 5
−2

0

2
0.6sec

−5 0 5
−2

0

2
0.7sec

−5 0 5
−2

0

2
0.8sec

−5 0 5
−2

0

2
0.9sec

Figure 3: A progression is shown where connectedness is lost even though the initial graph is

connected.

formulations, including coverage control (e.g. [1, 2]), containment control [4], distributed

filtering [12], and formation control, e.g. [3, 7, 15].

In this context, formations are specified in terms of a collection of desired inter-agent

distances dij, (i, j) ∈ D ⊂ {1, . . . , N}2. If we assume that these distances are feasible, i.e.

there exist points y1, . . . , yN such that ‖yi − yj‖ = dij , ∀(i, j) ∈ D, we can let the relative

errors be given by γi = xi − yi.

Now, by observing that if we can drive all relative errors to the same value, we have

achieved a pure translation of the points y1, . . . , yN . As such, one can attempt to solve the

formation control problem by simply running a consensus equation over the relative errors

[3, 7], as

γ̇i = −
∑

j∈Ni

(γi − γj).

But, noting that γ̇i = ẋi and γi−γj = xi−xj− (yi− yj), we get that each agent should move

as

ẋi = −
∑

j∈Ni

(xi − xj − ζij),

where ζi,j = yi − yj.

8

One should keep in mind that even though these are elegant results, they all hinge on

the fact that connectivity is preserved. And, as shown above, this is not always the case.

Recently, a number of papers dealing with the issue of preserving connectedness through

nonlinear weights have appeared [3, 7].

4 Controllability and anchor networks

Another area where graph-based methods for multi-agent coordination have proved useful are

for networks where some agents take on special, so-called leader (or anchor) roles [17].

4.1 Leader-Follower Structures

Assume that a single agent (let’s say robot N) is stationary while the others are executing

the consensus equation discussed in the previous section, as

ẋi = −
∑

j∈Ni
(xi − xj), i = 1, . . . , N − 1

ẋN = 0,

one can wonder if rendezvous (or consensus) is still achieved. The answer to this question is

yes, and, as long as the network stays connected, all agents will converge to the static leader

(or anchor) agent, as shown in [17].

This fact is interesting since it essentially allows us to control the network by moving the

leader agent around. In fact, as long as it moves slow enough (as compared to the convergence

rate of the consensus equation) we can expect the other agents to follow the leader agent rather

closely.

Moreover, if we have a number of stationary leader agents, it was shown in [4] that the

remaining agents will in fact converge to the convex hull spanned by the leader agents. This

observation moreover allows us to exert boundary value control of the network by changing

the shape of this convex hull, as was the case in [4], and as is illustrated in Figure 4.

Figure 4: The containment problem: The leaders move in such a way that the followers

remain in the convex leader-polytope for all times.

9

4.2 Graph-based controllability

If we assume that the network is static and that the first N − Nl agents are followers, and

the last Nl agents are leaders, we can decompose the graph Laplacian as

L =

[

Ll `

`T Lf

]

.

Here Ll ∈ <
(N−Nl)×(N−Nl), ` ∈ <(N−Nl)×Nl , and Lf ∈ <

Nl×Nl . If we as before, without loss of

generality, assume that xi ∈ <, i = 1, . . . , N , we can now let x = (x1, . . . , xN−Nl
)T . Moreover,

if we assume that the followers are executing the consensus equation while we can control the

position of the leaders directly (or it’s velocities - it does not matter from a controllability

point-of-view), we can let u = (xN−Nl+1, . . . , XN)T . The corresponding control system thus

becomes

ẋ = −Llx− `u.

One can thus ask the following question: For what topologies does the above equation

correspond to a completely controllably system? In other words, if (Ll, `) was a controllable

pair, we could drive the followers to whatever position we would like. And, as it turns out,

tools from algebraic graph theory once again help us understanding this issue.

Below, in Figure 5, are given three different graphs. The first two are not controllable and

the reason for this is that the followers are somehow symmetric with respect to the leader,

i.e. if x1(0) = x2(0) then x1(t) = x2(t), ∀t ≥ 0. This is not the case in the third case.

Figure 5: Two uncontrollable graph structures (left and middle) and one controllable (right).

Technically, what happened here is that in the uncontrollable cases, it was possible to

relabel the non-leader agents while still maintaining the same edge relations. Technically

speaking, such an adjacency preserving vertex permutation is called a graph automorphism.

In other words, ψ : V → V is a rgaph automorphism if (vi, vj) ∈ E ⇔ (ψ(vi), ψ(vj)) ∈ E.

And, in [14], it was shown that a sufficient (and in some cases necessary and sufficient)

condition for a single leader network to be uncontrollable is that there exists a non-trivial

(not the identity) graph automorphism, with ψ(vN) = vN .

For multiple leaders, things become more complicated, but analogous sufficient conditions

for uncontrollability have been found in [14] based on so-called equitable partitions of the

graph. (Interested readers are referred to [14].)

10

5 Conclusions

In this note, we report on some of the recent results that have emerged in the general area

of graph-based multi-agent control. In fact, by focusing purely on the combinatorial nature

of the network (and thus ignoring the geometric constraints on the inter-robot interactions)

a number of powerful results can be obtained. Most notably of these might be the consensus

equation that allow us to drive a scalar state value to the same value for the different robots,

in a completely decentralized fashion. This is possible as long as the network stays connected,

which is an assumption that one may or may not always be justified in making.

References

[1] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile autonomous agents

via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control,

51(8):1289–1298, 2006.

[2] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing

networks. IEEE Transactions on Robotics and Automation, 20(2):243–255, 2004.

[3] D. V. Dimarogonas and K. J. Kyriakopoulos. On the rendezvous problem for multiple

nonholonomic agents. IEEE Transactions on Automatic Control, 52(5):916–922, 2007.

[4] G. Ferrari-Trecate, M. Egerstedt, A. Buffa, and M. Ji. Laplacian sheep: A hybrid, stop-

go policy for leader-based containment control. In Hybrid Systems: Computation and

Control, pages 212–226, Santa Barbara, CA, March 2006. Springer-Verlag.

[5] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[6] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control,

48(6):988–1001, 2003.

[7] M. Ji and M. Egerstedt. Distributed coordination control of multi-agent systems while

preserving connectedness. IEEE Transactions on Robotics, 23(4):693–703, 2007.

[8] Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graphical conditions for

formation control of unicycles. IEEE TRansactions on Automatic Control, pages 121–

127, 2005.

[9] S. Martinez, J. Cortes, and F. Bullo. Motion coordination with distributed information.

IEEE Control Systems Magazine, 27(4):75–88, 2007.

11

[10] M. Mesbahi. On state-dependent dynamic graphs and their controllability properties.

IEEE Transactions on Automatic Control, 50(3):387–392, 2005.

[11] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory.

IEEE Trans. on Automatic Control, 51(3):401–420, 2006.

[12] R. Olfati-Saber. Distributed Kalman filtering for sensor network. IEEE Conference on

Decision and Control, December 2007.

[13] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked

multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[14] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent systems

from a graph-theoretic perspective. SIAM Journal on Control and Optimization, to

appear.

[15] W. Ren and R. W. Beard. Distributed Consensus in Multi-Vehicle Cooperative Control.

Communication and Control Engineering Series. Springer Verlag, New York, 2007.

[16] B. Shucker, T. D. Murphey, and J. Bennett. Switching rules for decentralized control

with simple control laws. American Control Conference, 2007.

[17] H. G. Tanner. On the controllability of nearest neighbor interconnections. IEEE Con-

ference on Decision and Control, December 2004.

[18] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and switching networks.

Transactions on Automatic Control, 52(5):863–868, 2007.

12

Grammars and their many incarnations

David Mumford∗

Outline

� Grammars in language (Panini’s Sanskrit grammar, 500 BCE? to Chomsky), the basic

ideas

� Generalizations to grammars of perception, plans and thoughts

� Grammars in Vision, Segmentation, Gestalt rules, perspective rules. (S.Geman, S.-C.

Zhu, J.-M. Morel).

1 Two parse trees

From the speech of a 2 1
2 year old:

∗Division of Applied Mathematics, Brown University, USA. E-mail: David Mumford@brown.edu.

13

2 The basic ideas

� Re-usable parts = subsets of the utterance that are meaningful in themselves and so

can be moved intact into other utterances.

� Give these labels to denote which parts are interchangeable

� Production rules, agreement

� Probabilities (ambiguities, ungrammatical speech, semantics vs. syntax)

3 Parsing is not unique: ambiguity

“Time flies like an arrow”

a. Time = subject, flies = verb OR

b. Time = verb, flies = object OR

c. Time = adjective, like = verb

4 Random branching trees incorporate probabilities

� Start at the root. Each node decides to have k children with probability pk, where
∑

pk = 1. Continue infinitely or until no more children.

� λ =
∑

kpk is the expected number of children; if λ ≤ 1, then the tree is a.s. finite; if

λ > 1, it is infinite with pos. prob.

� Can put labels, from some finite set L, on the nodes and make a labelled tree from a

prob. distr. which assigns probabilities to a label {λ} having k children with labels

(̂λ1, . . . , ̂λk).

� This is identical to what linguists call PCFG’s (=probabilistic context-free grammars).

For them, L is the set of attributed phrases (e.g. ‘singular feminine noun phrases’) plus

the lexicon (which can have no children) and the tree is assumed a.s. to be finite.

14

5 Non-local dependencies go beyond random branching trees

6 Context sensitive grammars

P (ω) = Q(L(root)) ·
∏

v∈V

PL(v)(R(v)) ·
∏

e=〈v,w〉∈E

Be (α(v), α(w), α(parents))

where

ω = parse graph

V = vertices

E = edges

L = labels

R = production rule

α = attributes

Simplest case (Grenander, Mark and Miller): add horizontal edges between adjacent ter-

minals of a context free parse tree and add bigram probabilities Be.

7 Parse graphs of other types

� In vision, nodes = parts of image which are naturally grouped and can occur (with some

changes) in other images.

� In robotics, nodes = parts of an action or plan which are naturally grouped and can

occur (with some changes) in other actions or plans.

15

Parts may include each other giving vertical edges. Parts may abut in space and time or

share attributes, hence horizontal edges.

8 Some comments on grammars in robotics

� The parse tree of plans and actions gives plans and actions a natural recursive structure.

� The attributes of each node include some sort of location in space-time and production

rules must enforce spatio-temporal compatibility

� Multiple production rules gives plans with alternate futures, overlays on space-time.

� Broca’s area in the brain is adjacent to fine hand motor control: is this an accident?

Both seem to have grammatical skills (P.Lieberman).

9 Are there parse graphs for all thoughts?

First, what is a thought? My version:

A constellation of objects, events and actions in one or more worlds

(here ’worlds’ are locations in space and time, past or future, either the presumed ’real’ world

or the internal world of an agent or a made up world)

My conjecture: a thought has a parse graph. A constellation has natural subsets, groupings

which re-occur in many other situations and these are the nodes. Like sentences and images,

which are made up of phonemes/pixels, an abstract thought has its smallest constituent

objects and actions. Some groupings are part of bigger ones, giving rise to edges. As in any

grammar, groupings have labels and attributes.

10 Example: ‘John turned out not to be as tall as he thought

he was’

16

11 Related but distinct graphs

� Actions have another sort of edge:

The ur-action: the thought of a baby in a cradle: “(I) hit rattle”

We get graphs with directed edges for causality. (Bayesian belief networks).

� Traditional language grammars use ‘slot-filler’ edges, and their specific productions.

� Semantic nets are graphs with ‘is-a’ edges, a partial ordering on the set of parse graph

labels.

� Roget’s thesaurus leads to the mother of all graphs among words, analogous to the

adjacency edges in the vision example, but mixing labels/attributes.

� Neurally, a thought could be instantiated by multiple cell-assemblies coordinated through

inter-area white matter fibres, which form a huge directed graph.

12 Grammars in Vision

� An image is 2 dimensional, so the right use of parse trees was not clear (cf. K.-S. Fu).

� The gestalt school of visual psychophysics (c.1900-1950) had studied how parts of images

are grouped.

� Computer vision is beginning to recognize how central this structure is.

13 The gestalt rules of grouping

(Metzger, Wertheimer, Kanisza,...)

Elements of images are linked on the basis of:

� Proximity and Similar color/texture These are the factors used in segmentation

� Good continuation This is studied as contour completion

� Parallelism, Symmetry, Convexity Higher order properties Reconstructed edges and

objects can be amodal as well as modal:

17

14 The simplest level of grouping: image segmentation

(3 images from the Malik database, each with 3 human segmentations)

18

15 Algebraic Multigrid algorithm of Galun, Sharon, Basri and

Brandt

The segmentation of a shell by progressive grouping, the set of colored regions at each

level forming the nodes of the grid at that level and the grouping following weights obtained

by aggregating statistics from below. We have a parse tree here, but needs pruning.

16 The next level of grouping: structuring shapes via their

axes

19

The medial axis encodes symmetry between opposite sides of objects. The rapid way to

decode shape:

17 The medial axis defines a decomposition of the shape into

parts, ‘ribbons’ and ‘blobs’ (Kimia)

18 The most characteristic grouping: good continuation of

lines

‘Edge detectors’ often fail to trace subjectively obvious contours (the man’s back); other

contours continue each other even though a middle part is occluded (amodal contours).

20

19 Images are 2D projections of 3D scenes. Occlusion is a

major clue and can be represented in a parse tree with

partial 3D attributes

An amodal contour is constructed across the man’s head continuing the sky/field bound-

ary. The dotted horizontal edges represent depth inequalities, ‘in-front-of’ links.

Another example

20 Some complex groupings

A face has bilateral symmetry. In addition this symmetry can be broken and this may be a

significant thing to note.

21

Incorporating all the gestalt grouping rules to formalize Renaissance Perspective (Zhu).

Here is a simple kitchen scene:

a) The tiled floor,

b) The cubical butcher block tabletop,

c) The frame around the picture,

are all discovered (Han, Zhu).

21 Stochastic grammars can be learned

Learning the potentials in the grammar model for clock faces. Successive stages correspond

to minimax learning of a) part positions, b) relative scales, c) the ‘hinge’ relation and d) the

containment relation (Porway, Yao, Zhu).

22

22 Conclusions

� Grammar is ubiquitous.

� Working out the parse is central to understanding the percept, thought or action.

� General grammars are, however, more complex: they need horizontal as well as vertical

edges, their stochastic models have many new terms which can be learned.

� I hope this can and will be developed in the robotics context.

23

24

Other Presentations

25

26

A POMDP approach to cooperative localization in

sparse environments

Francisco S. Melo∗ Isabel Ribeiro∗

Abstract

In this paper we discuss how communication can be used advantageously for coopera-

tive navigation in sparse environments. Specifically, we analyze the tradeoff between the

cost of communication cost and the efficient completion of the navigation task. We make

use of a partially observable Markov decision process (POMDP) to model the navigation

task, since this model allows to explicitly consider the tradeoff between information-

gathering actions and actions that move the robot towards the goal. By explicitly in-

cluding communication in the POMDP model as an information-gathering action with an

associated cost, we are able to optimally settle this tradeoff between the gain in informa-

tion arising from the use of communication and the corresponding cost. We illustrate our

results in a small test application.

1 Introduction

Consider a group of robots moving in a sparse environment described by a topological map

with M nodes. We refer to the nodes in the map as states. Each robot must navigate from

an initial state to a goal state, known only to that single robot. We admit that several

states in the environment have distinctive landmarks that the robots can generally perceive

through its sensors. However, until a robot is able to reach one such state and observe the

corresponding landmark, it must generally navigate through several other states receiving no

sensorial feedback from the environment (e.g., using only dead-reckoning).

In this paper we focus only on the problems of global localization and navigation/planning,

disregarding other problems such as motion control or obstacle avoidance. We model the nav-

igation task as a sequence of decisions: at each decision instant, each robot must choose from

∗Institute for Systems and Robotics, Instituto Superior Tcnico, Lisboa, Portugal. E-

mail: [fmelo,mir]@isr.ist.utl.pt. This work was partially supported by POS C that includes FEDER

funds. The first author acknowledges the PhD grant SFRH/BD/3074/2000.

27

a set of action primitives that control its movements. The robots are allowed to communicate

with each other and share sensorial information. This received sensorial data can then be

used by the robot to improve its localization in the environment.

However, if communication can be used to improve the sensorial capabilities of each robot,

it is also true that the communication process generally takes time and consumes resources.

Furthermore, it may happen occasionally that no useful information is received. Therefore,

it is important to realize in which situations is communication advantageous and in which

situations it should be avoided. For example, it may happen that the cost of communica-

tion is much higher than the benefit obtained from it. To settle this problem, we make use

of a partially observable Markov decision process (POMDP) to model each robot in the en-

vironment. POMDPs have successfully been used for topological navigation [5–7] and are

particularly amenable to the use of Markov localization methods [4]. Furthermore, POMDPs

explicitly consider the tradeoff between choosing actions to disambiguate the state of the

robot (information-gathering) and actions to move the robot towards the goal. By explicitly

including communication in the POMDP model as an information-gathering action with an

associated cost, we are able to optimally settle this tradeoff between the gain in information

arising from the use of communication and the corresponding cost. This appealing feature

of the POMDP framework has led some researchers to address active sensing using POMDP

models [8].

The paper is organized as follows. In Section 2 we introduce the general POMDP frame-

work. In Section 3 we apply this framework to model the particular problems addressed in

the paper. We introduce a simple illustrative example that is used throughout the paper to

illustrate the main ideas. Finally, Section 4 concludes the paper with a summary of the main

conclusions and points out several possible directions for future work.

2 Partially observable Markov decision processes

A POMDP is a tuple (X ,A,Z,P,O, r, γ), where X is the finite set of possible states of the

system, A is a finite set of control primitives and Z corresponds to a finite set of possible

observations. At each time instant t, a decision-maker chooses an action At depending on the

past history of events, causing the system to move from its current state Xt to state Xt+1.

We denote by Pa(i, j) the probability of moving from state i to state j under action a. As

soon as the transition occurs, the decision-maker receives an observation Zt+1 that depends

on the new state of the system. We denote by Oa(j, z) the probability of Zt+1 = z when

Xt+1 = j and At = a. Also, as soon as the transition occurs, the decision-maker is granted a

numerical reward r(i, a, j), verifying |r(i, a, j)| ≤ Rmax. The purpose of the decision-maker is

to choose the control sequence {At} so as to maximize the functional

V (b0, {At}) = E

[

∞
∑

t=0

γtr(Xt, At, Xt+1) | X0 ∼ b0

]

, (1)

28

where γ < 1 is a positive discount factor, b0 is the initial belief for the process and X0 ∼ b0

denotes the fact that X0 is distributed according to b0. The initial belief b0 is a probability

vector describing the initial distribution of the state of the system.

In this paper, we are interested in using a POMDP model to describe a robot moving

in a sparse environment described topologically. Using a POMDP model, the state-space X

corresponds to the set of sites in the environment. The state of the system at time t, Xt,

corresponds to the position of the robot in the environment at time t. The control primitives,

or actions, correspond to the high-level navigation commands that allow the robot to move

between sites in the environment and the observations correspond to the sensorial information.

With a POMDP model, Markov localization [4] can be implemented in a straightforward

way: at each time instant t the robot maintains a belief-vector bt, each component bt(i)

describing the probability of being in a particular state i ∈ X . This belief-vector is updated

componentwise as

bt+1(j) = Ba(b, z)j =

∑

i∈X bt(i)Pa(i, j)Oa(j, z)
∑

i,k∈X bt(i)Pa(i, k)Oa(k, z)
,

where At = a and Zt+1 = z and Ba(b, z)j represents the jth component of the vector Ba(b, z).

The optimal value function for a POMDP is defined as V ∗(b) = max{At}
V ({At} , b) and

verifies the following recursive relation

V ∗(b) = max
a∈A

∑

i,j∈X

b(i)Pa(i, j)

[

r(i, a, j) + γ
∑

z∈Z

Oa(j, z)V ∗
(

Ba(b, z)
)

]

.

The value V ∗(b) represents the total expected discounted reward received along an optimal

trajectory starting from the initial state distribution b. The optimal decision rule can be

defined by means of the mapping

π∗(b) = arg max
a∈A

∑

i,j∈X

b(i)Pa(i, j)

[

r(i, a, j) + γ
∑

z∈Z

Oa(j, z)V ∗
(

Ba(b, z)
)

]

.

is called the optimal policy for the POMDP (X ,A,Z,P,O, r, γ).

There are numerous methods in the literature to compute the optimal policy for a POMDP

(see the survey works [1,2]). In this paper we adopt the incremental prunning (IP) algorithm

[3]. Further details can be found in an extended version of this paper.

3 The POMDP model

We are interested in addressing the situation in which a group of robots moves in a sparse

environment, each robot trying to reach its goal location. We use a POMDP model to analyze

how the robots can benefit from efficiently using communication, by explicitly including com-

munication in the POMDP model as an information-gathering action with an associated cost.

29

Start Shuf

1

2

a, b

a, b

b

a

b

Obs:

Start

Obs:

Goal

Obs:

Void

a

Goal

a, b

a, b

Figure 1: A general sparse environment.

The optimal POMDP policy optimally settle this tradeoff between the gain in information

arising from the use of communication and the corresponding cost.

Two important observations are in order. First of all, communication between two robots

is modeled as a directed exchange of sensorial information and we assume communication to

be peer-to-peer and not broadcasted.

Secondly, even though we consider the existence of multiple communicating robots in the

environment, we do not address the interaction between these robots. In particular, the actions

of one robot do not affect the behavior of any other robot nor its ability to reach the goal.

Therefore, each robot can be modeled independently of the other robots and there is no need

to consider multi-agent decision models, such as Dec-POMDPs or stochastic games.

From the discussion above, it should be clear that we can focus our analysis on the

behavior of a single robot, considering the other robots as part of the environment. We resort

to a simplified model that encompasses all the fundamental features of the class of navigation

problems considered in the paper. This model is represented in Figure 1.

In this simplified model, a robot departs from the “Start” state by choosing any of the

two available actions a or b. It then moves to either state 1 or state 2 with equal probability.

The robot will then move to the “Goal” state by choosing a in state 1 or b in state 2 and

to the state marked as “Shuf”, otherwise. Upon reaching the Goal state, the robot receives

a reward of +20 and upon reaching the Shuf state, it receives a reward of −5. At the Shuf

state, independently of the robot’s action, its position is randomly reset to either state 1 or

2, with equal probability. In this model, the robot has 3 available observations: “Start”, in

the Start state, “Void”, in the states inside the dotted line, and “Goal”, in the goal state.

In terms of navigation in sparse environments, the set of three undistinguishable states

describes those situations in which the robot gets lost due to long periods of dead-reckoning.

Upon reaching the Goal state, the robot is back to a location with distinguishing features and

can use this information to localize once again. In this simplified model, the robot merely

ignores the existence of other robots and just chooses its actions so as to maximize its total

30

Table 1: Comparison between the performance of the cooperative and the non-cooperative

robots.
Test Total disc. reward

Non-cooperative 58.118 ± 22.185

Cooperative 81.498 ± 9.867

reward (reaching the Goal state as quiclly as possible).

We ran IP to compute the optimal policy for the problem above and tested the performance

of the obtained policy by running 2000 independent Monte Carlo trials, each consisting of a

10-time step trajectory. We then computed the average total discounted reward. The results

are reported in Table 1.

Notice that, after the first action, the robot will get lost between states 1 and 2 and

can only “bet” in one of the two possible actions a and b, hoping that it will lead to the

desired outcome. However, whatever action the robot chooses, it lead to a successful outcome

only 50% of the time. A particularly “lucky” run can bring quite a large reward, while a

particularly “unlucky” run can bring an alarmingly large penalty. This justifies the large

standard deviation observed in the results portrayed in Table 1. An important aspect of the

behavior just described is that it matches the one expected from a robot navigating in a

sparse environment: when it gets lost, it keeps moving in a direction where a recognizable

state is expectable.

We now describe how the model in Figure 1 is modified to include the existence of another

robot in the environment. In particular, and unlike the situation analyzed before, the robot

has now two further actions available, dubbed as “Comm 1” and “Comm 2”. None of the latter

actions affects the position of the robot in the environment. Instead, each action “Comm i”,

i = 1, 2, sends a message “from” state i. This message is sent to a second robot (Robot B)

who, upon receiving it, will send the first robot (Robot A) its sensorial information. Notice

that such communication actions only suceed in the corresponding states. This means that,

if the robot sends a message “Comm i” when at state j 6= i, there is a high probability of

receiving no reply. Finally, the robot receives a reward of −1 for every communication action.

Two important observations are in order. First of all, notice that there is a cost involved

in communication, even if less significant than getting into the “Shuff” state. Secondly, the

communication may not succeed. This can happen either because Robot A chose the “wrong”

communication action, or simply because Robot B can give Robot A no information on its

position (e.g., Robot B cannot “see” Robot A).

We ran IP and computed the optimal policy for this new scenario to compare the per-

formance of the robot with the one observed from the non-cooperative robot. As before,

we tested the performance of the optimal policy by running 2000 independent Monte Carlo

trials, each consisting of a 10-time step trajectory, and computed the average total discounted

31

0 1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

Communication cost

R
ew

ar
d

Evolution of total disc. reward with communication cost

Communication
too costly

Figure 2: Tradeoff between the cost of communication, and the value of information. Blue

line – Non-cooperative robot; Red line – Cooperative robot.

reward. The results are reported in Table 1.

Notice, first of all, the tremendous difference in performance between the two robots. The

robot relying on communication exhibited an average increase in performance of about 30%,

even receiving the negative rewards arising from communication. Furthermore, the optimal

policy in the presence of communication leads to a much more reliable performance, since the

observed standard deviation is much smaller.

Finally, to assess the explicit tradeoff between the cost of communication and the “value

of information”, we have conducted similar tests, varying the communication cost, rcomm,

between 0 and −10. The corresponding results are summarized in Figure 2, where the solid

lines correspond to the mean total discounted reward over 2000 independent Monte-Carlo

runs and the dotted line the corresponding standard deviation.

Notice that, as the cost of communication increases, the performance of the coopera-

tive (communicating) robot approaches that of the non-cooperative robot. The two perfor-

mances reach a similar level when the cost of communication is similar to that of getting

lost (i.e., rcomm = −5). An important aspect to emphasize is that, when rcomm = −5, the

performance of the optimal policy in the cooperative case is much more reliable than that of

the non-cooperative case. This is easily seen from the standard deviation observed. There-

fore, even at a high cost, the robot does rely on communication to navigate and this actually

translates in an actual improvement in terms of performance. Finally, for rcomm ≥ 6, com-

munication becomes too costly, as indicated in Figure 2. This means that the optimal policy

in both the cooperative and non-cooperative case are similar, as seen from the performance

observed in Figure 2.

32

4 Conclusions and future work

In this paper we addressed the problem of cooperative localization and navigation in sparse

environments. We showed that, even if it is possible for a robot moving in such an environment

to reach its goal without ever considering the existence of other robots in the environment,

communication can greatly improve its overall performance. We made use of a POMDP

model to explicitly consider the tradeoff between choosing actions to disambiguate the state

of the robot (information-gathering) and actions to move the robot towards the goal. By

explicitly including communication in the POMDP model as an information-gathering action

with an associated cost, we were able to optimally settle this tradeoff between the gain in

information arising from the use of communication and the corresponding cost.

Our results suggest several interesting avenues for future research. First of all, decision-

theoretic models as the one described in this paper can be further explored to analyze sit-

uations in which communication is used to combine the sensing information from different

sources, so as to optimize the total information obtained from the sensorial data. Secondly,

multi-agent variations of the model used here can also be used to address active sensor net-

works, by casting such networks as communicating, cooperative multi-agent systems.

References

[1] D. Aberdeen. A (revised) survey of approximate methods for solving partially observable

Markov decision processes. Technical report, National ICT Australia, 2003.

[2] A. Cassandra. Optimal policies for partially observable Markov decision processes. Tech-

nical Report CS-94-14, Dep. Computer Sciences, Brown University, 1994.

[3] A. Cassandra, M. Littman, and N. Zhang. Incremental pruning: A simple, fast, exact

method for partially observable Markov decision processes. UAI’97, pages 54–61, 1997.

[4] D. Fox. Markov localization: A probabilistic framework for mobile robot localization and

navigation. PhD thesis, University of Bonn, 1998.

[5] F. Melo and I. Ribeiro. Transition entropy in partially observable Markov decision pro-

cesses. IAS-9, pages 282–289, 2005.

[6] N. Roy and S. Thrun. Coastal navigation with mobile robot. NIPS 13, pages 1043–1049,

1999.

[7] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable envi-

ronments. IJCAI’95, pages 1080–1087, 1995.

[8] S. Whitehead and D. Ballard. Learning to perceive and act by trial and error. Machine

Learning, 7(1):45–83, 1991.

33

34

Task-space and null-space control design for

robotic-assisted minimally invasive surgery

Rui Cortesão∗ Walid Zarrad† Philippe Poignet† Olivier Company†

Etienne Dombre†

Abstract

This paper discusses the control design of robotic-assisted minimally invasive surgery

(MIS) with haptic feedback. The operational space control has a position-position telema-

nipulation architecture with the phantom in the loop, enabling telepresence in free-space

and contact. The null space control guarantees that surgical kinematic constraints are

fulfilled. Both task and posture control run active observers (AOBs) in Cartesian domain,

taking into account force, velocity and position signals. Experiments with a D2M2 (direct

drive medical manipulator) robot are presented1.

Keywords: Medical robotics, haptics, active observers, task space, null space.

1 Introduction

Robotic assisted surgery can greatly improve surgeons’ skills. Dedicated instruments that

enter in the human body through tiny holes can be tele-controlled through robotic systems,

enhancing perception and execution of surgery tasks. Haptic feedback provides realism to

contact interactions, distinguishing not only different objects, but also free-space to contact

(and vice-versa) transitions. Scaling on-line tactile feedback can magnify or reduce haptic

telepresence whenever needed, which is a key functionality for advanced surgery. Guaranteed

stability in contact with stiff objects is an important milestone (e.g. touching another instru-

ment or a rib for cardiothoracic surgery) which demands advanced control techniques, being

a major obstacle for practical applications. Nowadays, robotized MIS does not include force

feedback in the main control loop to avoid instability problems. The Da VinciTM system

∗University of Coimbra, Institute of Systems and Robotics, 3030 Coimbra, Portugal. E-mail:

cortesao@isr.uc.pt
†LIRMM-UMR CNRS, University of Montpellier II, F-34392 Montpellier cedex 5, France. E-mails:

{zarrad, poignet, company, dombre}@lirmm.fr.
1This paper has been published in part in [6].

35

from Intuitive Surgical is the state-of-the-art robotic system for MIS, in which surgeon hand

movements are scaled, filtered and sent to the robotic end-effector. This setup has been used

in many MIS, such as cardiac, urology and other abdomen surgeries, without haptic feedback.

One main feature is a mechanically created fixed point that coincides with the penetration

point. General purpose robotic manipulators can add this feature through proper control

design, resorting from geometric models or null space functions. Although the problems of

backlash and friction are highly reduced for direct-drive robots, nonlinear coupling among

links are significant and the motor dynamics is complex. Therefore, good dynamic models

and robust control techniques ought to be applied to achieve high performances.

The advantages over traditional (i.e., non-robotized) surgical practices include:

1. Augmented/scaled reality (e.g. motion and force augmentation or scaling for micro-

surgery);

2. Better comfort for the surgeon;

3. Real-time integration of intra-operative data (e.g. image-guided motion and force-

controlled motion);

4. Accurate path following;

5. Enhanced mobility. Extra degrees of freedom inside the body can be controlled by the

surgeon;

6. Compensation of physiological motions and surgical constraints;

7. Compensation for surgeon’s hand tremor;

8. Less pain and trauma and shorter recovery time;

9. Tele-surgery;

10. Training, learning and mentoring using virtual models;

This paper proposes a systematic control design for robotized MIS, based on operational

and null space techniques [9] linked to AOBs [4], [5]. It extends the work of [10] through

haptic feedback, eliminating gradient-based functions from the control design.

Section 2 introduces the experimental setup and the D2M2 kinematic and dynamic mod-

els. Task space control is addressed in Section 3, focusing on operational space techniques,

feedback linearization and AOB design. Null space control is discussed in Section 4, con-

sidering specific constraints of MIS. Experimental results are presented in Section 5. The

conclusions are summarized in Section 6.

36

Figure 1: Experimental setup. D2M2 robot tele-controlled by the Phantom for robotic

surgery. The medical instrument has 40 [cm] height.

2 Experimental setup

The master station has a Phantom 1.5 haptic device with six degrees of freedom (DOF) for

position and force. The slave robot is the D2M2 robot designed for beating heart surgery

experiments. It has five DOF with direct drive technology providing fast dynamics and low

friction. An ATI force sensor is attached to the end-effector. The D2M2 is connected to a

Pentium III at 500 [MHz] running under RTX/Windows 2000. The closed loop sampling time

h = 0.7 [ms], and the system time delay

Td = 5h (1)

was obtained experimentally. Master and slave stations are connected via UDP communica-

tion under Windows XP. A picture of the experimental setup is represented in Fig. 1.

2.1 D2M2 kinematic and dynamic models

The kinematic structure of the D2M2 is depicted in Fig. 2. The first joint is prismatic and

the others are revolute with scara-like disposition. To optimize the overall weight and to

boost the dynamic behavior, the motor for the third joint was placed on the prismatic axis,

affecting the D2M2 models. Introducing the virtual parallelogram represented in Fig. 2 and

also the active, passive and cut joint positions (q, qp and qc, respectively), the dynamic model

37

Figure 2: D2M2 Kinematic model. Active, passive and cut joints.

which has contributions from active and passive joints is of form [8]:

Mq̈ + v(q, q̇) + g(q) = τ. (2)

M is the mass matrix, v(q, q̇) is the vector of Coriolis and centripetal forces, g(q) is the gravity

term and τ is the generalized torque acting on q. For the D2M2 robot, g(q) is mechanically

compensated, being not used in computational design. Further details, including numerical

data, can be seen in [10]. In the experiments, the SymoroTM software has been used to

compute the kinematic and dynamic models.

3 Task space control

A picture of the teleoperation scheme for the task space is represented in Fig. 3. The task

is described in the base frame by 3D (three dimensional) Cartesian position/force vectors,

associated to the D2M2 end-effector. The system plant G(s) embeds operational space and

feedback linearization techniques. The phantom position xp scaled by βp is compared with the

end-effector position2 Xt, generating a desired force fi,t through the virtual coupling Kv. To

enhance the haptic feeling quality of stiff objects, Kv may increase while in contact. A constant

Kv establishes the trade-off between telepresence in contact, and robustness and comfortable

performance in free space [5]. yk is computed from force sensor measures projected into the

base frame. It tracks the reference fi,t with desired dynamics through the AOB, even if the

system stiffness Ks changes. Ks,n is the value of Ks used in the control design, being estimated

on-line from force data [5]. The human arm perceives fi,t scaled by βf , which anticipates the

real force. Telepresence is achieved if yk follows well fi,t. The main advantage of such position-

position control scheme is that the human can feel position errors in free-space, due to motion,

2The subscript ”t” is used for task space variables, whenever appropriate.

38

Figure 3: Task space control scheme with AOBs for each Cartesian dimension. The master

station, which includes the human and phantom, generates the 3D Cartesian force fi,t through

the virtual coupling Kv. βp scales the phantom position xp, and βf scales back fi,t to the

master station. G(s) has a damping term K2, and is controlled by AOB estimates [x̂r,k p̂k]
T

through the state feedback gain [Lr 1]. Ks is the system stiffness and L1 is the first element

of Lr.

robot collision (not necessarily at the end-effector), or human-robot interaction. The main

disadvantage is that impact events (high-frequency) at the end-effector are not accurately felt

by the human (in this case, feeding back yk would give better results). The AOB performs

control actions only based on force signals (i.e., rk and yk).

3.1 Task space dynamics

Equation (2) for the operational space is

ΛtẌt + Vt(q, q̇) + gt(q) = Ft, (3)

with

Ẋt = Jtq̇, (4)

Λt = (J+
t)T MJ+

t , (5)

Vt(q, q̇) = (J+
t)T v(q, q̇)− ΛtJ̇tq̇, (6)

τt = JT
t Ft (7)

and

gt(q) = (J+
t)T g(q). (8)

39

Jt, Ft and τt are respectively the Jacobian matrix, Cartesian force and task torque. Jt is

a truncated non-squared matrix (3 × 5), therefore, J+
t represents its pseudo-inverse. In the

experiments, the dynamically consistent pseudo-inverse has been used, i.e.

J+
t = M−1JT

t (JtM
−1JT

t)−1, (9)

which minimizes the robot kinetic energy [2], [8]. One advantage of truncated Jacobian

solutions for robots that are not intrinsically redundant is the possibility to utilize the null

space to optimize another objective function, very useful in robotic-assisted MIS. If external

manipulation of the orientation is desired, a full Jacobian can be used, with zero values for

the orientation vector (keeping the same task space controller)3.

3.2 Feedback Linearization

Whenever the robot is in contact, an external force Fe appears at the end-effector. Hence,

(3) can be written as

ΛtẌt + Vt(q, q̇) + gt(q) = Fc,t + Fe, (10)

where Fc,t is the commanded force. For the desired Cartesian-decoupled system plant

Ẍt = f?
t , (11)

Fc,t should be4

Fc,t = −F̂e + V̂t(q, q̇) + ĝt(q) + Λ̂tf
?
t . (12)

The estimation of Fe, F̂e, affects the control strategy [5]. The terms V̂t(q, q̇), ĝt(q) and Λ̂t can

be computed for a given robot. Introducing K2, Td and Ks,n, the desired system plant is5

G(s) =
Ks,n e−sTd

s(s + K2 e−sTd)
. (13)

Since Td is small (see (1)),

G(s) ≈
Ks,n e−sTd

s(s + K2)
(14)

for a wide range of frequencies. Its equivalent temporal representation is

ÿ(t) + K2ẏ(t) = Ks,nu(t− Td), (15)

where y(t) is the plant output (Cartesian force at the robot’s end-effector), and u is the plant

input (force). Defining the state variables x1(t) = y(t) and x2(t) = ẏ(t), (15) can be written

as
[

ẋ1(t)

ẋ2(t)

]

=

[

0 1

0 −K2

][

x1(t)

x2(t)

]

+

[

0

Ks,n

]

u(t− Td). (16)

3This solution is not appropriate for null space methods, though.
4The symbolˆmeans estimate.
5The analysis is done for each Cartesian dimension.

40

In compact form,
{

ẋ(t) = Ax(t) + Bu(t− Td)

y(t) = x1(t)
. (17)

Discretizing (14) with sampling time h [1], the equivalent discrete time system is

{

xr,k = Φrxr,k−1 + Γruk−1

yk = Crxr,k

, (18)

with

Td = (d− 1)h + τ ′, (19)

0 < τ ′ ≤ h, (20)

xr,k =
[

xk uk−d · · · uk−2 uk−1

]T

, (21)

Φr =



















Φ1 Γ1 Γ0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0



















, (22)

Γr =
[

0 0 · · · 0 1
]T

(23)

and

Cr =
[

1 0 · · · 0 0
]

. (24)

Φ1, Γ0 and Γ1 are given by

Φ1 = eAh = φ(h), (25)

Γ0 =

∫ h−τ ′

0
φ(λ) dλB (26)

and

Γ1 = φ(h− τ ′)

∫ τ ′

0
φ(λ) dλB. (27)

In our case, xk has dimension seven. The first two states represent the force and force deriva-

tive, respectively. The other five states appear due to Td. The continuous state transition

and command matrices are

φ(t) =







1 1−e−K2t

K2

0 e−K2t






and B =







0

Ks,n






. (28)

From (28), the computation of Φ1, Γ0 and Γ1 is straightforward.

41

3.3 AOB design

To accomplish model-reference adaptive control, the AOB reformulates the Kalman filter,

based on [4], [5]:

1. A desired closed loop system (reference model) that enters in the state estimation.

2. An extra equation to estimate an equivalent disturbance referred to the system input,

due to unmodeled terms including higher order dynamics, parameter mismatches and

unknown disturbances. An active state pk (extra state) describes the equivalent distur-

bance.

3. The stochastic design of the Kalman matrices for the AOB application. The first-order

AOB algorithm is summarized in the sequel.

Controlling (18) through state feedback from an observer, and inserting pk and p̂k in the loop,

the overall system can be represented by [5]

[

xr,k

pk

]

=

[

Φr Γr

0 1

][

xr,k−1

pk−1

]

+

[

Γr

0

]

uk−1 + ξk (29)

and

yk = Ca

[

xr,k−1 pk−1

]T

+ ηk, (30)

where

uk−1 = rk−1 −
[

Lr 1
]

[

xr,k−1

p̂k−1

]

. (31)

The stochastic inputs ξk =
[

ξxr,k

0wk

]T
and ηk represent respectively model and measure

uncertainties. The state estimate of (29) is

[

x̂r,k

p̂k

]

=

[

Φr − ΓrLr 0

0 1

][

x̂r,k−1

p̂k−1

]

(32)

+

[

Γr

0

]

rk−1 + Kk(yk − ŷk),

with

ŷk = Ca

([

Φr − ΓrLr 0

0 1

][

x̂r,k−1

p̂k−1

]

+

[

Γr

0

]

rk−1

)

(33)

and

Ca =
[

Cr 0
]

. (34)

42

The Kalman gain Kk reflects the uncertainty associated to each state, which is a function of

ξk and ηk [3], [7]. It is given by

Kk = P1k CT
a [Ca P1k CT

a + Rk]
−1

, (35)

with

P1k = Φn Pk−1 ΦT
n + Qk (36)

and

Pk = P1k −Kk Ca P1k. (37)

Φn is the augmented open loop matrix,

Φn =

[

Φr Γr

0 1

]

. (38)

The system noise matrix Qk is

Qk =

[

Qxr,k
0

0 Qpk

]

. (39)

Pk and Rk are respectively the mean square error and measurement noise matrices.

3.4 Computed torque for the task

From (3), (7), (10), (12) and Fig. 3, the commanded torque for the task τc,t is

τc,t = JT
t

{

−F̂e + V̂t(q, q̇) + ĝt(q)+ (40)

Λ̂t

(

rk − [Lr 1] [x̂r,k p̂k]
T −K2Ẋt

)}

.

In the experiments, Ẋt given by (4) was filtered by a discrete first-order low-pass filter. The

estimate F̂e is the first state of x̂r,k. The gravity ĝt(q) = 0 (see Section 2.1).

4 Null space control

For MIS, the task robot is teleoperated by a haptic device with force feedback, as explained

in Section 3. A secondary task is performed by a virtual null space robot, which attempts to

have always the trocar position on the medical instrument. Virtual null space robots6 can be

defined by operational space techniques, short-cutting inverse kinematics problems, enabling

the same control architecture of the task space. Although potential fields and associated

gradient functions are very popular cost functions, this paper proposes another method to

deal with MIS kinematic constraints, enabling posture control from 2D Cartesian positions

only.

6There is just one real robot that can be described by several virtual robots.

43

Figure 4: End-effector of task and null space robots (Ptool and Pnull, respectively). Trocar

projection onto the medical instrument (Pnull). Pinit is the starting point of the medical

instrument.

4.1 Null space robot

The difference between the null and task space robots represented in Fig. 4 is only at the

tool length. The end-effector of the task space robot is in Ptool, with constant tool length.

The virtual end-effector of the null space robot is in Pnull, with time varying tool length,

corresponding to the trocar projection onto the medical instrument. Both robots have the

same dynamic model (the weight of the medical instrument is small). Only the kinematic

models are slightly different. Pnull is computed from

Pnull = Ptool + (Pinit − Ptool)ρ (41)

with

ρ = −
(Ptool − Ptrocar) · (Pinit − Ptool)

|Pinit − Ptool|2
(42)

where · denotes the dot product and Pinit is the tool starting point. To assess the null space

robot behavior, the shortest distance between the medical instrument and trocar dtr can be

computed at each time step.

dtr =
|(Pinit − Ptool) ∧ (Ptool − Ptrocar)|

|Pinit − Ptool|
, (43)

where ∧ denotes the cross product.

4.2 Control design

The AOB control architecture for the null space is represented in Fig. 5. The robot is only

position controlled in xnull and ynull (2D Cartesian coordinates), with a constant reference

corresponding to the trocar position {xtr, ytr}. The virtual robot is synthesized by feedback

44

Figure 5: Null space control scheme with AOBs for each Cartesian dimension. Position

control architecture. L1,null is the first element of the state feedback gain Lnull = [Lr,null 1],

The trocar position is the input and the trocar projection onto the medical instrument is the

output.

linearization techniques in the null Cartesian space7. The same procedure of (2)-(12) has

been applied with minimal changes. The null Jacobian matrix Jnull is non-squared (2 × 5),

and takes into account the value of Pnull. The system plant for each null Cartesian position

is then

Gnull(s) =
e−sTd

s2
. (44)

In the time domain8

ẍnull = f?
null(t− Td). (45)

Defining x1,null(t) = xnull and x2,null(t) = ẋnull(t), (45) can be written as

[

ẋ1,null(t)

ẋ2,null(t)

]

=

[

0 1

0 0

][

x1,null(t)

x2,null(t)

]

+

[

0

1

]

f?
null(t− Td), (46)

The state space description of (46) has the same form of (16). Therefore, the subsequent

analysis (including the AOB design) done for the task space control applies to null space as

well. The computed torque for the null space robot τc,null is

τc,null = JT
null

{

−F̂e,null + V̂t,null(q, q̇) + ĝt,null(q)− Fi,null (47)

+ Λ̂null

(

rk,null − [Lr,null 1] [x̂r,k,null p̂k,null]
T
)}

,

where F̂e,null, V̂t,null(q, q̇) and ĝt,null(q) are the 2D truncated versions of F̂e, V̂t(q, q̇) and ĝt(q),

respectively. The induced Cartesian force on the null space robot due to the task Fi,null is

Fi,null = Λ̂tf
?
t,null, (48)

7The expressions of form ”null *” mean ”* for the null space robot”.
8The analysis is done for xnull, which is the same for ynull.

45

Table 1: AOB design parameters for each Cartesian dimension of both task and null space

robots. The uncertainty associated to each state is Qi,i with i = 1, · · · , 8. The units of Qi,i

and Rk are state dependent.

K2 Ks,n τd Q1,1 Qi,i Q8,8 Rk

units [Ns/m] [N/m] [s]

xt 5 300 0.05 10−9 10−12 10−3 100

yt 5 300 0.05 10−9 10−12 10−3 100

zt 5 300 0.05 10−9 10−12 10−3 100

xnull 0.0035 0.7 10−12 3500 100

ynull 0.0035 0.7 10−12 3500 100

corresponding to the 2D truncated value of Λ̂tf
?
t . This force is compensated in (47). Project-

ing (47) in the task null space and adding (40), the total commanded torque τc is

τc = τc,t + (I − JT
t (J+

t)T)τc,null, (49)

where I is the identity matrix [9].

5 Experiments

This section reports tracking capabilities of the overall system subject to trocar constraints.

It should be pointed out that at this design stage no real trocar has been inserted into the

system. A trocar point was defined in space, along which the tele-controlled task was carried

out. For the engineering design, system and AOB parameters have to be specified. In the

experiments, Kv = 1000 [N/m], βp = 0.7 and βf = 0.5. Lr and Lr,null have been computed

by Ackermann’s formula to achieve a critically damped response (for force and position,

respectively) with desired time constant τd. The five additional poles (see Section 3.2) were

mapped at the origin (z-domain). Table 1 summarizes the AOB design. Ks,n is kept low

for free space, allowing fast motions. For contact tasks, the closed loop bandwidth is small,

which is adequate for human manipulation. A higher null space bandwidth is required to

avoid embarrassing values of dtr. The stochastic estimation structure is more sensor based

for the null space (Q1,1 and Q8,8 are higher), reacting faster to position errors. Both schemes

follow model-reference adaptive control strategies, since the uncertainty associated with pk

(Q8,8 value) is much higher than for the other states. The absolute values of Qk and Rk are

irrelevant for the AOB Kalman gain. Only relative relations are important [4].

46

5.1 Experimental results

Figures 6 and 7 present tracking capabilites in free space with haptic feedback. Position errors

are felt by the user, increasing motion perception. 3D tele-manipulation is well followed by

the robot (Fig. 6), satisfying MIS kinematic constraints (Fig. 7). The root mean square

errors (γ) in [mm] for the task are

γ(xt) = 0.87, γ(yt) = 0.79 and γ(zt) = 0.49, (50)

and the mean value of dtr is 2.62 [mm].

6 Conclusions

This paper has presented a haptic control architecture for robotic-assisted MIS. The task

space is tele-controlled by a human operator through a haptic device. A position-position

teleoperation architecture has been used, where 3D Cartesian errors generate a desired force

through virtual coupling. Tracking errors below 1 [mm] have been achieved, while satisfying

MIS constraints. A virtual null space robot has been introduced, enabling posture control

to satisfy MIS kinematic constraints. 2D Cartesian position commands have been used for

the posture, without resorting to gradient-based functions, inverse kinematics or explicit

orientation commands. Induced Cartesian forces on the null space due to the task have been

compensated. Null space position errors are below 3 [mm]. Both controllers apply AOBs,

which run on top of operational space and feedback linearization techniques. Discrete state

space methods, augmented states and stochastic state estimation belong to AOB design.

For the engineering point of view, the control design is straightforward and the stochastic

parameters provide enough flexibility to add dynamic functionalities without affecting control

gains. Experimental results have shown good performance in free space motion subject to

trocar constraints.

References

[1] K. J. Åström and B. Wittenmark. Computer Controlled Systems: Theory and Design.

Prentice Hall, 1997.

[2] M. Benoit, M. Briot, H. Donnarel and. A. Liégeois, M. Meyer, and M. Renaud. Synthèse

de la comande dynamique d’un téléopérateur redondant. RAIRO, pages 89–103, 1975.

[3] S. M. Bozic. Digital and Kalman Filtering. Edward Arnold, London, 1979.

[4] R. Cortesão. Kalman Techniques for Intelligent Control Systems: Theory and Robotic

Experiments. PhD thesis, University of Coimbra, 2003.

47

(a)

(b)

(c)

Figure 6: Position tracking performance of the task space robot. 3D Cartesian motions

tele-controlled by the phantom, satisfying trocar constraints.

48

Figure 7: Position tracking performance of the null space robot. Shortest distance between

the medical instrument and trocar.

[5] R. Cortesão, J. Park, and O. Khatib. Real-time adaptive control for haptic telemanipu-

lation with kalman active observers. IEEE Trans. on Robotics, 22(5):987–999, October

2006.

[6] R. Cortesão, W. Zarrad, P. Poignet, O. Company, and E. Dombre. Haptic control design

for robotic-assisted minimally invasive surgery. In Proc. of the Int. Conf. on Intelligent

Robots and Systems (IROS), pages 454–459, China, 2006.

[7] A. Jazwinsky. Stochastic Processes and Filtering Theory, volume 64 of Mathematics In

Science and Engineering. Academic Press, 1970. (Edited by R. Bellman).

[8] W. Khalil and E. Dombre. Modeling, Identification and Control of Robots. Hermes

Penton Ltd, 2002.

[9] O. Khatib. A unified approach for motion and force control of robot manipulators: The

operational space formulation. Int. J. on Robotics and Automation, 3(1):43–53, February

1987.

[10] M. Michelin, P. Poignet, and E. Dombre. Dynamic task / posture decoupling for min-

imally invasive surgery motions. In International Symposium on Experimental Robotics

(ISER), Singapore, 2004.

49

50

A curious robot: an explorative-exploitive inference

algorithm

Kim Steenstrup Pedersen∗ Peter Johansen∗

Abstract

We propose a sequential learning algorithm with a focus on robot control. It is ini-

tialised by a teacher who directs the robot through a series of example solutions of a

problem. Left alone, the control chooses its next action by prediction based on a variable

order Markov chain model selected to minimise a MDL criterion based on generalised code

length Lα of the past robot-environment interaction. The user specifies the parameter α

and as a result, the robot can be directed towards exploratory behaviour if confidence in

the teacher is low (α < 0), and towards goal-seeking exploitive behaviour if confidence

in the teacher is high (α > 0). The novelty of the proposed method lies in the use of

generalised code length in the MDL model selection criterion.

1 Introduction

The control for a robot can be explicitly programmed for each task. However it would be

preferable that the robot possesses a general-purpose program that allows it to learn from

its experience. This way an explicit specification of the problem to be solved would not be

needed or rather, the specification can be made more and more explicit by showing the robot

additional examples of its intended behaviour. Behaviour by generalisation from example

must be guided by some principle. By choosing the principle appropriately one can achieve

either exploitive or explorative behaviour. In this contribution we characterise behaviour

in terms of model selection based on minimisation of the Rényi entropy [6]. The selection

uses the minimum description length (MDL) principle which is used in data compression and

model selection problems [7]. We model the interaction with the environment by considering

the pair of action, e.g. motor control, taken by the robot and the reaction from the envi-

ronment, e.g. input received on the robot’s sensors. Each robot action is a question to the

environment, and the answer is the next input to the robot. Viewed this way, we group the

sequence of alternating outputs and inputs into compound symbols - into action-input pairs.

Based on the robot’s previous experience - its sequence of compound action-input pairs - it

∗Dept. of Computer Science, University of Copenhagen, Denmark. E-mail:kimstp@diku.dk.

51

makes a prediction of the next compound symbol using the control algorithm. The output

component of the predicted compound symbol becomes its action, and the input component

is the expected next input. The next compound symbol in the case that prediction of the

next input fails, indicating insufficient teaching, is to combine the predicted action (which

has already been executed) with the actual (but unexpected) input. In an initial learning

phase the teacher guides the robot through repeated examples of problem solving, for in-

stance by remote control. When teaching is over, the robot determines its next moves by the

inferred model. We make the assumption about the robot-environment interaction, that it is

a stationary and ergodic random process. And we model the interaction as a variable order

Markov chain with finite discrete state space. We use the 2-pass Context algorithm [5] for

minimisation of the proposed MDL criterion.

Using variable order Markov chain models for prediction of future behaviour has previously

been proposed by among others Ron et al. [9]. Csiszar et al. [3] and Bühlmann [1] have

previously studied the Context algorithm for model selection and have investigated different

optimality criteria, also studying the effect and selection of inherent construction parameters.

The novelty in our work is that we apply generalised code length with a meta parameter in

order to obtain a continuum of behaviour.

2 Rényi’s entropy and generalised code length

We represent the robot-environment interaction over time as a discrete time sequence x
n =

x1x2 · · · xn of length n, where each symbol xt ∈ Σ represents a particular action-input pair. We

assume that both actions and input are discrete, and the alphabet Σ representing all possible

action-input pairs is finite |Σ| = M . The set of all suffixes of the sequence x
n ∈ Σn is defined

as Suffix(xn) = {xi · · · xn|1 ≤ i ≤ n}∪ {λ}, where Σn denotes the set of sequences of length n

and λ denotes the empty sequence. The elements of this set are called suffixes of xn. A suffix is

called proper if it is not equal to x
n. We will use the terms suffix and context interchangeably.

The set of all prefixes of x
n ∈ Σn is defined as Prefix(xn) = {x1 · · · xi|1 ≤ i ≤ n} ∪ {λ} and

the elements of this set are called prefixes to x
n.

The interaction may be subject to noise, e.g. noisy motor control (action) and noisy

sensory measurements (input). We will therefore consider the robot-environment interaction

as a discrete time discrete state random process {Xt}t≥1, where the random variables Xt takes

values from Σ. A specific sequence x
n may be thought of as a particular realisation of the

random process from time t = 1 to t = n. Since Σ is discrete, we may write the probability of

the i’th symbol, i ∈ Σ, as pi ≡ P (X = i). We will furthermore assume that the past robot-

environment interaction is a homogeneous ergodic (irreducible positive recurrent) variable

order Markov chain. Hence learning a task reduces to estimating a Markov chain model.

Without the last assumption we cannot expect to learn a model from a single realisation of

52

x
n.

A Markov chain is defined by a set of states S, the probability distribution of the initial

state and probabilities on the allowed transitions. The probability of the transition from

state si to sj is denoted by pij and has the property that
∑

j pij = 1. In case the conditional

probability P (sj |si) is defined, whenever P (si) 6= 0, we have pij = P (sj |si). We identify the

states of a variable order Markov chain with suffixes, such that sj ∈ Σkj denotes the j’th

state of order kj . A transition between two states s,w ∈ S, |s| = k1 and |w| = k2, is only

possible, if a proper suffix v ∈ Suffix(s) exist such that v is a prefix of w, i.e. v ∈ Prefix(w).

Let τs = {w|v ∈ Suffix(s) s ∧ v ∈ Prefix(w)} denote the set of possible states to which we

can transition from the state s.

Let X ∈ Σ, |Σ| = M , be a discrete random variable with probability distribution

p1, . . . , pM which we want to encode using some finite code alphabet Λ, |Λ| = D. We will

in this paper assume without loss of generality that the coding alphabet Λ = Σ and Σ to

be binary and let log denote the base 2 logarithm. Rényi [6] introduces a generalisation of

Shannon entropy [10] known as the Rényi or generalised entropy of order α defined as,

Hα(X) =
1

1− α
log

(

M
∑

i=1

pα
i

)

, α > 0 , α 6= 1 . (1)

The Rényi’s entropy Hα(X) is a generalisation of the Shannon entropy H(X) = −
∑

i pi log pi,

because Hα(X)→ H(X) as α→ 1.

Campbell [2] introduces a generalised coding theorem concerning Rényi’s entropy. The

theorem is stated in terms of the generalised average L(t) = φ−1 (
∑

i piφ(li)) of the code

lengths li of symbol i ∈ Σ with φ(x) = 2tli and φ−1(x) = 1
t
log(li), where 0 < t < ∞ and

α = 1/(t + 1). The theorem states that for α = 1/(t + 1) it is possible to make the expected

code length L(t) of order t as close as desired to Hα by encoding sufficiently long sequences

and Hα ≤ L(t) for all choices of code books. Campbell [2] shows that in order for L(t) = Hα,

the code length of the symbol i ∈ Σ must be

lα(i) = − log

(

pα
i

∑M
j=1 pα

j

)

= −α log pi + log(
M
∑

j=1

pα
j) . (2)

We will call lα(i) the generalised code length of order α. For α = 1, lα(i) reduces to the

Shannon code length l(i) = − log pi. We can interpret (2) as stating that generalised coding

arises from using the Shannon code length based on the modified distribution pα
i /
∑M

j=1 pα
j .

By using the modified distribution we may put different weight to the different symbols

dependent on our choice of α, e.g. we may put a limit to the maximum code length we want

to consider.

53

3 Robot control by generalised MDL

We will construct a variable order Markov chain model of the past robot-environment inter-

action and base the prediction of future interaction on this model. To select this model we

use the 2-pass Context algorithm proposed by Nohre [5], a 2-pass variant of the algorithm

Context by Rissanen [7]. The model selection is based on the MDL principle [8] in which

a model is selected from a class of models such that it minimises the combined length of

the description of both the data as well as the model itself. Instead of using the standard

definition of MDL as in [5, 7], we propose to use a definition based on generalised code length.

The Context algorithm represent the past interaction sequence x
n by a suffix tree represen-

tation of the suffix set Suffix(xn). Every node in the suffix tree correspond to a suffix s of the

past x
n. The root node represent the empty sequence λ. The suffix s = s1 · · · sk ∈ Suffix(xn)

is represented as the node reached by traversing the tree starting at the root and moving to

the child node representing s1 and so forth down until sk is reached. Hence, the sequence s

points to a node at depth k in the suffix tree of x
n. The Context algorithm selects a model of

the past by pruning the tree, thereby selecting a subset of the suffix set S ⊆ Suffix(xn) which

forms the state set S of the Markov model. In the following, we distinguish between the

suffix tree and the model tree. The suffix tree is the representation of the robot-environment

interaction up to now and the model tree is the result of the model selection. The leaves of

the model tree form the model state set S.

As part of building and selecting the model we need to estimate state transition probabil-

ities. This is done on a per node basis and we assume that the suffix tree is complete and use

the Laplace probability estimator to handle the case of unseen events. If the sequence was gen-

erated by a variable order Markov chain with state set S, the probability estimates in nodes

corresponding to states si ∈ S will correspond to estimates of the transition probabilities

pij = P (sj |si) of the Markov source, where sj ∈ S ∩ τsi
.

In the Context algorithm [5, 7], the code length of a context, i.e. a node in the suffix tree,

is computed based on predictive coding of the memory-less continuation after the context.

Form a sequence xs of the symbols following immediately after every occurrence of the node

sequence s in x
n. E.g. let x

n = 10100101 and s = 10, then xs = 101. It is clear that

xs represents all possible continuations after the sequence s. This allows us to compute

the probability estimates of pij using the Laplace estimator and by collecting the frequency

statistics of the symbols in xsi
. Assuming x

n was generated by a Markov source, the symbols

in xs are samples from conditional independent random variables given the context s.

The generalised code length of the continuation xs of s can be derived from (2) to be

lα(xs) = −α log(ν0!ν1!) +

ν1
∑

i=1

log(iα + 1) +

ν0
∑

j=1

log((ν1 + 1)α + jα) , (3)

where νi denotes the frequency of occurrence of the ith symbol. When α = 1, this expression

54

reduces to the predictive code length of xs based on Shannon code length l(xs) = − log P (xs)

as used in [5, 7].

We can now compute the total generalised code length of the sequence x
n given a model

tree T with state set ST , i.e. the set of leaf nodes in T , by summation of lα(xs) over all states

s ∈ S of the model Lα(xn|T) =
∑

s∈ST
lα(xs). Generalising the 2-pass Context [5] MDL

formalisation, we get the following optimisation problem with respect to the total generalised

code length,

Lα(xn|T) ≡
∑

s∈ST

lα(xs) (4)

Lα(xn, T) ≡ Lα(xn|T) + L(T) (5)

T̂x
n,α ≡ arg min

T
Lα(xn, T) (6)

where L(T) is the code length of the model and Lα(xn, T) is the MDL criterion. The 2-pass

Context algorithm will solve the minimisation problem of (6).

The effect of α on the model selection only manifests itself through the total generalised

code length Lα(xn|T). From (3) we see that Lα(xn|T) → ∞ for both α → ∞ and α →

−∞. For α � 0, the selected model will have a tendency to include states which has a low

probability of occurrence in the training sequence, where as α� 0 will lead to a model that

include the most probable states from the training sequence.

The cost of encoding the model tree T should include both the cost of encoding the tree

structure as well as the probability estimates in every node in the model tree. We define the

code length of the model T as L(T) ≡ |T |+ L(p), where |T | denotes the cost of encoding the

tree structure. We can choose a code for the tree structure such that we only need 1 bit per

node in the tree. The term L(p) is the cost of encoding the probability estimates at every

node in the model tree T . Since we in practise are operating with finite length sequences it

is important to encode the probability estimates taking into account the uncertainty of the

estimates. The probability estimates p̂i can be encoded with precision δ = 2−q by p̃i =
[

p̂i

δ

]

δ,

where [·] denotes rounding towards the nearest integer and q denotes the number of significant

bits. To include the estimator error we choose the precision in terms of the variance σi of

the estimator p̂i. The variance σi of the Laplace estimator p̂i is straightforwardly derived by

using the binomial distribution of the frequency counts νi. For every symbol we therefore

encode the two integers
[

p̂i

σi

]

and [− log σi]. The case where the context continuation xs is

empty will be encoded by a constant. We can encode the integers using an Elias code [4]

which allows us to formulate the code length of encoding the model T at a single node as

l(T) = 1+ l(p) where l(p) = 4 log∗(2) if n = 0, otherwise l(p) =
∑1

i=0(log
∗ p̂i

σi
+log∗(− log σi)).

Here log∗(x) = log(x)+ log log(x)+ . . . including all positive terms, and we ignore the integer

truncation and a constant cost found in the Elias code [4]. In order to ensure a symmetric

code length, this has to be done for the probability estimates p̂i for all symbols i ∈ Σ in each

node of the model tree.

55

The prediction part of our inference algorithm is based on the selected model of the past

interaction sequence. In order to make a prediction the algorithm has to select a model node

context. This prediction node search goes through the suffix set of x
n, Suffix(xn), starting

with the longest proper suffix of x
n. If the longest proper suffix node is not in the model

tree, consider the second longest proper suffix of x
n, and so forth until a model tree node is

reached. The algorithm will make a prediction of the future robot-environment interaction by

sampling the next symbol from the distribution pα
i /
∑

j pα
j at the selected model tree node.

If s is the selected node, then pi is the distribution over the symbols following after s, i.e. the

distribution over the child nodes of s, pi = P (i|s) for all i ∈ Σ.

The optimal probability distribution on symbol code length li is 2li = pα
i /
∑

j pα
j , which

leads to the per symbol generalised average code length approaching the generalised entropy

L(t) = Hα. With this in mind, it is consistent with our model selection criterion to use

the distribution pα
i /
∑

j pα
j for doing predictions. Furthermore, the α parameter gives us a

continuum of robot behaviour. Letting α→∞ leads to deterministic prediction of the most

probable symbol i, i.e. îmax = arg maxi∈Σ pi, because
pα

i
∑

j pα
j
→ δ

îmax
(i), where δ

îmax
(i) denotes

the Dirac distribution with all its probability mass at îmax. This will lead to an exploitive

behaviour of the robot, where it will prefer the most likely part of state space. The robot

will prefer to do as the teacher has programmed it to do. In the case α → 0, the prediction

distribution reduces to the uniform distribution,
pα

i
∑

j pα
j
→ 1

M
, α → 0. When α → −∞ the

prediction again becomes deterministic leading to prediction of the most unlikely symbol,

îmin = arg mini∈Σ pi, because
pα

i
∑

j pα
j
→ δ

îmin

(i). This will lead to an explorative behaviour

of the robot where it will prefer the unlikely parts of state space. The robot will predict

sequences of action-input symbols which it has not tried before and will do the opposite of

what the teacher has programmed.

4 Summary

We presented a novel sequential learning algorithm based on an extension of the 2-pass Con-

text algorithm [5]. The extension consists in using a MDL criterion based on generalised code

length, whereby we introduce the α parameter for controlling the behaviour of the algorithm.

For α� 0 the algorithm is explorative and for α� 0 the algorithm is exploitive. We assume

that the source is a stationary ergodic random process, and our method selects a model of the

source from the class of homogeneous ergodic variable order Markov chain models. Prediction

of future robot-environment interaction is based on the learnt model.

56

References

[1] P. Bühlmann. Model selection for variable length markov chains and tunning the context

algorithm. Annals of the Institute of Statistical Mathematics, 52:287–315, 2000.

[2] L. L. Campbell. A coding theorem and Rényi’s entropy. Information and Control,

8(4):423–429, 1965.

[3] I. Csiszar and Z. Talata. Context tree estimation for not necessarily finite memory

processes, via bic and mdl. IEEE transaction on Information Theory, 52(3):1007–1016,

March 2006.

[4] P. Elias. Universal codeword sets and representations of the integers. IEEE Transaction

on Information Theory, 21(2):194–203, 1975.

[5] R. Nohre. Some Topics in Descriptive Complexity. PhD thesis, Linköping University,

1994. Chapter 3.

[6] A. Rényi. Some fundamental questions of information theory. MTA III. Oszt. Közl.,

10:251–282, 1960.

[7] J. Rissanen. A universal data compression system. IEEE Transaction on Information

Theory, 29(5):656–664, 1983.

[8] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.

[9] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic au-

tomata with variable memory length. Machine Learning, 25:117–149, 1996.

[10] C. E. Shannon. The mathematical theory of communication. Bell Sys. Tech. Journal,

27:379–423,623–656, 1948.

57

58

A neuro-inspired architecture for goal inference and

decision making in joint action tasks
∗

Nzoji Hipólito† Lúıs Louro† Estela Bicho† Wolfram Erlhagen‡

Abstract

We propose a cognitive control architecture, based on neuro-plausible principles, for

autonomous robots in the context of a joint search task. It endows the robots with cog-

nitive skills like memory, prediction and decision making. As a mathematical framework

we use a coupled system of dynamic neural fields. It represents a simplified model of a

joint action circuit in which task-relevant information is represented by self-stabilized ac-

tivation patterns of local neural populations. The architecture is validated using a robot

simulation environment. In particular, we show the impact of memory and prediction on

the ability to infer the action goal of the partner even if occluding surfaces temporally dis-

rupt the continuity of sensory information. This goal inference capacity is essential for an

efficient team behavior since it allows the observer to select an adequate complementary

action.

Keywords: Dynamic Field Theory, Neuronal Representation, Cognitive Robotics.

1 Introduction

One of the major challenges for today’s robotics is the development of autonomous agents

that are able to engage in joint action tasks with humans or other robots in natural work

environments. Successful joint action requires a set of high-level cognitive functions. Most

importantly, the robot should take into account the consequences of an action displayed by

a partner when deciding about its own future actions in a joint task. To allow for a fluent

team behavior, this decision process very often requires to register the intention of the partner

way before the observed motor act is completed. The selection and timing of an appropriate

∗The present research was conducted in the context of the fp6-IST2 EU-project JAST (proj.nr. 003747)
†Dept of Industrial Electronics, University of Minho, Portugal. E-mails: nhipolito@dei.uminho.pt,

llouro@dei.uminho.pt, estela.bicho@dei.uminho.pt
‡Dept of Mathematics for Science and Technology, University of Minho, Portugal. E-mail:

wolfram.erlhagen@mct.uminho.pt.

59

complementary action thus critically depends on the ability to predict and anticipate effects

of observed actions.

Our group develops and tests robot control architectures for joint action tasks that are

inspired by our understanding of the cognitive and neural processes supporting social inter-

actions in humans and other primates. We believe that such a neuro-cognitive approach will

ultimately allow to realize the ambitious goal of creating socially relevant robots. In recent

years, an increasing number of neurophysiological and neuroimaging studies have directly

investigated perception and action in a social context. A circuit of cortical areas defined

by neuronal populations with specific functionalities has been identified that is believed to

implement a mapping from an observed intentional action onto the motor representation of

an action to be executed (for a discussion see [6].

For the robot control architecture in the context of a joint action task we adopt the central

idea that this mapping is controlled by a representation of the partner’s action goal. Specific

motion cues trigger this goal representation which in turn biases the observers’s decision for

a complementary action. A second characteristic of the proposed control architecture, which

reflects insights from neurophysiology, concerns the nature of the representations. A common

feature of many neural populations in higher brain areas is that the population activity may

persist over extended periods of time upon cessation of the external input which has initially

triggered the activity pattern. It is commonly believed that self-sustained activity is linked to

cognitive functions like working memory and decision making [9]. A robot working in cluttered

and dynamic environments is frequently faced with the problem that task relevant objects or

the partner, move out of sight due to occluding surfaces for instance. The temporarily lack

of direct sensory information should of course not disrupt the capacity to plan and maintain

a goal-directed action (e.g., heading toward the hidden object) or to infer the action goal of

the partner.

As a mathematical framework to model the evolution of the neural activity patterns in

the joint action circuit, we use Dynamic Neural Fields (DNFs) ([1, 13]; for a recent review

of the mathematical analysis see [4] ; for previous applications in the robotics domain see,

e.g., [11, 3, 10, 7]). The attractor dynamics of DNFs is well suited to model the integration

over time of input from connected populations and sources external to the circuit. When a

certain activation threshold is reached, the recurrent excitatory interactions between neurons

start to dominate the field dynamics leading to self-sustained patterns. The capacity to form

decisions is in turn mediated by lateral inhibition.

Here we present simulation results of a validation of the dynamic control architecture in

a joint search task that involves two mobile robots equipped with a vision system, a high-

degree of freedom arm and a hand. The joint search task consists in finding different objects

distributed in the workspace with the goal to transport them to a predefined place. The

primary challenge for the team is an efficient division of the search space among the part-

60

ners. However, depending on the size of the object a direct physical interaction of the two

robots may be necessary. We do not allow for a direct communication of intentions among

the robots since we want to use the same control architecture also in joint action tasks that

include humans.

The paper is organized as follows: Section 2 introduces the proposed neuro-plausible

architecture. Section 3 presents the coupled system of dynamic neural fields for the imple-

mentation of the cognitive functionalities. The results of the joint search task are described

in section 4. The paper ends with a discussion and a short outlook.

2 Neuro-inspired control architecture

In the search task, multiple objects may be simultaneously sensed. As a consequence, each

robot must be able to make a decision about the object to-be-fetched next. To guarantee for

an efficient team strategy, the control architecture should establish sensory-motor mappings

that go beyond the simple rule to move towards the most salient, that is, closest object.

The decision process has to take into account the interpretation of the observed motion of

the partner robot in terms of its current goal. As a simple strategy for the present search

task, the goal inference may be based on estimating the change over time of the relative

distance between the moving robot and objects in the workspace. In cluttered and dynamic

environments this necessarily requires the ability to extrapolate past trajectory information

to future positions that may be occluded from view. Once a potential target object has been

inferred, the size of the object is an important cue that biases the decision about an adequate

complementary behavior. For a small size object, which can be carried alone, the observing

robot should look for another small object in a different part of the search space. For a large

object, which can only be manipulated together, the decision should be to head towards that

object to help carrying it.

Fig 1 presents a sketch of the multi-layered architecture that controls the action of the

observing robot R1. In the object memory layer (ML) the information about the location

of large and small objects is stored, whereas the action observation layer (OL) represents

the position of the partner robot R2. Both information sources are integrated in the action

simulation layer (ASL) which encodes the prediction about the object the partner is currently

heading to. This prediction biases the decision represented in the goal layer (GL) about the

next action of the observer. Finally, GL is linked to an action execution layer (AEL) which

contains a sequence of movement primitives necessary to achieve the desired end state (e.g.,

approaching, grasping, transporting and placing the object at a predefined position). In

the present simulation examples, our focus is on the approaching phase since we are mainly

interested in studying how inferred goals of the partner robot affect the object selection

process.

61

Figure 1: Schematic view of the multi-layered control architecture together with the con-

nectivity between layers (arrows). In the Observation layer, the visual description of the

motion displayed by the partner robot R2 is represented and stored. The Objects Memory

layer contains populations which memorize the visual information about the location of small

(sublayer SO) and large objects (sublayer LO). The Action Simulation layer combines

these information to make a prediction about the object R2 is currently heading to. The

Goal layer represents the decision of the observer R1 which object to fetch next. This de-

cision takes into account the inferred goal of R2. The mapping between the representations

of small objects in layers ASL and GL is inhibitory (dashed arrow), meaning that R1 should

not select the same object. The mapping between large objects is excitatory (solid arrow),

meaning that the two robots should directly cooperate in manipulating these objects. The

Action Execution layer contains a representations of the movement primitive ”approaching

a goal object”. This primitive controls the motor commands for the mobile platform.

3 Dynamic field model

To model the self-stabilized representations in each layer, we use the mathematical frame-

work of dynamic neural fields. It has been originally introduced to describe the formation

of localized spatio-temporal patterns in neural tissue [1]. For the robotics application we as-

sume that the fields encode the parameter direction in the horizontal plane relative to a fixed

frame of reference. Our motivation comes from the so-called populations of head-direction

cells originally found in freely moving rats [12, 14]. Each individual head-direction cell has its

maximum firing rate at only one particular direction, and firing rates decrease monotonically

on either side as the angular distance to the preferred direction increases. Thus for a whole

population of head-direction cells a particular direction is represented by a localized firing

pattern in the direction space. We adopt this population coding idea for the robotics appli-

cations. It is important to note, however, that according to the functionality of the different

layers of the control architecture, the self-sustained patterns have different meanings (e.g.,

representing object memory or decisions).

62

In each layer i, the activity ui(φ, t) at time t of a neuron representing direction φ is

described by the following integro-differential equation of Amari-type [1]:

τi
δui(φ, t)

δt
= −ui(φ, t) + Si(φ, t)

+

∫ 2π

0
wi(φ − φ′)fi(ui(φ

′, t))dφ′ + hi (1)

where the constants τi > 0 and hi < 0 define the time scale and the resting level of the

of the field dynamics, respectively. The integral term describe the intra-field interactions.

It is assumed 1) that interaction strength, wi(φ, φ′), between any two neurons φ and φ′

depends only on the distance of their preferred directions, and 2) that nearby cells excite

each other, whereas separated pairs of cells have a mutually inhibitory influence. For the

present implementation we have used the following kernel of lateral inhibition type:

wi(φ) = A exp(−φ2/2σ2) − winhib (2)

where winhib > 0 is a constant and A > 0 and σ > 0 describe the amplitude and the standard

deviation of a Gaussian, respectively. The transfer function f(u) is chosen of sigmoidal shape

with slope parameter β and threshold uO:

fi(ui) =
1

1 + exp (−β(ui − u0))
. (3)

The parameters describing the interaction kernel are adjusted to guarantee for a bi-stable

regime of the field dynamics in which a homogeneous solution coexists with a localized pulse

solution. Starting from the homogeneous resting state, the field dynamics may evolve in

response to a localized input Si(φ) of adequate intensity a self-stabilized pulse. The input

Si(φ, t) to field i comes from connected fields j or from sources external to the circuit. To

simulate the input from the real vision system to layers OL and ML, Gaussians are used for

the examples shown here. It is assumed for simplicity that 1) intra-field connections exist only

between corresponding neurons representing the same preferred direction φ, and 2) that the

input strength is proportional to the activity f(uj(φ, t)). The summed input to a field in layer

i from all connected fields is given as Si(φ, t) = k
∑

j ±fju(φ, t). All intra-field connections are

excitatory (+) except the connections between the fields representing small objects (SO) in

layers ASL and GL, which are inhibitory (-). The parameter k scales the total input relative

to the threshold for triggering a self-sustained pattern. This guarantees that the coupling is

weak and the field dynamics is dominated by the recurrent interactions.

In the following we briefly summarize the adaptations to the basic field structure we have

made to reflect the specific functionality of the various layers (for mathematical details see

[5]). The evolution of a single pulse in layer GL implements a decision making capacity since

lateral inhibition suppresses the activation of other pools of neurons which may also get input

63

from connected layers. To represent and memorize multiple objects at the same time, the

interaction kernel for layer ML is adapted to allow for multi-pulse solutions. Note that the

two types of objects, large and small, are represented within the different layers by separated

fields.

For the robotics applications, two characteristics of the standing pulse solutions are im-

portant. First, the translation invariance of the fields allows to update the memorized infor-

mation. Changes in the external input (e.g., due to self-motion) may displace the waveform

stable pulse to encode this new information. Second, memory and decisions should be up-

dated from time to time. A forgetting mechanisms can be implemented by defining a proper

dynamics for global inhibition hi < 0. For sufficiently large values of |hi|, the field dynamics

becomes mono-stable. As a result, a (multi-) pulse solution decays back to resting level [3].

The Observation layer represents a prediction about the position of the other robot even

if the partner is temporarily out of sight. This prediction is implemented as a self-stabilized

traveling wave in direction space. A specific choice of an asymmetric interaction kernel causes

a localized pulse to travel without disturbing its shape:

w(φ, t) = w(φ) + η(t)w′(φ) (4)

where w′(φ) denotes the derivative of the Gaussian weight function used in equ. 1. The

instantaneous angular velocity of this travelling wave is given by

$wave(t) = −
η(t)

τ
. (5)

Since anticipation is a fundamental capacity for joint action tasks, the wave velocity is chosen

larger than the directional change per time unit of the partner robot which is estimated

initially from direct sensory information.

4 Simulation Results

In the simulations, each neural field as well as the dynamics of heading direction and path

velocity are integrated numerically using the forward Euler method. Each field is sampled

spatially along φ with a sampling distance of 2◦. This value is sufficient to guarantee that

the behavior in discrete case approximates quite well the behavior of the continuous field

equation.

Figure 2 and figures 3 to 6 show snapshots of the overt behavior of the robots and

the neural field representations of the observer R1, respectively. The robots are initially

placed as illustrated in panel (a). R1 senses the three objects SO1, SO2 and LO1, and also

detects robot R2. In this example, R1 infers that object S01 is the current action goal of

R2 and decides to select the other small object S02. Initially, however, robot R1 moves

towards object LO1, panels (b) to (c), since R2’s presence near the large object triggers an

64

(a) (b) (c) (d)

(e) (f)

Figure 2: The robot simulation environment for the joint search task is shown. In this

example, the two robots, R1 and R2, have to find and carry two small objects (S01 and S02)

and one large object (L01), which are distributed in the workspace, to a common place (white

square). The 6 snapshots of the robot show the motion of the two robots towards S01 and

S02, respectively. Note that the spatio-temporal continuity of visual information about the

partner robot appears to be disrupted due to occluding surfaces. For a detailed description

of the snapshots see the text.

Figure 3: Neural field representation of objects seen by R1 at the beginning of the experiment

shown in Fig.2. Two small objects (S0-field left) and one large object (L0-field right) are

detected and memorized by self-stabilized pulses.

65

Figure 4: R1’s representation of the motion of the partner R2. The visual information about

the change in direction of R2 triggers a travelling wave in direction space. As shown by the

snapshot of the wave (red plot), the internal representation is ahead of the actual position of

R2 (magenta plot) sensed by the visual system.

Figure 5: Snapshot of the self-stabilized travelling wave after R2 has become occluded from

view at about 70◦. The wave mechanism allows to extrapolate past trajectory information

into the future.

activation pulse at that direction in the SO-field of the Action Simulation layer)(not shown).

Subsequently, the integration of the motion information triggers an anticipatory traveling

wave in the Observation layer that represents future positions of R2 (see fig.4). When R2

becomes occluded by the wall (panel (c)) the wave continues to travel with a constant speed

(see fig. 5). Via the inter-field couplings, the activity in layers ML and OL trigger the

evolution of a pulse solution centered at the location of S01 (at about 135◦) in the S0-field of

the Action Simulation layer (fig.6). This pulse represents the prediction of robot R1 that SO1

is the current goal of R2. Since the couplings between the S0-fields in the Action Simulation

and the (Goal layer) are inhibitory, the existence of the pulse in ASL causes a suppression

of activity below resting level at corresponding sites of the S0-field in the Goal layer. As a

result, the decision of R2 represented as a pulse in that field (not shown) is biased towards

the selection of the other small object S02. It is important to note that when R2 starts to

move, object S02 becomes hidden from view due to the occluding surface. The capacity to

66

Figure 6: The input form the object memory layer (ML) together with the predictive infor-

mation about the position of R2 in layer ML trigger the evolution of a a suprathreshold pulse

solution in the SO-field of layer ASL. It represents the anticipated action goal of R2, which

is in the present example object S01.

memorize object location is thus crucial for a successful task execution.

(a) (b) (c) (d)

(e) (f)

Figure 7: Snapshots of the motion of the two robots are shown in a different scenario. They

shall illustrate the decision of robot R1 to help carrying the large object L01 which R1 has

inferred as a the current action goal of R2. Again, the self-stabilized nature of the internal

representations is essential to make and maintain the decision in the presence of occlusion.

For a detailed description of the snapshots see the text.

The manipulation of large objects requires the direct physical interaction between the

two robots. A simple team strategy to avoid the part of the search space which is currently

the focus of intention of the partner is thus not feasible. Inferring that a large object is the

current action goal should bias the decision of the observer to head towrd the same object.

67

Figure 8: Neural field representation of objects seen by R1 at the beginning of the experiment

shown in Fig.7. Two small objects (S0-field left) and one large object (L0-field right) are

detected and memorized by self-stabilized pulses.

Figure 9: As shown by a snapshot of the evolving suprathreshold pulse in the LO-field of layer

ASL, R1 predicts that R2 is heading towards object L01. When the wave in layer ML reaches

the position of L01, the input from ML and OL to ASL is sufficient to trigger a self-stabilized

pulse in that layer.

Figure 10: The pulse in the L0-field of layer GL represents the decision of R1 to head also

towards object L01.

68

The snapshots in figure 7 illustrate this scenario. As can be seen in the Object Memory layer,

initially, observer R1 detects two small object, SO1 at 0◦ and SO2 at about 45◦, a large object

LO1 at 90◦ and robot R2 located in the direction 45◦ (not shown). The relative proximity

of R2 and S02 lead to a decision of R1 to move in the direction of S01. However, the sensed

motion of R2 triggers the evolution of an anticipatory travelling wave in the direction of

object LO1 about 100◦ relative to the new position of R1. As a result, the total input to the

LO-field of the Action Simulation layer creates a pulse at that direction (see the snapshot in

9). Since the couplings between the L0-fields of the Action Simulation and the Goal layer

are excitatory, the input to GL represented by the wave activity changes the initial selection

of object S01 and consequently the motor behavior of R1 (compare snapshots (d)and (e).

Its final decision represented by the pulse in layer GL (figure 10) is to also focus on object

L01. This change in behavior reflects the high priority for cooperative behavior which is

implemented in the control architecture. By changing the relative strength of the couplings

between layer ASL and layer GL, it is also possible to maintain the initial decision to pick up

object S02 which is closest to the initial position of R1.

5 Conclusion

We have presented a control architecture for autonomous robots engaged in a joint search

task, that is based on neuro-plausible principles. The distributed architecture reflects the

notion that cognitive processes in the brain unfold over time under the influence of multi-

ple internal and external influences [2]. The self-stabilized nature of the neural population

representations allows to guide complex behavior which goes beyond a simple input-output

information processing scheme. Memorized information about the location of objects or the

capacity to predict that a partner continues moving behind an occluding surface with the

intention to reach a certain goal (object) are crucial cognitive skills for joint action tasks.

The choice of neural fields as a mathematical description of population dynamics simplifies

or ignores many aspects of processing in the brain. However, the fact that they can be

mathematically analyzed is an important advantage when trying to build cognitive robots [4].

The architecture is formalized as a system of weakly coupled dynamic neural fields. The

weak coupling guarantees that the input acts essentially as an external perturbation of the

dynamics which is dominated by the interactions within the field. In the present simulation

examples, the couplings were set by hand. Recently, we have started to study correlation

based learning rules to establish the inter-field connections during learning and practice [8].

New mathematical challenges concern the convergence and stability of the learning dynamics.

In the context of the JAST project we are currently adapting and testing the proposed

architecture for a a joint construction scenario which starts when all objects have been carried

by the team to the predefined place. This scenario contains a relatively large number of

69

distinct action sequences. Consequently, the mapping from action observation onto action

selection becomes much more complex.

References

[1] S Amari. Dynamics of pattern formation in lateral-inhibitory type neural fields. Biological

Cybernetics, 27:77–87, 1977.

[2] R Beer. Dynamic approaches to cognitive science. Trends in Cognitive Science, 4:91–98,

2000.

[3] E Bicho, P Mallet, and G Schöner. Target representation on an autonomous vehicle with

low-level sensors. The International Journal of Robotics Research, 19:424–447, 2000.

[4] S Coombes. Waves, bumps, and patterns in neural field theories. Biological Cybernetics,

93:91–108, 2005.

[5] W Erlhagen and E Bicho. The dynamic neural field approach to cognitive robotics.

Journal of Neural Engineering, 5:36–54, 2006.

[6] W Erlhagen, A Mukovskiy, and E Bicho. A dynamic model for action understanding

and goal-directed imitation. Brain Research, 1083:174–188, 2006.

[7] W Erlhagen, A Mukovskiy, E Bicho, G Panin, C Kiss, A Knoll, H van Schie, and

H Bekkering. Goal-directed imitation for robots: a bio-inspired approach to action

understanding and skill learning. Robotics and Autonomous Systems, 54:353–360, 2006.

[8] W. Erlhagen, A. Mukovskiy, F. Chersi, and E. Bicho. On the development of inten-

tion understanding for joint action tasks. In 6th IEEE Int. Conf. on Development and

Learning. Imperial College London, 11-13 July , 2007.

[9] J I Gold and M N Shadlen. Banburismus and the brain: the relationship between sensory

stimuli, decisions, and reward. Neuron, 36:299–308, 2002.

[10] M Quoy, S Moga, and P Gaussier. Dynamical neural networks for planning and low-level

robot control. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, 33:523–532, 2003.

[11] G Schöner, M Dose, and C Engels. Dynamics of behavior: theory and applications for

autonomous robot architectures. Robotics and Autonomous Systems, 16:213–245, 1995.

[12] J S Taube and J P Bassett. Persistent neural activity in head direction cells. Cerebral

Cortex, 13:1162–1172, 2003.

70

[13] J G Taylor. Neural bubble dynamics in two dimensions: foundations. Biological Cyber-

netics, 80:393–409, 1999.

[14] K Zhang. Representation of spatial orientation by the intrinsic dynamics of the head-

direction cell ensemble: A theory. Journal of Neuroscience, 16:2112–2126, 1996.

71

72

Ant–swarm robotics for a dynamic cleaning problem

Yaniv Altshuler∗ Vladimir Yanovsky∗ Israel A. Wagner∗, †

Alfred M. Bruckstein†

Abstract

Several recent works considered multi a(ge)nt robotics in static environments. In this

work we examine ways of operating in dynamic environments, in which changes take place

independently of the agents’ activity. The work focuses on a dynamic variant of the known

Cooperative Cleaners problem (described and analyzed by Wagner and Bruckstein in [10]).

This problem assumes a grid, having “dirty” pixels or tiles, that form a connected region

of the grid. Several agents move in this dirty region, each having the ability to “clean”

the place it is located in. The dynamic variant of the problem involves a deterministic

expansion of dirt in the environment, simulating a spreading of contamination, or fire. A

cleaning protocol for the problem is presented, as well as several analytic lower and upper

bounds on its performance.

Keywords : Cooperative cleaning, Dynamic environments, Swarm analysis.

Introduction

In the world of living creatures, “simple minded” animals like ants or birds cooperate to

achieve common goals with surprising performance. It seems that these animals are “pro-

grammed” to interact locally in such a way that the desired global behavior is likely to emerge

even if some individuals of the colony die or fail to carry out their task for some other reasons.

It is suggested to consider a similar approach to coordinate a group of robots without a cen-

tral supervisor, by using only local interactions between the robots. When this decentralized

approach is used, much of the communication overhead (characteristic to centralized systems)

is saved, the hardware of the robots can be fairly simple, and better modularity is achieved. A

properly designed system should achieve reliability through redundancy. Significant research

effort has been invested during the last few years in design and simulation of multi-agent

robotics and intelligent swarm systems. (see e.g. [10, 7, 2, 9, 5, 8]). Unfortunately, the math-

ematical \ geometrical theory of such multi-agents systems is far from being satisfactory, as

∗Computer Science Department, Technion, Haifa, Israel. E-mails: {yanival, volodyan, wagner,

freddy}@cs.technion.ac.il
†IBM Haifa Labs, MATAM, Haifa, Israel.

73

pointed out in [3] and many other papers. In this work we will examine a problem in which

the agents must work in a dynamic environment — where changes may take place, that are

independent and certainly not caused by the agents’ activity. In the spirit of [4] we consider

simple robots with only a bounded amount of memory (i.e. finite-state-machines).

The dynamic cooperative cleaners problem

We shall assume that the time is discrete. Let G denote a two dimensional integer grid Z2,

whose vertices (or “tiles”) have a binary property called ‘contamination’. Let contt(v) ∈

{on, off} state the contamination state of the tile v at time t. Let Ft = {v ∈ G | contt(v) =

on} be the contaminated sub-graph of G at time t. We assume that F0 is a single connected

component. Our algorithm will preserve this property along its evolution. Let a group

of k agents that can move on the grid G (moving from a tile to its neighbor in one time

step) be placed at time t0 on F0. Each agent is equipped with a sensor capable of telling the

contamination status of all tiles in the digital sphere of diameter 7, which surrounds the agent.

An agent is also aware of other agents which are located in these tiles, and all the agents agree

on a common direction. Each tile may contain any number of agents simultaneously. Each

agent is equipped with a memory of size limited to O(k) bits. When an agent moves to a tile

v, it can clean this tile (i.e. cont(v) ← off). The agents do not have any prior knowledge of

the shape or size of F0 except that it is a single and simply connected component.

The contaminated region Ft is assumed to be coated at its boundary by a rubber-like

elastic barrier, dynamically reshaping itself to fit the evolution of the contaminated region over

time. The purpose of this barrier is to guarantee the preservation of the simple connectivity

of Ft. When an agent cleans a contaminated tile, the barrier simply moves back, in order

to fit the void previously occupied by the cleaned tile. This is demonstrated in Figure 1.

Every d time steps the contamination spreads. That is, if t = nd for some positive integer

n, then : ∀v ∈ Ft ∀u ∈ 4Neighbors(v) , contt+1(u) = on. The order in which contaminated

tiles influence their clean neighbors is as follows — first, all the clean tiles located to the

right of a contaminated tile are becoming contaminated. Then, the clean tiles located below

contaminated tiles, followed by clean tiles located to the left of such tiles. Finally, clean tiles

located above a contaminated tile are affected. This process is demonstrated in Figure 2.

While the contamination spreads, the elastic barrier stretches accordingly, as demonstrated

in Figures 2 and 3. For the agents who travel along the tiles of F , the barrier signals the

boundary of the contaminated region. When an agent detects a contaminated tile which is

“on the other side” of the barrier it treats it as though it is a clean tile.

The agents’ goal is to clean G by eliminating the contamination entirely, meaning that

the agents must ensure that : ∃tsuccess s.t Ftsuccess = ∅ In addition, it is desired that the time

tsuccess will be minimal.

In this work we impose the restriction of no central control and full ‘de-centralization’,

74

Figure 1: A demonstration of the evolution of the elastic barrier as a result of the movement

and cleaning of an agent according to the SWEEP protocol, described later.

i.e. all agents are identical and no explicit communication between the agents is allowed. An

important advantage of this approach, in addition to the simplicity of the agents, is fault-

tolerance — even if almost all the agents cease to work before completion, the remaining ones

will eventually complete the mission, if possible.

c

c

c

c

c

c

c

c

c

c

c c c c c c

c c c c

c

c

c

c

c

c

c

c

c

c

c

c

c c c c c c

c c c c

c

c

s

s

s

s

s

s

s

s

s

s

s

c

c

c

c

c

c

c

c

c

c

c c c c c c

c c c c

c

cs

s

s s s s s s

c

c

c

c

c

c

c

c

c

c

c c c c c c

c c c c

c

c

s

s

s

s

s

s

s

c

c

c

c

c

c

c

c

c

c

c c c c c c

c c c c

c

c

s

ss s s s

Figure 2: A demonstration of the spreading process. The left chart represents the contami-

nated region prior to the spread, while the rest of the charts represents the different sub-phases

of the first phase of the contamination process. The tiles marked with hollow circles represent

the “original” contaminated tiles (meaning, tiles that were already contaminated already,

prior to the spread). Tiles marked with filled circles represent the temporary-contaminated

tiles of each sub-phase. Notice that a tile can be marked as temporary-contaminated only

once through the spreading process.

The cleaning protocol

In order to solve the Dynamic Cooperative Cleaners problem we propose the SWEEP clean-

ing protocol. Generalizing an idea from computer graphics (presented in [6]), this protocol

preserves the connectivity of the contaminated region by preventing the agents from cleaning

critical points — points which when cleaned disconnect the contaminated region. At each

time step, each agent cleans its current location (assuming it is not a critical point), and

moves according to a local movement rule, creating the effect of a clockwise traversal along

75

Figure 3: The top chart represent the initial region prior to the contamination spread. The

four charts below demonstrate the evaluation of the barrier throughout the spreading process.

the boundaries of the contaminated region. As a result, the agents “peel” layers from the

region, while preserving its connectivity, until the shape is cleaned entirely.

XXXX
X X

r

6

6

An example of two agents using the SWEEP protocol, at t = 40, when d > 40. All the

tiles were contaminated at time 0. The black dot denotes the starting point of the agents.

The X’s mark the critical points.

Overview of the results

Motivation

Since we know no easy way to decide whether k agents can successfully clean an instance

of the Dynamic Cooperative Cleaners problem, producing bounds for the proposed cleaning

protocol is important for estimating its efficiency. Analyzing the performance of the above

defined protocol is quite difficult. Due to the preservation of the critical points, such points can

be visited many times by the agents before being cleaned. Furthermore, due to the dynamic

nature of the problem, the shape of the contaminated region can change dramatically during

the cleaning process.

76

Definitions

Let St denote the size of the contaminated region F at time t, namely the number of tiles (i.e.

grid points) in F . Actually, F defines a dichotomy of Z2 into F and F = Z2\F . The boundary

of the contaminated region F is denoted as ∂F , defined as ∂F = {(x, y) | (x, y) ∈ F ∧

(x, y) has an 8Neighbor in (G \ F)}

A path in F is defined to be a sequence (v0, v1, . . . , vn) of tiles in F such that every two

consecutive tiles are 4 connected (the Manhattan distance between them is 1). The length of a

path is defined to be the number of tiles in it. Let tile v be called a critical point if there exist

v1, v2 ∈ 4Neighbors(v) for which all paths connecting v1 and v2, included in 8Neighbors(v),

necessarily pass through v (where v, v1, v2 and all said paths are from F). We shall denote

by ct the circumference of F at time t, defined as follows: let v0 and vn be two 4 connected

tiles in ∂Ft, and let Ct = (v0, v1, . . . , vn) be the shortest path connecting v0 and vn, which

contains all the tiles of ∂Ft and only such tiles. If there are several different shortest paths

then let Ct be a one of them. Notice that Ct may contain several instances of the same tile, if

this tile is a critical point(meaning that Ct is an ordering of the tiles of ∂Ft, in which multiple

instances of tiles that are critical points are allowed). ct will be defined as the length of Ct.

For some v ∈ Ft let Stringst(v) denote the set of all paths in Ft that begin in v and end

at any non-critical point in ∂Ft, and let w(Ft, v) denote the depth of v — the length of the

shortest path in Stringst(v) (unless v is a critical point in which case its depth is defined to

be zero). Let W (Ft) denote the width of Ft, defined as the maximal depth of all the tiles in

Ft, i.e. : W (Ft) = max{w(Ft, v) | v ∈ Ft}.

Results

In order to demonstrate the hardness of the problem, we first present below lower bounds for

the cleaning time which will be required of any cleaning protocol which might be used by the

agents (Theorems 1 and 2).

Theorem 1. Using any cleaning protocol, the area of the contaminated region at time t can

be recursively lower bounded, as follows :

St+d ≥ St − d · k + 2
√

2 · (St − d · k)− 1

Corollary 1. Using any cleaning protocol, k agents cleaning a contaminated region of size

S0, which spreads every d time steps, could not clean it if :

S0 >

⌈

1

8
d2k2 + dk +

1

2

⌉

Theorem 2. Using any cleaning protocol, a lower bound for the area of the contaminated

region at time t = i · d for some i ∈ N is the minimal positive t solution of the following

77

implicit equation :

2t =
√

2(St − dk)− 1−
√

2(S0 − dk)− 1 + ln

(

√

2(St − dk)− 1− dk
2

√

2(S0 − dk)− 1− dk
2

)
dk
2

The efficiency of the SWEEP protocol is demonstrated by the upper bound on its cleaning

time, presented in Theorems 3, 4 and 5 below.

Theorem 3. Assume that k agents start cleaning a simple connected region F0 at some

boundary point p0 and work according to the SWEEP protocol, and denote by tsuccess(k) the

time needed for this group to clean F0. Then it holds that:

1. If (t = 8(|∂F0|−1)·(W (F0)+k)
k

+ 2k) is not greater than d, then tSUCCESS = dte. This also

holds for static environments, since in such cases d→∞.

2. Otherwise (t > d) : if F0 is convex, find the minimal t for which :

t
∑

i=d+1

1

S0 − 1 + 2b i
d
c2 + (c0 + 2)b i

d
c
≥ γ +

8

k
·
⌊ t

d

⌋

where

γ ,
8(k +W (F0))

k
−

d− 2k

|∂F0| − 1

3. Otherwise (t > d but F0 is not convex), find the minimal t for which :

t
∑

i=d+1

1

S0 − 1 + 2b i
d
c2 + (c0 + 2)b i

d
c
≥

≥ α+
8

2k

√

β + 4
(⌊ t

d

⌋2
+

⌊ t

d

⌋)

where

α , 8 +
8

2k
−

d− 2k

|∂F0| − 1
and β , 2S0 + 2c0 − 1

Theorem 4. 1. If (t = 8(|∂F0|−1)·(W (F0)+k)
k

+ 2k) is not greater than d, then tSUCCESS =

dte. This also holds for static environments, since in such cases d→∞.

2. Otherwise (t > d) : if F0 is convex, find the minimal µ for which :

ψ

(

µ+
c0 + 2− γ2

4

)

− ψ

(

µ+
c0 + 2 + γ2

4

)

+ γ1 −
γ2 · γ

d
−

8 · γ2

d · k
· µ ≥ 0

where :

γ1 , ψ

(

1 +
c0 + 2 + γ2

4

)

− ψ

(

1 +
c0 + 2− γ2

4

)

and :

γ2 ,
√

(c0 + 2)2 − 8 · (S0 − 1)

78

and :

γ ,
8(k +W (F0))

k
−

d− 2k

|∂F0| − 1

3. Otherwise (t > d but F0 is not convex), find the minimal µ for which :

ψ
(

µ+
c0 + 2− γ2

4

)

− ψ
(

µ+
c0 + 2 + γ2

4

)

− γ4

√

β + 4(µ2 + µ) + γ3 ≥ 0

where :

γ1 , ψ
(

1 +
c0 + 2 + γ2

4

)

− ψ
(

1 +
c0 + 2− γ2

4

)

and :

γ2 ,
√

(c0 + 2)2 − 8 · (S0 − 1)

and :

γ3 , γ1−
γ2

d
·
(

8 +
8

2k
−

d− 2k

|∂F0| − 1

)

and :

γ4 ,
8

2
·
γ2

k · d
β , 2S0 + 2c0 − 1

then tSUCCESS = (µSUCCESS − 1) · d

where ψ is the Digamma function, defined as ψ(x) = d
dx

ln Γ(x) = Γ′(x)
Γ(x) , where Γ(x) =

∫

∞

0 tx−1e−tdt (see for example [1]).

Theorem 5. Given a contaminated region of properties S0, |∂F0| and W (F0), spreading

every d time steps, then in order to guarantee a successful cleaning of the region before the

contamination will be able to spread even once, the minimal number of cleaning agents required

is bounded from above as follows :

(k1 ≤ k ≤ k2) ∧ (k > 0)

where :

k1,2 = 2

(

−|∂F0|+ 1 +
d

8

)

± 2

√

(

|∂F0| − 1−
d

8

)2

− (|∂F0| − 1)W (F0)

Experimental results

Figure demonstrates the change in the geometric properties of the contaminated region as

a result of the cleaning process. Exhaustive simulations were performed with the SWEEP

protocol on various dynamic domains, and compared with the lower and upper bounds. The

latter upper bounds are obviously not very tight, and the search for a tighter bound remains

a challenge.

79

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Number 55 in

Applied Mathematics Series. National Bureau of Standards, 1964.

[2] R. C. Arkin and T. Balch. Cooperative multi agent robotic systems. Artificial Intelligence

and Mobile Robots, 1998. AAAI.

[3] G. Beni and J. Wang. Theoretical problems for the realization of distributed robotic

systems. In Proc. of 1991 IEEE Internal Conference on Robotics and Automation, pages

1914–1920, Sacramento, CA, April 1991.

[4] V. Braitenberg. Vehicles. MIT Press, 1984.

[5] D. C. Conner, A. Greenfield, P. N. Atkar, A. A. Rizzi, and H. Choset. Paint deposi-

tion modeling for trajectory planning on automotive surfaces. IEEE Transactions on

Automation Science and Engineering, 2(4):381–392, 2005.

[6] D. Henrich. Space efficient region filling in raster graphics. The Visual Computer, 10:205–

215, 1994. Springer.

80

[7] E. Pagello, A. D’Angelo, C. Ferrari, R. Polesel, R. Rosati, and A. Speranzon. Emergent

behaviors of a robot team performing cooperative tasks. Advanced Robotics, 2002.

[8] I. Rekleitisy, V. Lee-Shuey, A. Peng Newz, and H. Choset. Limited communication, multi-

robot team based coverage. In Proceedings of the 2004 IEEE International Conference

on Robotics and Automation, New Orleans, LA, April 2004.

[9] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing information.

AAAI-94, pages 426–431, 1994.

[10] I. A. Wagner and A. M. Bruckstein. Cooperative cleaners: A case of distributed ant-

robotics. In Communications, Computation, Control, and Signal Processing: A Tribute

to Thomas Kailath, pages 289–308. Kluwer Academic Publishers, 1997.

81

82

Q-learning applied to a stochastic timed automaton

with deterministic transitions and clock resets

Gonçalo Neto∗ Pedro U. Lima∗

Abstract

Supervisory Control of Discrete Event Systems and Reinforcement Learning are two

frameworks suited for robot control but focusing on different aspects of it. We combine

ideas from the two fields and come up with an event based controller that incorporates hard

restrictions and adaptation. We apply this method to a Stochastic Timed Automaton,

with some simplifications, and show the problem is equivalent to a Semi Markov Decision

Process. We derive the optimality equations and Q-learning update rule for the system

and show the stochastic approximation theorems that guarantee Q-learning convergence

on MDPs can still be applied, under certain conditions on the firing times of events. We

present an application example of the type of problems we believe this method is most

suited for.

1 Introduction

The modeling of robotic tasks can be addressed in several ways, according to different frame-

works. A possible choice is Discrete Event Systems (DES) [4] which rely on the concept of

event, rather than time, as the driver of the system dynamics, an adequate abstraction in

many setups. The goal of a robot is, most of the times, to exert some control over such system

to accomplish a certain task.

For the particular class of DES only concerned about the untimed (or logical) behavior

of the system, Supervisory Control (SC), as introduced in [12], is an adequate tool to steer a

robotic task modeled to accomplish the specifications. A detailed description of such tools is

made in [4, 12].

Another popular choice to address the problems of decision making in a robotic setup

is that of Markov Decision Processes (MDP) [9]. This kind of systems provide the basis

on which to apply reinforcement learning (RL) techniques [10] that allow the robot to have

no knowledge about the environment (apart from the state space in which it lives and the

∗Institute for Systems and Robotics, Instituto Superior Técnico, Portugal. E-mails:

gneto@isr.ist.utl.pt, pal@isr.ist.utl.pt

83

actions available), learning to act by experience. Q-learning [11] is one of the most popular

algorithms to address the problem of decision making in such a setup.

Although there are points of contact between the two mentioned approaches, usually SC

is more concerned about controlling a system whose model is fully known, in order to avoid

logical problems. An example is avoiding deadlocks in a system modeled as an automaton,

which could correspond to a potentially hazardous situation on a manufacturing plant.

On the other hand, reinforcement learning, when applied without any other support meth-

ods, usually ends up being a very time consuming technique, and it is mainly applied to simu-

lation, software agents or know toy-problems (although there are successful cases of practical

applications of the algorithms).

Our approach on this work aims for combining the ideas of both SC and RL, in order to

build controllers that are mainly specified at the logical level, but leaving room for adaptation

and optimization, using learning tools.

2 Background

2.1 Supervisory Control of Discrete Event Systems

A Discrete Event System (DES) can be roughly described as a system which is driven by a

sequence of events, rather than time. This can correspond to a inherently discrete system or

to one that has a mix of both discrete and continuous dynamics.

In such a system, the strings of events produced are said to represent the behavior of the

system. Considering the event set E, the behavior of a system whose dynamics are ruled by

the events on that set represents a language L, with strings composed of elements of E.

Modeling such a system using the complete description of the possible behaviors is not

only tedious but often impossible. Several formalisms are usually used, that correspond to

different degrees of language complexity, to represent the system in a more compact way.

In particular, systems that generate regular languages can be represented by a Finite State

Automaton (FSA), described as a tuple G = (X,E, f,Γ, x0, XM) where:

� E represents an event set

� X represents a state space

� f : X ×E → X is a possibly partial function representing the state transitions.

� Γ(x) is the set of enabled events in state x.

� x0 is the initial state of the system.

� XM is a set of marked states.

84

Figure 1: Supervisory Control scheme

In order to control a system of this kind, the event set is divided in a controllable event

set EC and an uncontrollable event set EUC such that E = EC ∪ EUC . A supervisor is then

defined as a function:

S : L(G)→ 2E

The supervisor basically chooses a set of events to enable for each string generated by the

system. For a system starting in state x0 and after string s has occurred, the set of enabled

events is given by S(s) ∩ Γ(f(x0, s)) with f being defined recursively for strings from the

initial automaton definition.

Figure 1 shows the control scheme for this kind of systems.

It’s important to note that the supervisor, in order to be admissible, is not allowed to

disable uncontrollable events:

∀s∈L(G)EUC ∩ Γ(f(x0, s)) ⊆ S(s)

The behavior of the supervised system can also be represented by a language, usually

denoted by L(S/G), and in some cases generated by a FSA. We focus particularly on the

finite state systems, whose restricted and unrestricted behaviors generate regular languages,

and can be represented by FSA.

The controllability theorems for supervisory control systems can be found in [4, 12].

2.2 Q-learning

Markov Decision Processes [1, 6, 2, 9] are, in fact, the foundation for much of the research on

agent control. They can be defined as a tuple (X,A, T,R) where:

� A is an action set.

� X is a state space.

� T : X×A×X −→ [0, 1] is a transition function defined as a probability distribution over

the states. Hence, we have T (x, a, x′) = Pr{xt+1 = x′|xt = x, at = a}. xt+1 represents

85

the state of the process at time t+1, xt the state at time t and at the action taken after

observing state xt.

� R : X × A × X −→ R is a reward function representing the expected value of the

next reward, given the current state x and action a and the next state a′: R(x, a, x′) =

E{rt+1|xt = x, at = a, xt+1 = x′}. In this context rt+1 represents the immediate payoff

of the environment to the agent at time t + 1.

A fundamental concept of algorithms for solving MDPs is the state value function, which

is nothing more than the expected reward (in some reward model) for some state, given the

agent is following policy π:

V π(x) = E

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣

∣

xt = x, π

}

(1)

Similarly, the expected reward given the agent takes action a in state x and following policy

π could also be defined:

Qπ(x, a) = E

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣

∣

xt = x, at = a, π

}

(2)

This function is usually known as Q-function and the corresponding values as Q-values.

From Equation (1) a relation can be derived, which will act as the base of much of the

ideas behind dynamic programming and reinforcement learning algorithms to solve MDPs.

V π(x) =
∑

a

π(x, a)
∑

y∈X

T (x, a, y) [R(x, a, y) + γV π(y)] (3)

The resulting equation, called the Bellman equation, has a unique solution for each policy

which is the state value function for that policy [6].

It can be shown [9] that there is always at least one deterministic policy whose state

values are not dominated by other policies, which leads to the optimal version of the previous

equation:

V ∗(x) = max
a

∑

y∈X

T (x, a, y) [R(x, a, y) + γV ∗(y)] (4)

or in terms of the Q-values:

Q∗(x, a) =
∑

y∈X

T (x, a, y)

[

R(x, a, y) + γ max
b∈A

Q∗(y, b)

]

(5)

Solving this equations can be accomplished using dynamic programming but, when there is

no access to information about the transition function and the expected value of the reward, a

sample based strategy can be used to obtain the state values, using stochastic approximation

86

Figure 2: Q-learning control scheme

results. This is the base for reinforcement leaning algorithms, from which Q-learning is a

popular example. The update rule for Q learning is:

Qt+1(xt, at) = Qt(xt, at) + αt

(

rt + γ max
b∈A

Qt(xt+1, b)−Qt(xt, at)
)

(6)

Figure 2 shows the agent/environment loop for reinforcement learning systems.

3 Building the Model

We start by assuming our system can be modeled as a Stochastic Timed Automaton (STA)

[5] which is defined as a tuple (X,E,Γ, p, p0, T) where:

� E represents an event set

� X represents a state space

� Γ(x) is the set of enabled events in state x

� p(x′, x, e) is a transition function defining the probability of reaching state x ′, starting

in state x and after the occurrence of event e. The functions is possibly partial, not

defined for events e′ /∈ Γ(x).

� p0(x) is a probability distribution over X that represents the knowledge about the initial

state of the system.

� T = {Ti : i ∈ E} is a stochastic clock structure.

Note that the difference between this model and an FSA is the introduction of uncertainty

in the transitions and in the time between event occurrences. Nevertheless, the system can

still be controlled logically in exactly the same way as an FSA.

As for the deterministic and untimed case, we consider the event set is divided in a set of

controllable events Ec and a set of uncontrollable events Euc. We the define a supervisor S.

87

Considering the goal of the work is, ultimately, to allow for the unrestricted part of the

system behavior to evolve to some optimum point, according to some utility function, we need

to set the conditions to apply reinforcement learning to it. We make the following assumptions:

Assumption 1. The initial state of the automaton is univocally determined:

∃x0∈X p0(x0) = 1

Assumption 2. The outcomes of (state, event) transition are deterministic:

∀x∈X∀e∈Γ(x)∃x′∈X p(x′, x, e) = 1

This way, each transition univocally identifies the state to which the system moves, and

we can even replace p0 for x0 and p for f : X × E → X, representing a transition partial

function where x′ = f(x, e).

Furthermore, an observer is needed to identify such state. The focus on this work is not

on observability, so, all events are assumed to be completely observable and the observer is

assumed to completely identify the state: GOb = (X,E,Γ, x0, f).

As for the supervisor previously defined, we also need to have access to a state description

in order to apply learning to the supervised system. We make another assumption:

Assumption 3. The supervisor can be represented by a finite state automaton:

GSu = (XSu, ESu,ΓSu, xSu
0 , fSu)

The product of the supervisor with the observer will create another FSA that represents

the logic behavior of the supervised system (assuming full observability). Hence, the state

space on which the learning algorithm works (we call it XM) will be a subset of the cartesian

product of both automata state spaces: XM ⊂ XOb ×XSu.

Actions available to the learning system are associated to events:

AxM =
{

{e} : e ∈ ΓSu×Ob(xM) ∩Ec

}

∪ {∅}

The learner either picks one event to enable, representing an action, or chooses to wait

until the system itself produces a reaction. We could assume other action definitions, which

wouldn’t make a difference to the equations derived from this point on. The set of enabled

events for choice of action a (with a being picked from AxM) is denoted as:

Γa(x
M) =

(

ΓSu×Ob(xM) ∩Euc

)

∪ a

88

The introduction of idling actions is an interesting consequence of a continuous time

system – the notion that sometimes waiting for some event to occur might be preferable to

choosing something to do.

Finally, for the reinforcement learning methods to work, the system needs to be Marko-

vian w.r.t the decision points and, with a general clock structure associated with the STA,

that might not happen. For this reason, we make the following assumption:

Assumption 4. At each state change, a reset is made to the firing times of every event.

The expressions that characterize the transition probabilities on this system can be cal-

culated from the model parameters. Particularly, we have:

H(t, x′|x, a) = P
[

Y ≤ t,X ′ = x′|X = x,A = a
]

=
∑

e∈Γa(x)

P [Y ≤ t|E = e] p(x′|x, e) p(e|x, a)

=
∑

e∈Γa(x)

P [Ye ≤ t] p(x′|x, e) p(e|x, a)

with H(t, x′|x, a) representing a joint probability of moving to a new state, within a certain

time frame and Y being the random variable that represents the time of the next event firing

and Ye the firing time of event e.

We can now make use of Assumption 4 and, in this case, P [Ye ≤ t] can be replaced with

the stationary time distribution for event e (defined initially for the STA), FTe(t). We obtain:

H(t, x′|x, a) =
∑

e∈Γa(x)

FTe(t) p(x′|x, e)

∫

∞

0
FTe(τ)dFW x

aē
(τ)

where

FW x
aē

(t) = 1−
∏

j∈Γa(x)
j 6=e

(1− FTj
(t))

4 Optimality concepts

With the simplifications made constructing the model, it can be identified with a Semi-Markov

Decision Process (SMDP) [7]. We build a reward structure depending on the events enabled

at each moment, and the state in which the system is, which can be rewritten as depending

on state and action.

For each state-action pair, we have a constant reward rate c(x, a) and a lump reward

k(x, a). We use a discounted reward model and follow the derivation of [9] to obtain an

89

Figure 3: Supervised event-based Q-learning control scheme

optimality equation similar to the Bellman equation for MDPs.

Q∗(x, a) = r(x, a) +
∑

y∈X

M(x, a, y)max
b∈Ax

Q∗(y, b)

where M(x, a, y) =
∫

∞

0 e−βτH(dτ, y|x, a) and r(x, a) = k(x, a)+
∫

∞

0
1
β
(1−e−βτ)c(x, a)dFW x

a
(τ)

and the constant β is a discount factor. In [9], conditions on the function H(t, x ′|x, a) and

the rewards are presented that guarantee convergence of the method. These can be obtained

from similar conditions on the probability distributions of the events and their rewards.

This optimality equation can be approximated using a stochastic approximation strategy,

much like what it was done for the MDP case. We apply the modified Q-learning rule described

on [3] for SMDPs:

Qt+1(xt, at) = (1− αt)Qt(xt, at) + αtQ̃t+1(xt, at)

with

Q̃t+1(xt, at) = r(xt, at, τt) + e−βτt max
b∈Axt+1

Qt(xt+1, b)

r(xt, at, τt) = k(xt, at) +
1− e−βτt

β
c(xt, at)

where τt is the time it took for the state to change from xt to xt+1.

The control scheme obtained from combining the supervisory control approach with Q-

learning for a continuous time system can be seen in Figure 3.

4.1 Convergence notes

Another important assumption on the model, that will ensure the convergence of both the

dynamic programming and Q-learning algorithms, is that fact that, in any interval of finite

90

length, the number of decision epochs to occur will be finite. This is discussed in ?? and can

be expressed in the following way:

Assumption 5. There is a ε > 0 and a δ > 0 such that, every x ∈ X and a ∈ Ax:

F (δ|x, a) < 1− ε

where F (t|x, a) =
∑

y∈X H(t, y|x, a).

This condition ensures that the decisions are not done infinitely fast, and will be important

to prove Q-learning converges. Furthermore, it can be derived for the actions from similar

conditions on the event distributions.

For the proof of the convergence of Q-learning applied to this kind of systems, we follow

[8] by using the same convergence theorems for stochastic approximation presented in that

work. Particularly, a crucial part of the proof is showing that the operator:

(Hq)(x, a) = r(x, a) +
∑

y∈X

M(x, a, y)max
b∈Ax

q(y, b)

is a contraction mapping on the sup-norm. We have:

‖Hq1 −Hq1‖∞ =

= max
x,a

∣

∣

∣

∣

∣

∣

∑

y∈X

M(x, a, y)

(

max
b∈Ay

q1(y, b) − max
b′∈Ay

q2(y, b′)

)

∣

∣

∣

∣

∣

∣

≤

≤ max
x,a

∑

y∈X

M(x, a, y) ·max
z,b
|q1(z, b) − q2(z, b)| =

= max
x,a

∑

y∈X

M(x, a, y) · ‖q1 − q2‖∞

It remains to show that maxx,a

∑

y∈X M(x, a, y) is strictly bounded by 1. This condition

is met because of the Assumption 5, in the following way:

max
x,a

∑

y∈X

M(x, a, y) =

= max
x,a

∑

y∈X

∫

∞

0
e−βtH(dt, y|x, a) =

= max
x,a

∫

∞

0
e−βtF (dt|x, a) =

= max
x,a

∫ δ

0
e−βtF (dt|x, a) +

∫

∞

δ

e−βtF (dt|x, a) ≤

≤ max
x,a

F (δ|x, a) + e−βδ(1− F (δ|x, a))

91

Figure 4: Navigation automaton

and from Assumption 5

max
x,a

∑

y∈X

M(x, a, y) ≤

≤ e−βδ + (1− ε)(1− e−βδ) < 1

If we set γ∗ = e−βδ + (1− ε)(1− e−βδ), we have:

‖Hq1 −Hq1‖∞ ≤ γ∗ ‖q1 − q2‖∞

with 0 ≤ γ∗ < 1, which proves that operator H is, in fact a contraction mapping of the

sup-norm.

5 Application example

We’ll start by assuming we have a mobile robot in a simple navigation problem: there are 4

rooms connected with 3 doors and the robot has to learn to navigate in an optimal way in

them. The exact nature of the task will depend on the rewards assigned to each state and

action. Figure 4 represents the automaton that modes the navigation environment.

Note that the navigation is performed using specialized navigation functions (represented

by events of type goDoorX). This is a bit different from what it is usually done in reinforce-

ment learning problems (N,S,E,W type of actions) and shows the typical higher level decision

making task that we think our approach is suited for. Lets call the navigation automaton Gn.

92

Figure 5: Battery automaton

Figure 6: Charger automaton

Parallel to the navigation automaton, there’s a battery meter running that reacts to drops

or increases in the battery level and monitors the battery state accordingly. We’ll call this

automaton Gb and it is graphically represented in Figure 5.

An important note about the battery meter is that, besides modeling the state of the

battery, it also models the fact that, without battery, the robot won’t be able to do anything.

This is represented by having disabled all possible events once the state Dead is reached.

Clearly, this will be something to avoid when acting in this environment, as it will function

as a dead lock and force the robot to stay there indefinitely.

The way the robot gets its charge back is represented by a third automaton, Gc, that is

related to another navigation function, goCharge, that steers the robot to the nearest charger

and keeps him there until some other navigation function is chosen. We assume that in every

room there is a charger (for example a wall dock where the robot can plug to).

Figure 6 represents the third automaton.

The product of this 3 automata, with the additional association of a stochastic clock

93

structure to the events, will give us the STA with deterministic transitions used as a base for

the application of the method. We have:

�

E = {goDoor1, goDoor2, goDoor3, . . .

. . . goCharge, batteryDrop, batteryIncrease}

represents the event set.

� XG ⊆ {Room1, Room2, Room3, Room4}×{Charging,Moving}×{Full,Medium,Low,Dead}

represents the state space. The actual state space is not exactly equal to the full carte-

sian product of all the 3 automata state spaces but a bit smaller.

� Γ(x) = Γn(xn) ∩ Γc(xc) ∩ Γb(xb) with x = (xn, xc, xb).

� The transition function is defined as:

f(x, e) =







(fn(xn, e), fc(xc, e), fb(xb, e)) e ∈ Γ(x)

undefined otherwise.

with x = (xn, xc, xb).

� x0 = (x0n, x0c, x0b) is the initial state.

� T = {Ti : i ∈ E} is a stochastic clock structure.

The idea is now, before applying reinforcement learning, to introduce some safety con-

straints in the system. In a typical reinforcement learning application, we would assign a

negative reward to the Dead state, and let the robot learn it shouldn’t allow himself to reach

that state.

However, the problem is that, once the state has been reached, the robot itself will not be

able to continue to function properly. The idea of combining supervisory control is, exactly,

to be able to introduce some a priori knowledge, that will allow us to restrict the problem to

one that satisfies the safety restrictions (or any other kind of restrictions that can be modeled

using supervisory control).

To accomplish that, we’ll start by noting that not all events are controllable. We have

Ec = {goDoor1, goDoor2, goDoor3, goCharge} and Euc = {batteryDrop, batteryIncrease}.

Depending on the time distribution for each of these events, we may or may not be able to

fully guarantee the system won’t reach the deadlock. However, we can force the robot to go

to the next charger as soon as it reached the medium state. That is accomplished by the use

of the supervisor represented in Figure 7.

The *Idling* event is not an actual event but a way of representing the supervisor will

allow idling actions in that state.

94

Figure 7: Supervisor automaton

The system has a good probability of never reaching the Dead state if the event goCharge

has higher density at lower time than the event batteryDrop, which makes sense since the

battery is supposed to last more per drop than the completion of one navigation primitive.

The actions available to the learning system are now defined in terms of the events in each

state. For example:

� In state (Room1, Full,Moving, FreeMovement) the supervisor doesn’t restrict the sys-

tem behavior. So, considering we identified each action with a controllable event, the ac-

tion set would be A = {{goDoor1, batteryDrop} , {goCharge, batteryDrop} , {batteryDrop}}.

Note how each action is identified with a set that has one or none controllable events

plus all the uncontrollable ones – these are the events that can happen once an action is

picked. Furthermore, important so note we included an idling action because there actu-

ally are uncontrollable events. This wouldn’t be possible if there were no uncontrollable

events because it would force the system to a lock.

� In state (Room1,Medium,Moving, ForceCharge) the actions available would be the

same but the supervisor caught a batteryDrop event and, for that reason, will only allow

the charging action. So: A = {{goCharge, batteryDrop}}

With all this defined we could now apply the modified Q-learning update rule for SMDPs

presented previously and reach the optimal behavior for the robot, within the security speci-

fications.

6 Conclusions

The main focus of this work was to combine the supervisory control approach with the

reinforcement learning approach to the modeling of robotic tasks. We show we can apply a

modified Q-learning rule with guarantees of convergence in a stochastic timed fully observable

system, with a logical supervisor, under some simplifications. We also derive the optimality

equations for such system, which could be used to obtain dynamic programming algorithms.

95

We present a toy problem that illustrates the kind of situations we think this approach is

suited for in a robotics setup: higher level decision sequential decision making with security

restrictions.

As future work, we plan to extend this approach to setups with partial observability in 3

forms:

� Unobservable events: Eo 6= ∅

� Incomplete state observer: GOb 6= (X,E,Γ, x0, f)

� Non-deterministic state-event transitions: p(x′|x, e) ∈ [0, 1]

Acknowledgements

This work was partially supported by Fundação para a Ciência e Tecnologia, through grant

SFRH / BD / 13950 / 2003 and ISR / IST pluriannual funding, from the POS Conhecimento

Program, that includes FEDER funds.

References

[1] Richard Ernest Bellman. Dynamic Programming. Princeton Press, 1957.

[2] Dimitri P. Bertsekas. Distributed asynchronous computation of fixed points. Mathemat-

ical Programming, 27:107–120, 1983.

[3] Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods for continuous-

time markov decision problems. In Advances in Neural Information Processing Systems,

1994.

[4] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event Systems.

Kluwer Academic Publishers, Boston, 1999.

[5] Peter W. Glynn. A GSMP formalism for discrete event systems. In Proceedings of the

IEEE, volume 77, pages 14–23, 1989.

[6] Richard Author Howard. Dynamic Programming and Markov Decision Processes. MIT

Press, 1960.

[7] Richard Author Howard. Semi-markovian decision processes. In Proceedings Interna-

tional Statistical Institute, 1963.

96

[8] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of

stochastic iterative dynamic programming algorithms. In Neural Computation, volume 6,

1994.

[9] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley-Interscience, 1994.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 1998.

[11] Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s

College, Cambridge, UK, 1989.

[12] W.M. Wonham. Supervisory control of discrete-event systems. Technical report, Systems

Control Group, University of Toronto, 1997.

97

98

Algorithmic approach for the sampling of six

degrees of freedom information using floating 2-D

coordinate frame

Milan Kvasnica∗

Abstract

The objective of this paper is an algorithmic approach of optoelectronic system for

the six degrees of freedom (DoF) measurements in robotics, human-machine interface,

assistive technologies and for the sampling of static and dynamic properties of materials,

engineering constructions and machines and for the control operation in space. Described

sensory system is based on the sampling and information processing used in the conversion

of a 2-D CCD array image into three axial shiftings and three angular displacement values.

The algorithm for the computation of three axial shiftings and three angular displacement

is based on inverse transformation of final trapezoidal light spots position, related to the

original square light spots position on the 2-D CCD array.

1 Introduction

The explanation of the six DoF sampling is introduced on the force-torque transducer. Laser

diodes 1 emit the light rays 2 creating the edges of a pyramid intersecting the plane of the

2-D CCD array, here alternatively the focusing screen 8 with light spots 3. The unique light

spots configuration changes under axial shifting and angular displacements between the inner

flange 5 and the outer flange 6 connected by means of elastic deformable medium 7. An

alternatively inserted optical member 9 (for the magnification of micro-movement, or the

reduction of macro-movement) projects the light spots configuration from the focusing screen

onto the 2-D CCD array 4. Four light rays simplify and enhance the accuracy of the algorithms

for the evaluation of the six-DoF information. The algorithms for the computation of three

axial shiftings and three radial displacements values is based on the inverse transformation

of the final trapezoidal position of four light spots related to the original square light spots

∗Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, CZ-76005 Zlin, Czech

Republic, E-mail: kvasnica@fai.utb.cz. The support from the grant Vyzkumne zamery MSM 7088352102

”Modelovani a rizeni zpracovatelskych procesu, prirodnich a syntetickych polymeru” is gratefully acknowl-

edged.

99

Figure 1: The six component force-torque sensor based on one 2-D CCD array with an acting

force component -Fz

position in the plane floating coordinate system xCCD, yCCD on the 2-D CCD array. This

algorithm determines the relative location and orientation of a floating 2-D coordinate system

against a fixed 3-D coordinate system corresponding to the apex of the pyramid shape, or

contrary. The information about three axial shiftings and three angular displacements is

sampled and converted according to a calibration matrix to acting forces Fx, Fy, Fz and

torques Mx, My, Mz.

2 Direct determination of normal vector components

Let us choose the rectangular coordinate frame x, y, z, hereafter called the pyramid coordinate

frame, according to Figure 2. The vertex P (0; 0; 0) of the pyramid is located in the beginning

of the coordinate frame x, y, z. The basis of the pyramid (the plane κ) is created by means of

the 2-D CCD array. The basic position of the 2-D CCD array is perpendicular and cutting

the z coordinate at the distance −q0 from the vertex P . Light beams create in their basic

position on the 2-D CCD array the light spots of a square shape, designated in the coordinate

frame xCCD, yCCD

A0
CCD(a01; a02), B0

CCD(b01; b02), C0
CCD(c01; c02), D0

CCD(d01; d02), S0
CCD(0; 0)

and designated in the pyramid coordinate frame x, y, z

A0
p(a1; a2;−q0), B0

p(b1; b2;−q0), C0
p(c1; c2;−q0), D0

p(d1; d2;−q0), S
0
p(0; 0) ≡ (0; 0;−q0).

Let us designate the positions of the light spots in the CCD coordinate frame in the plane κ

at mutual changes of the position k between the coordinate frames xCCD, yCCD and x, y, z

Ak
CCD(a1; a2), Bk

CCD(b1; b2), Ck
CCD(c1; c2), Dk

CCD(d1; d2), S0(0; 0)

and in the pyramid coordinate frame x, y, z

Ak
p(a1; a2; a3), Bk

p (b1; b2; b3), Ck
p (c1; c2; c3), Dk

p(d1; d2; d3), Sk
p (x0; y0; z0).

100

The angle σ of the light beams, passing through opposite edges of the pyramid with crossing

point P , facilitating the proportionality of the shiftings in the direction of the axis z with

the shiftings in the direction of the axes x, y is equal arctan(1
2). Let us suppose, that any

sequence of the force acting caused the change of the mutual position between the pyramid

coordinate frame x, y, z of the light beams and the 2-D CCD array coordinate frame xCCD,

yCCD. It changed the position of the center S0
CCD(0; 0) in the directions of the coordinates

x, y, z of the pyramid coordinate frame x, y, z into a new position Sp(x0; y0; z0) determining

axial shiftings

x = x0, y = y0, z = z0

from the beginning P , or the shiftings x0, y0, z0−q0 from basic position. Let us suppose, that

any sequence of the torque acting caused angular displacements of the intersection of the plane

κ (of the 2-D CCD array) with the cutting plane y, z by the angle Θ and with the cutting

plane x, z by the angle Θ, and in respect to the plane x, y by the angle Ω around the axis z.

Please take regard, that the angles Φ,Θ are situated in cutting planes. Here is analyzed a

final (statical) position caused by any sequence of the roll, pitch, yaw, characterized by the

standardized normal vector nk
CCD

nk
CCD =







nk
x

nk
y

nk
z







of the plane κ in position k. Following relationships enables to determine the components of

the vector nk
CCD

nx = q0

u
d1−1
d1+1nz

ny = q0

u
d2−1
d2+1nz

nz = (d1+1)(d2+1)
√

q2
0

u2
[(d1−1)2(d2+1)2+(d1+1)2(d2−1)2]+(d1+1)2(d2+1)2

.

The angle δ which contains the planes κ and τ and the angle µ which contains the intersection

of the plain κ and τ with the x axis is possible to eliminate by following relationship

nk
CCD =







nx

ny

nz






=







i sin δ cos µx

j sin δ sinµx

k cos δ






.

The determination of normal vector components using angular displacements Φ, Θ in cutting

planes y, z of the 2D CCD is expressed in following relationships

Φ = arctan(tan δ sinµ)

101

Θ = arctan(tan δ cos µ)

δ = arctan
√

(tan2 Φ + tan2 Θ)

µ = arctan tan Θ
tan Φ .

3 Dilatation, constriction and rotation matrix and angular

displacement Ω

The final position of the normal vector nk
CCD caused by three axial and three angular dis-

placements is possible to substitute by the pitch δ of the plane κ of the 2-D CCD array around

the intersection line yκτ and the roll µ of the intersection line around the axis z, see Figure

2. This final position is possible to decompose into three elementary motion: The rotation

around the axis z by the angle −µ

Rot(z;−µ) =







cosµ sinµ 0

− sinµ cos µ 0

0 0 1






;

The pitch around the axis yκτ by the angle δ

Rot(yκτ ; δ) =







cos δ 0 sin δ

0 1 0

− sin δ 0 cos δ






;

The rotation around the axis z by the angle µ

Rot(z;µ) = Rot(z;−µ)T =







cosµ − sinµ 0

sinµ cos µ 0

0 0 1






.

The product of transformation matrixes with the coordinates of general point k
pXp causes the

rotation of this point around the axis yκτ into a new position k+1
p Xp

k+1
p Xp = Rot(z;−µ) ·Rot(yκτ ; δ) ·Rot(z;µ) · kpXp = Rot(µ; δ) · kpXp,

where

Rot(µ; δ) =









1+nz−n2
x

1+nz
−

nxny

1+nz
nx

−
nxny

1+nz

1+nz−n2
y

1+nz
ny

−nx −ny nz









=







H11 H12 H13

H21 H22 H23

H31 H32 H33






.

102

The Monge’s projection enables to convert the 3-D operation in space to 2-D operation in

plane. The transformation of the plane κ points from the pyramid coordinate frame into the

coordinate frame κ, τ is given by the dilatation matrix

Dil(δ;µ) = Rot(yκτ ; δ) ·Rot(z;−µ) =

[

cos(µ)
cos(δ)

sin(µ)
cos(δ)

− sin(µ) cos(µ)

]

.

Following transformation into the pyramid coordinate frame is given by the rotation around

the axis z by the angle µ

Rot(z;µ) =

[

cos µ − sinµ

sinµ cosµ

]

= Rot(z;−µ)T .

Then the relationship Rot(µ; δ) is simplified by the conversion into the 2-D operation by

means of the dilatation matrix expressed in the normal vector components

Rot(µ; δ) = Rot(z;µ) ·Dil(δ;µ) =

=

[

cos2 µ
cos δ

+ sin2 µ sinµ cos µ
cos δ

− sinµ cos µ
sinµ cos µ

cos δ
− sinµ cos µ sin2 µ

cos δ
− cos2 µ

]

=





n2
x−n2

ynz

nz(1−n2
z)

nxny

nz(1+nz)
nxny

nz(1+nz)

n2
y+n2

xnz

nz(1−n2
z)



 .

The transformation of the plane τ points from the pyramid coordinate frame into the coor-

dinate frame κ, τ is given by the constriction matrix

Con(−δ;µ) = Rot(yκτ ;−δ) ·Rot(z;−µ) =

[

cos(µ) cos(δ) sin(µ) cos(δ)

− sin(µ) cos(µ)

]

.

Following transformation into the pyramid coordinate frame is given by rotation around the

axis z by the angle µ according to relationship Rot(z;µ). Then the relationship Rot(µ; δ)

is simplified by the conversion into the 2-D operation by means of the dilatation matrix

expressed in the normal vector components

Rot(µ;−δ) = Rot(z;µ) ·Con(−δ;µ) =

=

[

cos2 µ cos δ + sin2 µ sinµ cos µ cos δ − sinµ cosµ

sinµ cosµ cos δ − sinµ cos µ sin2 µ cos δ + cos2 µ

]

=





n2
xnz+n2

y

1−n2
z

−nxny

1+nz

−nxny

1+nz

n2
ynz+n2

x

1−n2
z



 .

Let us analyze the position of the normal vector nk
CCD and diagonals Ak

p, Sp, B
k
p and Ck

p , Sp, D
k
p

in 3-D space. Diagonal Ak
p, Sp, B

k
p belongs to the plane x, z and diagonal Ck

p , Sp, D
k
p belongs

to the plane y, z. Both diagonals belong to the plane κ of the 2-D CCD array. Normal vector

nk
CCD is perpendicular to both diagonals and to axes xCCD, yCCD. Then the the direction of

103

the straight line passing through the points Ak
p, Sp, B

k
p is given by the cross product of the

axis y = [0; 1; 0]T and normal vector nk
CCD

y×n
k
CCD

|y×n
k
CCD

|
.

The straight line passing through the points Ak
p, Sp, B

k
p include an angle Ω with the axis

xCCD in the plane of the 2-D CCD array in the pyramid coordinate frame. Let us express

this straight line slope in the coordinates of the pyramid frame

kAB = tan(ΩAB) = yB−yA

xB−xA
. =

sinΩAB

cos ΩAB
=

cos(π
2
−ΩAB)

cos ΩAB
=

y
k
CCD

·(y×n
k
CCD

)

x
k
CCD

·(y×n
k
CCD

)
,

where axes of the 2-D CCD array xk
CCD,yk

CCD are expressed in the pyramid coordinate frame,

normal vector nk
CCD = [nx;ny;nz]

T and the cross product is

y × nk
CCD = [nz; 0;−nx]T .

The angular displacement Ω of the axes xCCD,yCCD is given by the relationships

xk−1
CCD = Rot(Ω) · xk−2

CCD =







cos Ω

sinΩ

0







yk−1
CCD = Rot(Ω) · yk−2

CCD =







− sinΩ

cos Ω

0







where

Rot(Ω) =







cos Ω − sinΩ 0

sinΩ cos Ω 0

0 0 1







and xCCD = [1; 0; 0]T ; yCCD = [0; 1; 0]T .

xk
CCD = Rot(µ; δ) · xk−1

CCD =







H11 cos Ω + H12 sinΩ

H21 cos Ω + H22 sinΩ

H31 cos Ω + H32 sinΩ







yk
CCD = Rot(µ; δ) · yk−1

CCD =







−H11 sinΩ + H12 cosΩ

−H21 sinΩ + H22 cosΩ

−H31 sinΩ + H32 cosΩ







104

Let us in following steps to prepare the numerator

yk
CCD · (y × nk

CCD) = (H13H31 −H11H33) sin Ω + (H12H33 −H13H32) cos Ω

and the denominator

xk
CCD · (y × nk

CCD) = (H11H33 −H13H31) cos Ω + (H12H33 −H13H32) sinΩ

and after the substitution

tan(ΩAB) = (H12H33−H13H32) cos Ω−(H11H33−H13H31) sinΩ
(H11H33−H13H31) cos Ω−(H12H33−H13H32) sinΩ

tan(ΩAB) = G−tan(Ω)
1+G tan(Ω) .

Let us define dividing ratio expressed in the normal vector components

G = H12H33−H13H32

H11H33−H13H31
=

nxny

n2
x+nz(1+nz)

.

And after elimination is the angle Ω

Ω = arctan
G−tan(ΩAB)

1+G tan(ΩAB)

The transformation of the coordinates x, y of the square CCD array into the pyramid coor-

dinate frame x, y is described by the equations, where S0(xS0; yS0) are the coordinates of the

beginning of the coordinate frame xCCD, yCCD, designated in the pyramid coordinate frame

x, y and Ω is the angle between these coordinate frames
[

x

y

]

=

[

cosΩ − sinΩ

sinΩ cos Ω

]

·

[

xCCD

y
CCD

]

+

[

xS0

yS0

]

.

The transformation of the pyramid coordinates x, y into the xCCD, yCCD coordinate frame

where S(s1; s2) are the coordinate of the beginning of the pyramid coordinate frame x, y

designated in the coordinate frame xCCD, yCCD

[

xCCD

y
CCD

]

=

[

cos Ω sinΩ

− sinΩ cos Ω

]

·

[

x

y

]

+

[

s1

s2

]

.

The beginning S0(xs0; ys0) of the coordinate frame of the 2-D CCD array designated in the

pyramid coordinate frame x, y by means of the turn through the angle µ determines the

point S0(x0µ; y0µ). The following pitch from the plane τ through the angle δ into the plane κ

determines the point S0(x0µδ ; y0µ), by means of the constriction matrix

[

xµδ

yµ

]

=

[

cos µ cos δ sinµ cos δ

− sinµ cosµ

]

·

[

x

y

]

.

105

Figure 2: Geometric approach for the sampling of six component information using 2-D CCD

array and four light rays in Monge’s projection.

106

The inverse transformation of the point Sk
0(x0µδ ; y0µ) from the xκτ , yκτ coordinate frame into

the pyramid coordinate frame x, y in the plane τ is determined by means of the relationship

[

xµ

δ

yµ

]

=

[

cos µ
cos δ

sin µ
cos δ

− sinµ cos µ

]

·

[

xk

yk

]

with the dilatation matrix which determines the coordinates of the point Sk
p (x0; y0). The

coordinates of the point Sk
p (x0; y0) (as the projection from the plane κ into the plane view)

determine the position of the midpoint of the inner flange of the six component transducer, see

Figure 3.1 and Figure 3.2. The intersection of the straight line passing parallel with the axis

z against the plane κ of the 2-D CCD array into the point x0, y0 determines the coordinate

z0. The coordinate z0 contains the information about the magnitude and the direction of

axial shifting in the z direction. The coordinates x0, y0 contains the information about the

magnitude and the direction of the axial shiftings in the x and y direction

x = x0 y = y0 z = z0 − q0.

References

[1] E. Dobrocka. Geometrical principles of the monolithic X-ray magnifier. Journal Appl.

Cryst., 24, 1991.

[2] G. Hirzinger, J. Dietrich, J. Gombert, J. Heindl, K. Landzettel, and J. Schott. The sensory

and telerobotic aspects of space robot technology experiment ROTEX. In Proceedings of

the International Symposium on Artificial Intelligence, Robotics and Automation in Space,

Toulouse, Labege, France, 1992.

[3] M. Kvasnica. Intelligent sensors for the control of autonomous vehicles. In Proceedings of

the 6th International Conference and Exposition on Engineering, Construction and Oper-

ation in Space and on Robotics for Challenging Environments Space and Robotics’1998,

Albuquerque, New Mexico, USA, 1998.

[4] M. Kvasnica. Measurement in engineering construction and control operations in space. In

ASCE Multiconference on Engineering, Construction, Operations, and Business in Space

and on Robotics for Challenging Situations and Environment Space and Robotics’2000,

Albuquerque, New Mexico, USA, 2000.

[5] M. Kvasnica. Improvement of positioning accuracy in multi-pod parallel structures. In

ASCE Multiconference on Engineering, Construction, Operations, and Business in Space

and on Robotics for Challenging Situations and Environment Space and Robotics’2002,

Albuquerque, New Mexico, USA, 2002.

107

108

Reconstructing null-space policies subject to

dynamic task constraints in redundant manipulators

Matthew Howard∗ Sethu Vijayakumar∗

Abstract

We consider the problem of direct policy learning in situations where the policies are only

observable through their projections into the null-space of a set of dynamic, non-linear

task constraints. We tackle the issue of deriving consistent data for the learning of such

policies and make two contributions towards its solution. Firstly, we derive the conditions

required to exactly reconstruct null-space policies and suggest a learning strategy based on

this derivation. Secondly, we consider the case that the null-space policy is conservative

and show that such a policy can be learnt more easily and robustly by learning the

underlying potential function and using this as our representation of the policy.

1 Introduction

Redundant manipulators are characterised as having degrees of freedom in excess of those

needed to perform some task. In the control of such systems a popular paradigm is to

utilise redundancy through secondary movement policies that complement the primary task

goals in some way. Such policies prefer actions that, for example, avoid joint limits [1],

kinematic singularities [11] or self-collisions [9]. Traditionally these policies were implemented

as optimising some carefully selected instantaneous cost function or potential. The approach

was first proposed by Liégeois [3] in the context of Resolved Motion Rate Control (RMRC)

[10], but has since been extended to other control regimes (notably force based control)

and a wider variety of secondary policies. For example Nakamura [5] studied the problem

extensively with particular emphasis on optimal RMRC and Resolved Acceleration Control

(RAC) of arms with pre-defined tasks and time-integral cost functions.

However, the secondary policy need not be the result of optimisation and the formalism

extends to a variety of constraint-based control scenarios. For example, in humanoid robots, a

secondary goal might be to maintain some posture when performing some task [2], to perform

multiple prioritised tasks at once [8] or perform control subject to contact constraints [6].

∗School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom. E-mail:

matthew.howard@ed.ac.uk.

109

Furthermore, many tasks are best described as constrained with respect to certain variables.

Consider running on a treadmill: the centre of mass and tilt of the torso are constrained and

the policy controlling the gait is projected into the null-space of these constraints.

The focus in this paper is on modelling secondary control policies from observations of

constrained motion using statistical learning methods. This is a form of direct policy learn-

ing, with the difference that the policy is only partially observable. For the learning, most

supervised learning techniques require consistent, convex training data. In this paper, we

look at the problem of deriving this data and offer two contributions for its solution.

The first concerns the general case where the policy can be any non-conservative vector

function of the state. We take a geometric approach to reconstructing the policy based on

Euclid’s theorem and outline the necessary conditions for exact reconstruction at any given

point. Furthermore, we show that this approach suggests an iterative training algorithm for

our learner.

The second contribution is to show that, by restricting the class of permissible policies to

those that optimise some potential, the policy can be inferred in a simpler and more robust

way using a form of inverse optimal control. In this approach, identifying the unconstrained

policy from constrained observations, is equivalent to seeking the potential being optimised.

We show that by modelling the policy through its potential we can side-step several of the

restrictions of the geometric approach.

Finally, we present experimental results for a simulated robot arm in which the recon-

structed null-space policy is used to replace that of the original and the resultant behaviour

is compared across a variety of consistent task goals.

2 Problem formulation

We consider control policies of the form

u = utask(x, t) + unull(x, t) = utask(x, t) + N(x, t)a(x) (1)

where u is the control signal, utask is the component of u that satisfies a set of non-linear, time-

varying task constraints, a(x) is a policy pursuing secondary movement goals, and N(x, t)

is a projection matrix. N(x, t) prevents violation of the task constraints by projecting the

policy into the null-space. Our goal is to model a(x) from observations of unull.

In general, a(x) can be any arbitrary vector field. According to the Helmholtz decompo-

sition, any vector field may be comprised of rotational and divergent components

a(x) = ∇x ×Φ(x) +∇xφ(x) (2)

where Φ and φ are vector and scalar potentials. Assuming that a(x) is conservative1 an

equivalent goal is to model φ(x). Policies of the form (1) occur in both velocity (u ≡ q̇) and

1A necessary and sufficient condition for this is that ∇x × a(x) = 0, ∀x.

110

force (u ≡ τ) based control [4].

Example 2.1. Velocity-based Control

A standard velocity-based control scheme is RMRC [10, 3]

q̇ = J(q, t)†ṙ + N(q, t)a (3)

where r, ṙ ∈ R
k and q, q̇ ∈ R

n, denote the task- and joint-space positions and velocities and

J(q, t) is the Jacobian with W-weighted pseudoinverse J† = W−1JT (JW−1JT)−1. N(q, t) =

(I− J†(q, t)J(q, t)) is the null-space projection matrix (where I is the identity matrix). Note

that, in general, the Jacobian and the projection matrix are time-dependent reflecting the fact

that the task-space may change in time [1].

Example 2.2. Force-based Control

A general formulation for force-based control is [7]

τ = W−1/2(AM−1W−1/2)†(b−AM−1F) + N(q, q̇, t)a (4)

where τ ∈ R
n is the applied torque/force, q, q̇, q̈ ∈ R

n are joint-space positions, velocities

and accelerations, M(q) ∈ R
n×n is an inertia/mass matrix and F ∈ R

n describes per-

turbing forces such as centrifugal, Coriolis and gravity forces. The weighting matrix W ∈

R
n×n determines the control paradigm used, such as RAC (W = M−2) or the Operational

Space Formulation (W = M−1) [7]. The task is described through constraints of the form

A(q, q̇, t)q̈ = b(q, q̇, t) ∈ R
k and the null-space projection matrix is given by N(q, q̇, t) =

W−1/2(I− (AM−1W−1/2)†AM−1W−1/2)W1/2.

The correspondence between (1), (3) and (4) can easily be shown by appropriate substitution

of variables. In both cases, the second term arises when there is redundancy, i.e. the task

dimensionality is lower than that of the action space (k < n), allowing secondary goals to be

pursued. Fig. 1 shows examples of how different null-space policies affect behaviour.

3 Reconstructing nullspace policies

Theorem 3.1. Reconstruction of Projected Policies

Given observations a(i) = N(i)(x)a(x), i = 1, . . . , n of a policy a(x) projected into the null-

space of a set of n task constraints which that span the action space, the unconstrained policy

is given by

a(x) = x× − x (5)

where x× is the solution to the linear system

Ax× = d (6)

where A ≡ (a′, . . . ,a(m))T and the elements of d are given by di = a(i)T (x + a(i)).

111

Start Position

a(x) = a1(x)

a(x) = a1(x)

τ 1

τ 1

F

F

τ 3τ 2

τ 2 τ 3

Figure 1: Effect of different null-space policies a(x) on behaviour when tracking a linear task-

space trajectory in RMRC (left) and applying a force F to a mass in force control (right).

Proof Consider the RMRC control of a manipulator with two-dimensional joint space, q ≡

(q1, q2)
T , and one-dimensional task space r(i), i = 1, . . . , n. The Jacobian of this system

J(i)(q) = (α1, α2)
(i) = α(i) (7)

is locally linear in the region of q. Under task constraint i the null-space policy is constrained

to a line in joint-space with intersection r(i) (Fig. 2, left). When the active constraint changes

the rotation of this line changes so that the observed projections lie inscribed within a circle

(hypersphere in n-d space) of diameter ||a(q)|| (Fig. 2, centre). Euclid’s theorem states that

any triangle inscribed in a semi-circle is a right-angle triangle. Hence a(q) is given by the

intersection of the lines orthogonal to any two projections a′,a′′ (Fig. 2, right). By the same

argument, in n-dimensional space, if observations are such that they form a basis set of the

space, we can construct planes normal to the projections and solve for the intersection point

q×. This yields the linear system (6) with the unprojected vector given by (5). �

Theorem 3.1 also suggests the following lemma.

Lemma 3.1. Given observations a(i) = N(i)(x)a(x), i = 1, . . . , n of a constrained policy

a(x), the observation with the largest norm ||a(i)|| lies closest to the unconstrained policy.

Proof By inspection of Fig. 2, or by considering that N(x, t) is a projection matrix, with k

eigenvalues of value 0 and n− k eigenvalues of value 1. Fewer constraints (smaller k) results

in larger norms. �

Lemma 3.1 suggests an iterative approach to training whereby if multiple observations are

made around the same point, those with the largest norm should be used for learning. This

is particularly true of highly redundant systems (k << n) where there the policy is much less

constrained. Furthermore, in the limit that observations are made under a single, constant

constraint, a consistent policy unull(x) = N(x)a(x) will be learnt.

112

q1

q
a(q)

q2

q̇

r

′ =
α

′T q

J†ṙ′

Na

q1

q2

a(q)

r
(3) = α

(3),
T q

r
(1

) =
α

(1
),
T q

r
(2
) =

α

(2
),T

q

r (4) = α(4),T
q

r (5)
=

α (5),T
q

r (6)
=

α (6),T
q

q1

q2

r ′′

a
′

a(q)

a
′′

q
×

r
′

a
′

⊥

a
′′

⊥

q

Figure 2: Under the task constraints (7), the null-space policy is projected onto a manifold r =

α(t)T q (left), orthogonal to the task space motion. Under multiple constraints the projected

policy vectors lie inscribed in a hypersphere in state-space (centre). Euclid’s Theorem can be

used to reconstruct a(q) given observations under different constraints (right).

The condition in Theorem 3.1 that a spanning set of projections are required to exactly

reconstruct the policy is somewhat restrictive, and in real data sets unlikely. However if the

policy is conservative (i.e. the first term of (2) is zero) we can side-step these restrictions with

the following proposition.

Proposition 3.1. Reconstruction of Conservative Policies

Under the same conditions as Theorem 3.1, a conservative policy a(x) can be represented by its

underlying potential function, which can be learnt without the need for multiple observations

or iterative training.

Consider again the case of RMRC of a redundant manipulator. The potential underlying

a conservative a(q) can be reconstructed through inverse optimal control [4]. The sim-

plest method requires trajectories sampled at some rate ρ resulting in a set of via-points

(q1 . . .qρτ)T where

qt+1 = qt + N(qt)∇qφ(qt) (8)

for a trajectory of duration τ and utask = 0. Training samples of φ(x) can be generated by

integrating along trajectories using, for example, the Euler method

φ(qt+1) = φ(qt) + (qt+1 − qt)
TN(qt)∇qφ(qt). (9)

The key observation is that the integration in (9) occurs in the direction locally orthogonal to

the constraints. We refer the reader to results reported in [4] for empirical evidence supporting

Proposition 3.1.

In Fig. 3 the left-hand plot shows the true (blue) and reconstructed (cyan) potential along

trajectories under a variety of constraints. Contours show the true (quadratic) potential func-

tion over two of the joints of the arm. The trajectories are reconstructed up to a translation

113

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

q
2
 (radians)

q 3 (r
ad

ia
ns

)

π

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
time lapse

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
time lapse

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

q
2
 (radians)

q 3 (r
ad

ia
ns

)

π

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
time lapse

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
time lapse

Figure 3: True (blue) and reconstructed (cyan) values of the quadratic potential (contours)

along trajectories subject to different constraints (constraints on the hand, wrist, elbow, and

unconstrained trajectories shown). True (black) and learnt (red) null-space policies subject

to hand constraints for the quadratic (top) and sinusoidal (bottom) potentials. Time-lapse of

the arm tracking a linear trajectory using the true (left) and learnt (right) null-space policies.

in the φ-dimension (trajectories have been translated in Fig. 3 for comparison). In the middle

and right-hand plots a modified Euler method was used to learn two policies; that derived

from a quadratic potential (top row) and a sinusoidal one (bottom row); The middle plots

show the true and reconstructed policy subject to constraints on the hand. The right-hand

plots show a time-lapse of the arm tracking a linear trajectory using the true and learnt policy

in the null-space.

4 Conclusion

We have presented the mathematical basis for direct policy learning of policies subject to

dynamic, non-linear constraints. We have shown that in the general case of non-conservative

policies exact reconstruction of the policy requires solution of a system of equations con-

structed from observations under task constraints that span the state-space. We have noted

that this suggests an iterative training scheme based on the norm of observed projections.

Finally, we have suggested a more robust approach to learning conservative policies through

numerical integration techniques and simulation results have been presented for the learning

of such policies for a kinematically-controlled three link arm.

References

[1] M. Gienger, H. Janssen, and C. Goerick. Task-oriented whole body motion for humanoid robots.

In IEEE-RAS Int. Conf. on Humanoid Robots, 2005.

114

[2] O. Khatib, J. Warren, V. De Sapio, and L. Sentis. Human-like motion from physiologically-based

potential energies. In J. Lenarcic and C. Galletti, editors, On Advances in Robot Kinematics.

Kluwer Academic Publishers, 2004.

[3] A. Liégeois. Automatic supervisory control of the configuration and behavior of multibody mech-

anisms. In IEEE Trans. Syst., Man, Cybern., volume 7, 1977.

[4] Howard M., M. Gienger, C. Goerick, and S. Vijayakumar. Learning utility surfaces for movement

selection. In IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), 2006.

[5] Y. Nakamura. Advanced Robotics: Redundancy and Optimization. Addison Wesley, Reading, MA,

1991.

[6] J. Park and O. Khatib. Contact consistent control framework for humanoid robots. In IEEE Int.

Conf. on Robotics and Automation (ICRA), 2006.

[7] J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, and S. Schaal. A unifying methodology

for the control of robotic systems. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2005.

[8] L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human

environments. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2006.

[9] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick. Real-time self collision avoidance for hu-

manoids by means of nullspace criteria and task intervals. In IEEE-RAS Int. Conf. on Humanoid

Robots, 2006.

[10] D. E. Whitney. Resolved motion rate control of manipulators and human prostheses. 10(22),

1969.

[11] T. Yoshikawa. Manipulability of robotic mechanisms. Int. J. Robotics Research, 4(2), 1985.

115

116

On the geometry of rolling maps and applications

to Robotics

K. Hüper∗ M. Kleinsteuber† F. Silva Leite‡

Abstract

The main objective of our paper is to introduce rolling maps using the formalism of

differential geometry, as done in Sharpe [3], while illustrating the mathematical concepts

using simple examples of manifolds which are particularly important in Robotics.

Rolling maps describe how one smooth manifold rolls on another, without twist or

slip. The most consagrated of these nonholonomic mechanical systems is the rolling

sphere. There are two types of constraints for a rolling sphere on a surface. A holonomic

one, which insures that the sphere remains tangent to that surface, and two nonholonomic

constraints which ensure that the sphere rolls without slip or twist.

Examples of mechanical systems which contain rolling elements, and are naturally

modeled as nonholonomic systems, are: aircraft nose wheels, motorcycles, automotive

systems and trailer systems. Rolling motions appear in the robotics context associated

with rigid bodies moving while keeping point contact. As a consequence, understanding

the geometry of rolling from a theoretical point of view is an important step towards

applications in Robotics. This methodology may be applied in several situations, such

as: wheeled mobile robots; a single robot arm maintaining controlled contact against a

moving environment; two arms manipulating an object with rolling contact between each

arm and the object.

We consider Riemannian manifolds, equipped with a metric induced by the Euclidean

metric from the embedding space, and rolling as a rigid body on their affine tangent

space at a point. The equations of motion can be described by a control systems with

constraints on velocities and evolving on the Euclidean group of rigid motions, describing

simultaneously rotations and translations in space. In previous work [2] we considered the

case when the rolling manifold is the group of rotations SOn or a Grassmann manifold of

all k-dimensional subspaces of an n-dimensional real Euclidean space. In [1] we studied

rolling maps for real Stiefel manifolds, which are the sets of all orthonormal k-frames of an

n-dimensional real Euclidean space. We now extend the previous work to the case when

∗NICTA, Canberra Research Laboratory, Australia, and Department of Information Engineering, Research

School of Information Sciences and Engineering, Canberra, Australia. E-mail: knut.hueper@nicta.com.au.
†Mathematisches Institut, Universität Würzburg, Germany. E-mail:kleinsteuber@mathematik.uni-wuerzburg.de.
‡Institute of Systems and Robotics, University of Coimbra, and Department of Mathematics, University of

Coimbra, Portugal. E-mail:fleite@mat.uc.pt.

117

the Euclidean group SEn rolls without slip or twist on its tangent space at the identity.

The main difficulty when extending notions of rolling to a particular manifolds is that,

contrary to the sphere case, we loose geometric intuition. But the properties of rolling

motions call for new developments in this area. We will highlight the great advantages of

rolling motions through applications to solutions of interpolation problems on our favorite

non-Euclidean spaces.

References

[1] K. Hüper, M. Kleinsteuber, and F. Silva Leite. Rolling Stiefel manifolds. International

Journal of Systems Science. To appear in 2007.

[2] K. Hüper and F. Silva Leite. On the geometry of rolling and interpolation curves on s
n,

son and Graßmann manifolds. Journal and Dynamical and Control Systems. To appear

in 2007.

[3] R. W. Sharpe. Differential Geometry. Springer, New York, 1996.

118

On the computation of the Karcher mean on

spheres and special orthogonal groups

Krzysztof A. Krakowski∗ Knut Hüper† Jonathan H. Manton‡

Abstract

This paper is concerned with computation of the Karcher mean on the unit sphere S
n

and the special orthogonal group SO(n). The Karcher mean, or the Riemannian centre

of mass, is defined as the point minimising the sum of the squared distances from that

point to each of the given points. By its definition, the mean always belongs to the same

space as the given points, however, it may not be unique. Motivated by applications in

control, vision and robotics, this paper studies the numerical computation of the Karcher

mean. We propose simpler and computationally more efficient gradient-like and Newton-

like algorithms. We give explicit forms of these algorithms and show that if the set of

points lie within a particular open ball, the algorithms are guaranteed to converge to the

Karcher mean.

1 Introduction

The concept of an average, center of gravity or centroid of a set of points generalized to spaces

other than IRn appears in the literature in a number of different contexts. Since the paper of

Karcher [3] the average is often referred to as the Karcher mean, the term adopted here by

the authors. This paper deals with a final set of points but the results extend to the case of

a mass distribution.

Let M be a complete Riemannian manifold and Ω a final set of points in M. Define a

generalized variance to be the function Ψ: M→ IR given by

Ψ(x) :=
1

2#Ω

∑

p∈Ω

dist(x, p)2, (1)

∗School of Mathematics, Statistics and Computer Sciences, University of New England, Armidale, NSW

2350, Australia. E-mail:kris@mcs.une.edu.au.
†National ICT Australia, Canberra Research Laboratory, Locked Bag 8001, Canberra ACT 2601, Australia,

and Department of Information Engineering, RSISE, The Australian National University, Canberra, ACT 0200,

Australia. E-mail:knut.hueper@nicta.com.au.
‡Department of Information Engineering, Research School of Information Sciences and Engineering (RSISE)

The Australian National University, Canberra, ACT 0200, Australia. E-mail:j.manton@ieee.org.

119

where dist(·, ·) is the Riemannian (geodesic) distance in M and #Ω is the cardinal, the number

of points, of Ω. The Karcher mean x̄ ∈ M is a point where Ψ attains its minimum. It is

known (cf. [3]) that if Ω ⊂ B%, where B% ⊂ M is the open Riemannian ball of radius %,

and % is sufficiently small so that B% is convex1 and if % < π/4C−1/2, where C is a sectional

curvature on B%, then Ψ is convex on B%. As a consequence Ψ has a unique point of local

minimum in B%, therefore the Karcher mean x̄ is unique and belongs to B%.

The motivation for this paper is twofold. The recent paper [6] considers SO(3), so it is

natural to consider SO(n) for n > 3. In fact, SO(3) is a very special case because it has

constant sectional curvature, whereas SO(n) doesn’t, for n > 3. Therefore, not only do not

the methods in [6] extend, it is not even clear in advance whether or not results valid for

n = 3 remain true if n > 3. It is also remarked that no numerical algorithm for finding the

Karcher mean was proposed in [6]. The main contribution of this paper are the new iterative

algorithms whose convergence rate are the same as the gradient descent and the Newton, but

are simpler and computationally more efficient than, say the intrinsic Newton and gradient

descent algorithms for spherical weighted averages in Sn, cf. [1].

The rest of this paper is organised as follows. Section 2 describes properties of the Karcher

mean. Here we highlight the connection of the Karcher mean with convexity of a set containing

the points. The algorithms to compute the Karcher mean in the two spaces, SO(n) and Sn

are presented in Section 3. Finally, Section 4 concludes the paper.

2 Existence and uniqueness of the Karcher mean

It turns out that existence and uniqueness of the Karcher mean depends on the space and its

convexity. There are possible problems arising from the curvature of a space. Firstly, since

the distance depends on minimizing Riemannian geodesics, one has to make sure that the

minimising geodesic exists and is unique — injectivity radius, and then that it lies entirely in

the ball containing the set of points Ω — convexity radius. It is also of the interest to know

whether the Karcher mean is unique — convexity of Ψ.

Table 1 summarizes geometric properties of the two spaces considered in this paper. The

both spaces are symmetric and the unit sphere is a quotient space Sn = SO(n + 1)/SO(n).

Because the unit sphere is more curved, it poses more theoretical problems related to the

existence and uniqueness of the Karcher mean than SO(n).

Since the paper of Karcher [3], mentioned in the introduction, another significant develop-

ment has been brought by the work on convex geometry by Kendall [4]. There the maximum

radius of the convex Riemannian ball containing Ω, for which the Karcher mean exists and is

unique, has been improved. For the unit sphere Sn the radius of the open ball is π/2. That

1We say that U ⊂ M is convex if for any p, q ∈ U there is a unique in M minimizing geodesic γ from p to

q and γ ⊂ U .

120

Special Orthogonal Group SO(n) Unit Sphere S
n

tangent vector
XA — tangent at X ,

where A — skew-symmetric matrix

V — tangent at x, 〈V, x〉 = 0,

product in the ambient IRn+1

the inner product 〈U, V 〉 := 1

2
tr

(

UTV
)

, where U, V ∈ so(n) spherical, 〈U, V 〉 := UTV (in IRn+1)

exponential map exp
X

(XA) = XeA exp
x

V = cos ‖V ‖ x +
sin‖V ‖
‖V ‖ V

log map exp−1

X
(P) = X log XTP exp−1

x
(p) = (p − x 〈x, p〉) arccos〈x,p〉√

1−〈x,p〉2

curvature C(X, Y) = 1

4
‖[X, Y]‖2

, for SO(3) C is 1

4
C = 1

R
2 , for the unit sphere C is 1

injectivity radiusa π π

convexity radiusb π/2 π/2

afor details on how to establish the radius for symmetric spaces cf. Kobayashi & Nomizu [5]
bfollows from the Whitehead’s Theorem, cf. [5]

Table 1: Comparison of geometric properties of SO(n) and Sn.

means that if Ω is contained in an open half-sphere, the Karcher mean exists and it is unique.

Buss & Fillmore’s [1] investigations for the sphere relaxed slightly the conditions allowing the

half-sphere to be closed as long as at least one point of Ω lies inside it.

3 Computation of the Karcher mean

In this section we introduce new iterative methods of calculating Karcher mean on SO(n) and

Sn. They are based on the two standard methods of deriving non-degenerate critical points,

namely the gradient descent and the Newton methods. For a smooth function f : IRn → IR let

x∗ ∈ IRn be a non-degenerate critical point of f , i.e., the Hessian Hess f(x∗) is invertible. Let

Nf : IRn → IRn be given by x 7→ Nf (x) := x−(Hess f)−1 grad f(x). The Newton method is the

iteration xi+1 = Nf (xi). Similarly, let Gf : IRn → IRn be given by x 7→ Gf (x) := x−grad f(x).

The gradient descent method is the iteration xi+1 = Gf (xi). The two methods easily extend

to Riemannian manifolds. Given a smooth function f : M→ IR and the Riemannian normal

coordinates ϕxi
: IRn →M centered at xi ∈M the iterations

xi+1 = ϕxi

(

Nf◦ϕxi
(0)

)

and xi+1 = ϕxi

(

Gf◦ϕxi
(0)

)

(2)

become the intrinsic Newton and gradient methods, respectively. The gradient of the variance

of Ψ: M → IR given by (1) has a particularly simple form gradΨ(x) = − 1
#Ω

∑

p∈Ω ϕ−1
x (p),

cf. [3], and so the intrinsic gradient descent algorithm (2) becomes

xi+1 = ϕxi





1

#Ω

∑

p∈Ω

ϕ−1
xi

(p)



 . (3)

However, based on the observation in Hüper & Trumpf [2], the same rate of convergence can

be obtained with algorithms where Riemannian normal coordinates ϕx are replaced with any,

121

possibly different, parametrizations agreeing, up to the first derivative, with ϕx. We call these

new algorithms the Newton-like and the gradient-like. We now present these algorithm for

the two symmetric spaces, SO(n) and Sn.

The special orthogonal group

The Riemannian Hessian operator Hess Ψ: TXSO(n) → TXSO(n) of the variance Ψ given

by (1) has the following form

HessΨ(XA) =
1

#Ω

∑

P∈Ω

Rlog(XPT) ·XA, (4)

where RX : so(n)→ so(n) is defined by

Y 7→
adX

2
coth

adX

2
· Y with R0(Y) = Y

and the linear operator adX : so(n)→ so(n) is given by adXY := [X,Y] = XY − Y X.

Theorem 3.1. Let Ψ: SO(n)→ IR be defined by (1).

1. The critical points of (1) are precisely the solutions of

∑

P∈Ω

log(P TX) = 0. (5)

2. At smooth points of (1), the Riemannian Hessian of (1) is always positive definite.

Generalized Newton methods Up to our best knowledge there is no known closed form

solution of (5) in general. We start this section by proposing Newton-like methods for com-

puting the Karcher mean in SO(n). Let X ∈ SO(n) and consider a smooth parametrization

around X µX : IRn(n−1)/2 → SO(n) with µX(0) = X, i.e., a local diffeomorphism around

0 ∈ IRn(n−1)/2. If there exists an open neighborhood U ⊂ SO(n) of X ∗ and a smooth map

µ : U × IRn(n−1)/2 → SO(n)

such that µ(X, v) = µX(v), for all X ∈ U and v ∈ IRn(n−1)/2, we will call {µX}X∈SO(n) a

locally smooth family of parametrizations around X ∗. We now present three different families

of this kind. In what follows we will identify so(n) ∼= IRn(n−1)/2.

µGS : U × so(n)→ SO(n) given by (X,A) 7→ Q (X(I + A)) , (6)

µcay : U × so(n)→ SO(n) given by (X,A) 7→ X

(

I +
A

2

)(

I−
A

2

)

−1

, (7)

µexp : U × so(n)→ SO(n) given by (X,A) 7→ X expA, (8)

here Q(X(I+A)) denotes the Q-factor of the unique QR-decomposition of the matrix X(I+A),

i.e., the orthogonal matrix produced from the Gram-Schmidt process applied to the columns

of X(I + A). The following Lemma is easily verified.

122

Lemma 3.1. Let U ⊂ SO(n) be an open neighborhood of X ∈ SO(n). Let µGS
X , µcay

X , and µexp
X

be defined as (6), (7), and (8), respectively. Then for arbitrary A ∈ so(n) ∼= IRn(n−1)/2

Dµexp
X (0) ·A = D µcay

X (0) · A = D µGS
X (0) · A = XA. (9)

Algorithm 3.1 (Newton-like Method). Given a final set of points Ω ⊂ SO(n), compute a

local minimum of Ψ given by (1).

Step 1 Set X ∈ SO(n) to an initial estimate of the Karcher mean, such as to any point of Ω.

Step 2 Compute
1

#Ω

∑

P∈Ω

log(PTX).

Step 3 Stop if

∥

∥

∥

∥

∥

1

#Ω

∑

P∈Ω

log(PTX)

∥

∥

∥

∥

∥

is sufficiently small.

Step 4 Solve the linear equation HessΨ(XA) = − gradΨ(X) for A.

Step 5 Set X := µX(A).

Step 6 Goto Step 2.

We have the following result.

Theorem 3.2. If Algorithm 3.1 converges then it converges locally quadratically fast.

The unit sphere

From now on we assume that Ω is contained in an open half-sphere. For any x ∈ Sn and

V ∈ TxS
n the Riemannian Hessian of the variance Ψ: Sn → IR is given by

HessΨ(V, V) =
1

#Ω

∑

p∈Ω

(

1

sin2 θp

(1− θp cot θp) 〈V, p〉2 + θp cot θp ‖V ‖
2

)

,

where θp = dist(x, p) = arccos 〈x, p〉. There are the two important properties of Hess Ψ that

are essential to analysis of convergence of the algorithms (2).

Lemma 3.2. The Hessian of Ψ satisfies Hess Ψ(V, V) ≤ ‖V ‖2, for any x ∈ Sn and V ∈ TxS
n.

Lemma 3.3. The Hessian HessΨ is positive definite at the Karcher mean x̄. Therefore there

exists a neighbourhood U ⊂ Sn of x̄, where Ψ is convex.

The intrinsic gradient descent and the Newton algorithms in the sphere studied in Buss

& Fillmore [1] are given by (2). These algorithms are computationally expensive because at

each iteration they require calculations of normal coordinates of every point of Ω, cf. (3). As

in the case of SO(n), we may replace the normal coordinates ϕx with another mapping, and

preserve the rate of convergence. For the sphere a good choice is the orthogonal projection

πx : IRn+1 → TxS
n given by z 7→ πx(z) := z − 〈x, z〉 x = (I− xxT)z.

We conclude this section with a new gradient-like algorithm.

123

Generalized Gradient Method The gradient-like algorithm (10) in the unit sphere Sn

converges to the Karcher mean locally linearly fast

xi+1 = ϕxi





1

#Ω

∑

p∈Ω

πxi
(p)



 . (10)

4 Conclusion

This paper presents, to the best of our knowledge, the first efficient and reliable numerical

algorithm for computing the Karcher mean of points in SO(n). Specifically, under the same

necessary condition which ensures the Karcher mean is well defined, the algorithm is proved to

converge to the Karcher mean. Moreover, the local rate of convergence is quadratic. Finally,

a new gradient-like algorithm in Sn is presented.

References

[1] Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to spherical

splines and interpolation. ACM Transactions on Graphics, 20(2):95–126, 2001.

[2] Knut Hüper and Jochen Trumpf. Newton-like methods for numerical optimization on

manifolds. In Proceedings of the 38 Asilomar Conference on Signals, Systems and Com-

puters, November 7–10 2004, California, USA, volume 1, pages 136–139, 2004.

[3] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on

Pure and Applied Mathematics, 30:509–541, 1977.

[4] Wilfrid S. Kendall. Probability, convexity and harmonic maps with small image I: unique-

ness and fine existence. Proceedings of the London Mathematical Society, 61:371–406,

1990.

[5] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, vol-

ume 2 of Interscience tracts in pure and applied mathematics. Interscience Publishers,

New York, 1969.

[6] Maher Moakher. Means and averaging in the group of rotations. SIAM Journal on Matrix

Analysis and Applications, 24(1):1–16, 2002.

124

Reorienting a quasi-rigid body using shape changes

Marie Bro∗ Maria Mose†

Abstract

It is well-known that a falling cat can reorient itself merely by changing its shape.

We present here a ball and stick model which captures the features necessary for a cat

to turn without external torque. We calculate the reorientation of this model resulting

from a cyclic sequence of shape changes, or in terms of differential geometry the geometric

phase obtained by following a given closed path in shape space. We further determine via

numerical implementation of this model the most efficient series of shape changes leading

to a given reorientation. In other words we solve numerically a version of the isoholonomic

problem.

1 The isoholonomic problem

The concept of geometric phase have been studied by a number of authors [1], [6], [7], [9].

We give here a brief outline of the concept, and how it should be understood in the context

of control theory.

The geometric phase of a dynamical system is a certain type of phase shift. Any continuous

change in the variables of the system corresponds to a curve its configuration space. If the

system is a control system the variables can be split into control variables and state variables,

and the configuration space can be given the structure of a fiber bundle. The set of control

variables will constitute the base space and the state variables form the fibers.

One may then ask the question: ’Given a curve in base space, which curve in the confi-

guration space will result from the changes in the control variables along this curve?’. In

terms of differential geometry this question adresses the problem of lifting a curve from base

space to the fiber bundle in a unique way. Lifts in general are not unique, but the so-called

horisontal lifts are. They occur in the presence of a connection since a connection define the

horisontal spaces. Connections often emanate from conservation laws or other constraints

on the system. The phase shift in the state variables obtained from lifting a closed curve

in the base space horisontally is the geometric phase (in references [7] and [8] refered to as

holonomy).

∗Department of Mathematics, Technical University of Denmark. E-mail:M.Bro@mat.dtu.dk.
†Department of Mathematics, Technical University of Denmark. E-mail:mariamose@hotmail.com.

125

When falling, the cat controls its orientation by changing its shape. Hence, the control

variables are those that describe the shape, and the state of the system is the orientation. The

falling cat’s problem is to obtain a certain reorientation (i.e geometric phase) as efficiently

as possible. It is therefore a special case of The Isoholonomic Problem [8]: Among all curves

with a fixed geometric phase, find the loop of minimum length.

π

q = (ξ, η)

γ

Q

γ̃

B

Geometric Phase

ξ

(a) The geometric phase is the phase shift in

the state variables (i.e. the fiber variables)

obtained when the control variables follow a

closed curve in base space. The geometric

phase is determined by performing a horizon-

tal lift of the curve to the configuration space

B

Q

π

(b) Sketch of the isoholonomic prob-

lem. Several closed curves in the base

space with the same starting point

might lead to the same geometric

phase. The isoholonomic problem is

to determine the shortest of these.

Figure 1:

This is an optimal control problem, and for the model we propose in the next section it has

the formulation:

minimize
ξ(t)∈B

f(ξ) =

∫ t1

t0

‖ξ̇(t)‖dt

such that η̇(t) = g
(

ξ(t), η(t)
)

ξ̇(t), (1)

ξ(t0) = ξ(t1) = ξ0,

η(t0) = η0,

η(t1) = ηend, t ∈ [t0, t1]

Here, the objective function f(ξ) is the length of the curve in base space; the first constraint

ensures that the lift is horizontal; the second constraint guarantees a closed curve and that the

starting point is kept fixed; and finally the third and the fourth constraint gives the correct

initial and final orientations, hence the correct geometric phase.

126

2 The mechanical model

Different models of the falling cat have been proposed most of which model the cat as two

coupled rigid bodies [3], [4], [5]. These models differ in the nature of the coupling of the two

bodies. Here, we propose a ball and stick model of the falling cat.

Translation plays no part in reorientation through shape changes [6], [8], and therefore

we consider a quasi-rigid body, modelling the cat in a frame where origin is at the center of

mass. Hence each configuration comprise a shape, described by the internal variables, and

an orientation, described by the external variables. As we saw in the previous section the

shape variables are the control variables and the orientation variables are the state variables.

This means that when viewing the configuration space as a fiber bundle, the shape space

constitutes the base space and the group of rotations in R
3 forms the fibers. Since we are

dealing with reorientation of the quasi-rigid body, it makes sense to assign SO(3) as the

structure group of the fiber bundle thus making it a principal bundle.

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

(a) A schematic drawing of a cat

in relation to the proposed model.

`3

zb

α3

α2

m1

m4

α1

`2

xb

`1

m2 m3
yb

(b) The body frame of the model. The shape

is given by the three angles α1, α2 and α3.

Figure 2:

The model consists of four point masses m1, m2, m3, and m4 which are connected by

three massless rods `1, `2 and `3 (see Figures 2(a) and 2(b)). The rods `1 and `3 represent the

forelegs and the hind legs, respectively, while `2 respresents the spine of the cat. The shape

space is S1 × S2, as indicated by figure 2(b).

Elements in shape space are denoted ξ, and elements in SO(3) are denoted η. Hence, the

position si of the mass mi in the laboratory frame is given by:

si(ξ, η) = R(η)
(

bi(ξ)− bCM (ξ)
)

, i = 1, . . . , 4

where R(η) is a rotation matrix, and bi(ξ) and bCM (ξ) are the position vectors in the body

frame for mi and the center of mass respectively.

127

A set of ODE’s for calculating the geometric phase for this model along a path in shape

space can now be derived using the conservation of angular momentum. We assume that

the cat is initially at rest, and hence we impose the constraint ’angular momentum = 0’ on

the system. This constraint is equivalent to the mechanical connection [1], [8]. The angular

momentum is calculated from the position vectors, and it turns out that it can be written

as the sum of a matrix Kη(ξ, η) times the time derivative of the orientation, η̇ and a matrix

Kξ(ξ, η) times the time derivative of the shape ξ̇.

LCM =
3

∑

i=1

si ×miṡi = Kη(ξ, η)η̇ + Kξ(ξ, η)ξ̇ (2)

Given the constraint on the angular momentum, and assuming that Kη(ξ, η) is regular, we

obtain the following relation between small changes in the orientation and small changes in

the shape:

dη = −
(

Kη(ξ, η)
)

−1
Kξ(ξ, η) dξ (3)

The reorientation obtained by following a given closed curve in shape space (i.e. going

through a series of shape changes beginning and ending with the same shape) can be calculated

by integrating the above expression. On top of this, we want to determine an optimal series

of shape changes which the (model) cat can perform in order to reorient itself as to land on

its feet. This problem is addressed in the next section.

3 Implementation

The expression relating small changes in shape to small changes in orientation, (3), can easily

be integrated using e.g. a standard ODE solver in MATLAB. However, the software used in

solving the isoholonomic problem numerically requires the gradients of the constraints, hence

also of the ODE-solver, as input. It is, therefore, necessary to use a known and simple numer-

ical method. To keep things relatively simple the time derivatives of ξ are discretized using

simple forward differences, while the ODEs (i.e. the time derivatives of η) are discretized

using Eulers Method.

The software used for solving the optimal control problem was SNOPT which is a Fortran

based package for MATLAB. SNOPT solves large non-linear optimization problems using an

SQP-method [2]. SQP-methods are iterative, and hence an initial guess is required. An initial

guess is some closed curve in shape space which represents a series of shape changes that leads

to the desired reorientation. We have constructed three, from careful studies of photos of real

cats while falling. Two of these are shown as red curves in figures 3(a) and 3(b).

128

4 Results

We have obtained various results from optimizing the initial guesses. The main conclusion

to be drawn is that there are several local minima, and that initial guesses that are quite

similar can lead to very different minima when optimized. This is not very surprising from

a mathematical point of view, and when studying photographs of cats flipping in the air one

realizes that different cats use different methods.

Figure 3 shows two different curves in shape space each resulting from optimizing an

initial curves with respect to the isoholonomic problem. The two initial curves (the red

curves) are quite similar, but the results (the blue curves) are considerably different. One

result (see figure 3(a)) is in good agreement with some of the motions we have inferred from

photographs of cats. The other 3(b) is quite unphysical. The principal cause for this is the

crudity of the model. It has no ’body’, no extension. Another reason might be the low order

of the discretization.

0

pi/4

pi/2

3pi/4

pi

0

pi/4

pi/2

3pi/4

pi
−pi

−pi/2

0

pi/2

pi

α
1

Curves in shape space

α
2

α 3

Initial guess, f =53.19
Optimal curve, f =41.05

Starting point

(a) This result (the blue curve) resembles fairly

well some of the motions we have observed in pho-

tographs of falling cats. It corresponds to a series

of motions where the cat draws its legs towards the

body and at the same time twist its spine, followed

by stretching out the hind legs, and finally mov-

ing both hind- and forelegs to their initial position

while twisting the spine in the opposite direction.

0

pi/4

pi/2

3pi/4

pi

0

pi/4

pi/2

3pi/4

pi
−pi

−pi/2

0

pi/2

pi

α
1

Starting point

Curves in shape space

α
2

α 3

Initial guess, f =45.26
Optimal curve, f =31.41

(b) This result is quite unphysical. It corresponds

to a series of motions where the cat pull in its legs

and ’work a bit’ with them in various directions

and the unfold them. The reorientation is obtained

by the small movements of the legs.

Figure 3: Initial curves (red) and the resulting optimized curves (blue) in shape space

Our model of the cat can give an idea about how a quasi-rigid-body can be reoriented.

Furthermore we have discovered several curves (the initial guesses) that gives the desired

reorientation, and represents a movement similar to the one performed by the cat. However,

the optimization results suggest that the presented model does not capture the features of the

129

cat to an extent where it is adequate as a basis for an optimization where the result should

resemble the actual movement of a cat.

The two models presented in [4] both take into account the body of the cat, but disregard

the effect of the limbs. Our model is opposite of that in the sense that it disregards the bulk

of the body and focuses on the limbs. Neither of the models fully captures all the features of

the cat involved in the reorientation. Therefore, one should be careful when making biologic

conclusions about the cat on the basis of either of the models, and it seems infeasible to make

a refined model of that take both the body an the limps into account, given the complexity

of these models. On the other hand, if the goal is to discover new principles for efficient

reorientation, all three models will be relevant to study.

References

[1] A. M. Bloch. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathe-

matics. Springer, 1. edition, 2003.

[2] Christof Büskens and Helmut Maurer. Sqp-methods for solving optimal control prroblems

with control and state constraints: adjoint variables, sensitivity analysis and real-time

control. Journal of Computational and Applied Mathematics, 120:85–108, 2000.

[3] C. K. Chen and N. Sreenath. Control of coupled spatial two-body systems with nonholo-

nomic constraints. Proceedings of the 32nd IEEE Conference on Decision and Control,

2:949–954, december 1993.

[4] Michael J. Enos. On an optimal control problem on so(3)×so(3) and the falling cat. Fields

Institute Communications: Dynamics and Control of Mechanical systems, The Falling Cat

and Related Problems, 1993.

[5] T. R. Kane and M. P. Scher. A dynamical explanation of the falling cat phenomenon.

International Journal of Solids and Structures, 5(7):663–670, 1969.

[6] Robert G. Littlejohn and Matthias Reinsch. Gauge fields in the separation of rotations

and internal motions in the n-body problem. Reviews of Modern Physics, 69(1):213–274,

januar 1997.

[7] Jerrold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry. Texts

in Applied Mathematics. Springer-Verlag, 1994.

[8] R. Montgomery. Isoholonomic problems and some applications. Communications in Math-

ematical Physics, 128:565–592, 1990.

[9] Alfred Shapere and Frank Wilczek. Gauge kinematics of deformable bodies. American

Journal of Physics, 57(6):2051–2054, june 1989.

130

Path and environment information from relative

crossings of landmarks

Benjamı́n Tovar∗ Fred Cohen† Steven M. LaValle∗

Abstract

We describe our progress studying a minimal robot model, for a robot moving in the

plane which is only able to sense the cyclic order of landmarks with respect to its current

position. We model the landmarks as points in the plane. No metric information is

available regarding the robot or landmark positions; moreover, the robot does not have a

compass or odometers (e.g., coordinates). We establish its capabilities in terms of mapping

the environment and accomplishing tasks, such as navigation. The algorithms are nicely

characterized using the notion of order type, which is powerful enough to determine which

points lie inside the convex hulls of subsets of landmarks. Some portions of this work were

previously published in [7].

1 Introduction

In this paper, we consider a robot moving in the plane with very limited sensing: it knows

only the cyclic ordering of landmarks as they appear from the robot’s current position (no

distance information can be measured and there are no other sensors). The information space

is characterized using the concept of the order type of a configuration of points in the plane

[4]. Given the sensor limitations, we avoid estimation of the position of the robot and of

landmarks, and instead concentrate on the landmarks’ relative orderings to construct the

algorithms. This paper follows minimalist philosophy, which implies that we want the robot,

its sensors, and its models to be as simple as possible. Although our problem has not been

considered before, this philosophy has been successful in a number of works (e.g., [1, 2, 6, 3]).

Is it really necessary for the robot to build an explicit representation of the environment?

Is knowing the exact position of the robot crucial for the completion of the task? After

establishing what the robot can learn from its simple sensor, we then illustrate the kinds of

tasks that it can solve.
∗University of Illinois, Dept. of Computer Science. Siebel Center. 201 N. Goodwin 3340, Urbana, IL.

61801. E-mail: {btovar,lavalle}@uiuc.edu

†University of Rochester, Dept. of Mathematics. Hylan Building. Rochester, NY 14627. E-mail:

cohf@math.rochester.edu

0This work was partially supported by the DARPA SToMP program and the ONR grant N000014-02-1-0488.

131

(a) (b)

Figure 1: (a) The landmark order detector gives the cyclic order of the landmarks around

the robot. Note that only the cyclic order is preserved, and that the sensed angular position

of each landmark may be quite different from the real one. Thus, the robot only knows reli-

ably, up to a cyclic permutation, that the sequence of landmarks detected is [7,2,8,5,3,6,1,4].

(b) Cyclic permutations of three landmarks. Purely by sensing, the robot cannot even know

if it is inside the convex hull defined by the three landmarks. Nevertheless, the orientation of

the triangle (the counterclockwise cyclic order of the landmarks as sensed from inside their

convex hull) can be determined with an information state.

2 Model

The robot is modeled as a moving point in R
2. The environment is modeled as the set E of

n different labeled points in R
2. For pi ∈ E, for 1 ≤ i ≤ n, pi is referred to as the landmark

with label i. The robot has a sensor, called the landmark order detector, and it is denoted

with lods(x), for x ∈ X. The landmark order detector gives the counterclockwise cyclic order

of the landmarks as seen from the current robot’s position. This gives the robot the cyclic

permutation of landmarks around it (see Figure 1.a). Note that no metric information is

available to the robot. The robot does not have any coordinate estimate of its position, and

the position of the landmarks. Moreover, we assume that the landmark order detector does

respect the cyclic order of landmarks, but does not measure the angle between them. In

other words, the sensor does not provide by itself any notion of front, back, left or right with

respect to the robot. It is assumed, though, that the robot can choose a particular landmark

label and move towards the landmark position. This motion is called landmark tracking, and

it is denoted by track(i). For simplicity, we assume that the tracking ends when the robot

arrives at the landmark. In the case of point landmarks, this means that the sensor no longer

detects the landmark just tracked.

We assume that landmarks obstruct the visibility of the robot. That is, only the landmark

closest to the robot is detected. In this paper we assume that the landmarks are in general

position (no three point landmarks are collinear).

132

3 Order type and landmarks

The only information the robot receives is the changes in the cyclic permutations. For ex-

ample, for three landmarks, only two sensing readings are possible. Purely by sensing, the

robot cannot even know if it is inside the convex hull defined by the three landmarks (see

Figure 1.b). Nevertheless, consider the robot traveling from the landmark labeled with 1 to

the landmark labeled with 2. Since the reading from the landmark order detector follows a

counterclockwise order, the robot can determine whether the landmark labeled with 3 is to

the left or right of the directed segment that connects landmark 1 to landmark 2. Thus, the

robot can combine sensing with action histories to recover some structure of the configuration

of landmarks.

We generalize the previous idea to encode information states with the concept of order

type. For a configuration of labeled points in the plane, the order type is defined as the

relative orientation of every triple of points, that is, the signed area of every triangle with

vertices in the set of points [4]. For points pi = (xi, yi), pj = (xj , yj), and pk = (xk, yk), this

can be computed with the determinant det(pi, pj , pk) = (xj −xi)(yk− yi)− (xk−xi)(yj − yi).

We write pipjp
+
k if det(pi, pj, pk) > 0. The order type of the configuration of points can be

encoded by a function defined as: Λ(i, j) = {k | pipjp
+
k , for pi, pj, pk ∈ P}.

The function Λ takes the indices i, j of two points pi, pj ∈ P , and returns the indices

corresponding to the points in P \ {pi, pj} positively oriented with respect to pi and pj (in

that order). For example, following Figure 1.a, Λ(3, 7) = {2, 5, 8}, and Λ(7, 3) = {1, 4, 6}.

Alternatively, the order type can be specified with the function λ(i, j) = |Λ(i, j)|. It is not

immediately clear that once the function λ is known, Λ can be deduced. It also follows that

when λ(i, j) = 0, then there are no points to the left of the directed edge pipj , and both pi

and pj belong to the boundary of the convex hull.

The order type definition is extended naturally to our point landmark framework, using the

landmark labels as the indices for Λ. Of course, the robot cannot compute the determinants,

because it lacks any coordinates. Nevertheless, it is possible to compute Λ for any pair of

landmark labels. The value of Λ(i, j) is determined as follows. The robot is commanded to

track landmark pi until pi disappears (the robot is at pi). Next, the robot is commanded

to track pj, and at the moment pi is detected again, the robot is guaranteed to be on pipj ,

pointing towards pj. From the sensor reading in this position, Λ(i, j) and Λ(j, i) can be found

found.

4 Solving robotic tasks

In this section we present some tasks that can be solved using the concepts presented in

previous sections. In the following examples, L is the set of landmarks detected in the

environment E, and n = |L|.

133

(a) (b)

Figure 2: (a) Orientation error. A small control error may find the wrong orientation for

the triangle. On the bottom, if the robot follows the top-left arrow, the orientation is not

computed correctly. (b) Swap lines. Crossing a half-line swaps the order of the respective

landmarks in the reading of the landmark order detector. Such half-lines are called swap

lines.

4.1 Landmarks inside a triangle

The task in this section is to compute the subset of landmarks of L that are inside of the

triangle defined by the landmarks labeled with i, j and k. In other words, if k ∈ Λ(i, j), the

robot should determine Λ(i, j)∩Λ(j, k)∩Λ(k, i), or if k /∈ Λ(i, j), then Λ(j, i)∩Λ(i, k)∩Λ(k, j)

should be computed. These two cases correspond to the two possible orientations of a triangle,

as defined before with the determinant. Since both the orientation of the triangle and the

needed values of Λ can be computed easily as explained before, we use this simple example

to introduce a motion strategy that deals with control uncertainty. Refer to Figure 2.a. The

problem here is that the internal angle of the triangle at landmark i is obtuse. This gives little

margin of error for the control, and the triangle orientation may not be computed correctly.

As it can be seen for landmarks j and k, with acute angles, the error in the control should be

almost π before the orientation is computed incorrectly. Given that a triangle has at most

one obtuse angle, the robot repeats the orientation procedure three times, one for each edge

of the triangle. If in this strategy an orientation is found more than once, it is taken as the

correct orientation of the triangle. This strategy allows for a control error in the direction of

the robot up to 2π/3.

4.2 Navigation

In our framework, a navigation goal is a sequence g of landmark labels. Formally, the naviga-

tion task is defined as follows: Move the robot such that a state x with lods(x) = g is reached.

Report if g cannot be attained given the configuration of the landmarks in the plane.

Before describing the navigation algorithm, we need to describe what is achieved by moving

134

the robot to a place where a particular permutation is sensed. For this purpose, consider the

partition of the plane in which locations inside the same cell generate the same reading in

the landmark order detector. This can be considered as an aspect graph [5], in which a cyclic

permutation is an aspect of the configuration of landmarks. The decomposition is determined

by half-lines, that if crossed, generate a change in the permutation order of a pair of landmarks

in lods(x). Each pair of landmarks generate a pair of half-lines, which are referred to as swap

lines (see Figure 2.b).

Given that the robot cannot travel outside hull(L), the navigation task is only defined for

cells whose intersection with hull(L) is not empty. The navigation task is only meaningful

if different cells generate different cyclic permutations for the landmark order detector. To

prove this, the following Lemma is proposed:

Lemma 4.1. Let C be the set of cells of the decomposition generated by the swap lines that

intersect hull(L), and let Ci, Cj ∈ C. If Ci and Cj are not the same cell, and if they are

bounded by the same swap line m, then they generate different readings in the landmark order

detector.

Proof. Let (s(a), a) and (s(a′), a′) be the landmarks that generated m. Consider a motion of

the robot from Ci to Cj in a straight line arbitrarily close to m. This makes labels s(a) and

s(a′) to appear consecutive in lods(x) for the duration of the motion. Since Ci and Cj are

different, then at least one swap line intersects m between cells Ci and Cj . Let such swap

line be generated by landmarks (s(b), b) and (s(b′), b′). Crossing this line swaps the order of

s(b) and s(b′). This swapping could be reverted if the other swap line generated by (s(b), b)

and (s(b′), b′) is crossed, or if one of (s(b), b) or (s(b′), b′) swaps with all the other landmarks.

The first situation is not possible, since both swap lines lie in the same line, and m can only

intersect one of them. The other case implies that s(a) and s(a′) are at some instant not

consecutive in lods(x). This is not possible by traveling arbitrarily close to m. Thus, the

readings of lods(x) from Ci and Cj will differ in at least a pair of landmarks.

The next theorem states that the landmark order detector generates different readings for

cells intersecting the convex hull of the configuration of landmarks.

Theorem 4.1. Let C be the set of cells of the decomposition generated by the swap lines

that intersect hull(L). Then for any two different cells Ci and Cj, the cyclic permutations

generated by lods(x) when the robot is inside Ci or Cj are different.

Proof. By induction on the the number of landmarks n = |L|. When n = 3, there is a single

cell intersecting hull(L). For n > 3, assume the statement is true for n landmarks. Then,

for n + 1, adding the new landmark generates 2n swap lines, some of which stab cells in C.

Cells stabbed by the same swap line will have different cyclic permutations, by Lemma 4.1.

Since the new landmark does not change the relative ordering of any other three landmarks,

135

by the induction assumption, cells that do not share one of the new swap lines will also have

different permutations.

By Theorem 4.1 it is known that different “places” will have different cyclic permutations

associated. Given that the robot does not have the landmarks coordinates, the exact geomet-

rical decomposition cannot be constructed. Nevertheless, the robot can navigate such that

a particular cyclic permutation g appears in the landmark order detector. First of all, the

robot has to decide if g is attainable in the configuration of landmarks. This can be decided

using Λ as follows:

Lemma 4.2. Let g = [s(p1), s(p2), . . . , s(pn)], and let g(s(pi), s(pj)) be the set whose elements

are the elements of the subsequence of g starting at s(pi+1), ending at s(pj−1). If g is attainable

in the configuration of landmarks of L, then for each landmark label s(pi) there is a landmark

label s(pj) such that Λ(s(pi), s(pj)) = g(s(pi), s(pj)). The directed line passing from pi to pj

is called the polar line of (i, pi), and (j, pj) is called a pole of (i, pi).

Proof. Suppose that g is attained when the robot is at point p. Consider the line m passing

through p and the landmark at pi. Now rotate m clockwise, with pi as a pivot, until m hits

another landmark, say (s(pj), pj). We have that Λ(s(pi), s(pj)) = g(s(pi), s(pj)), otherwise,

the order required for g is not attained ((i, pi) or (j, pj) would appear in the wrong place

according to g).

While the region in which g is attained is bounded by polar lines, not all polar lines

intersect such region. However, a landmark and its pole appear consecutive in lods(x) if the

corresponding polar line bounds the goal region. Thus, the search for the goal permutation

g is reduced to such polar lines. Suppose that a polar line is determined by landmarks

(s(a), a) and (s(b), b). If both of them belong to the boundary of the convex hull, then the

robot traverses the line segment ab. This is done, for example, by tracking (s(a), a) and

then tracking (s(b), b) (see Figure 3). If the landmarks do not belong to the boundary of

the convex hull, the intersection of the polar line with the convex hull is found by the robot

traveling in the boundary of the convex hull, until landmark labels s(a) and s(b) swap places.

At this point, the robot tracks any of the landmarks, which traverses at the same time the

polar line. Note that the robot may not need to traverse the convex hull boundary to find

this intersections, since this information may be already available from Λ. Note also that

the tracking takes place once s(a) and s(b) swap places in lods(x), thus the robot travels

arbitrarily close, but not exactly on the polar line.

References

[1] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, 1991.

136

(a) (b)

Figure 3: The two general cases for navigation in the polar lines. In (a) the polar line is

determined by two landmarks in the boundary of the convex hull, and no further computation

is required. In (b), the intersection of the polar line with the boundary of the convex hull is

found by a change in the order of the landmarks which determine the polar line. With this,

the robot is able to traverse the polar line.

[2] M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IEEE

Trans. Robot. & Autom., 4(4):369–379, August 1988.

[3] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10:201–225,

1993.

[4] J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM Journal on Computing,

12(3):484–507, August 1983.

[5] J.J. Koenderink and A.J. van Doorn. The singularities of the visual mapping. Biological

Cybernetics, 24:51–59, 1976.

[6] T. S. Levitt and D. T. Lawton. Qualitative navigation for mobile robots. Artificial

Intelligence, 44(3):305–360, 1990.

[7] B. Tovar, L. Freda, and S. M. LaValle. Mapping and navigation from permutations of

landmarks. In AMS Contemporary Mathematics Proc, 2006.

137

138

Robot manifolds for direct and inverse kinematics

solutions

Bruno Damas∗ Manuel Lopes†

Abstract

We present a novel algorithm to estimate robot kinematic manifolds incrementally. We

relate manifold learning with the forward and inverse kinematic of robots. The learned

structure encodes this functions and so it is possible to recover them from the manifold.

Our algorithm works without any knowledge of the robot kinematics and can potentially

work in highly-dimensional spaces. We present some simulated examples to validate our

approach.

1 Motivation

The direct and inverse kinematics are fundamental functions for robot control. There are

already closed form solutions for the kinematics of most commonly used robotic manipulators,

mainly the direct kinematics of serial robots and for the inverse kinematics of parallel robots

when the number of degrees of freedom is less than seven [2, 9]. Serial mechanisms forward

kinematics have closed form solutions, commonly obtained using the Denavitt-Hartenberg

notation. A closed form for the inverse kinematics, on the other hand, is usually more difficult

to get: numerical methods [12, 2] or a general approach described in [12] are widespread

alternatives. Conversely, in parallel mechanisms, the inverse problem is many times trivial

while the direct one is usually not that obvious.

Nowadays this topic is experiencing a renewal research interest mainly due to the existence

of humanoid robots with a large number of degrees of freedom. Robots with more than forty

degrees of freedom are becoming common in recent years [5, 6, 4]. In this high-dimensional

setting, planning a trajectory or computing the kinematics usually becomes a difficult task.

Such redundant robots can solve the same task in many different ways and the main difficulty

is selecting the best option available.

∗Instituto de Sistemas e Robótica, Instituto Superior Técnico, Portugal, and Escola Superior de Tecnologia

de Setúbal, Portugal. E-mail:bdamas@isr.ist.utl.pt.
†Instituto de Sistemas e Robótica, Instituto Superior Técnico, Portugal. E-mail:macl@isr.ist.utl.pt.

This work was partially supported by EU Project RobotCub and by the Fundação para a Ciência e a Tecnologia

(ISR/IST pluriannual funding) through the POS Conhecimento Program that includes FEDER funds.

139

Obtaining a closed form solution for the inverse or forward kinematics is very difficult when

the number of degrees of freedom increases. This limitation strongly motivates to directly

learn these functions from real data obtained during robot operation. Robot kinematics,

however, is not usually an injective function: this implies that even if the forward kinematics

is known, the inverse kinematics might be impossible to extract from it. And the same

situation can occur if we want to evaluate the forward kinematics by having the inverse

kinematics. This occurs because multiple outcomes can result from a single input.

In this paper we present an algorithm that can learn a model representing simultaneously

the forward and inverse kinematics. Instead of learning both maps separately, we learn the

manifold representation of the joint input-output space. Our algorithm is incremental and so

every new sample can be used to improve the model. From the learned model we can recover

both forward and inverse kinematics. The proposed algorithm can be divided in two different

steps:

� An online algorithm that learns input-output restrictions of a generic smooth map;

� A method that, given a partial set of input-output variables, provides an estimate of

the remaining ones, using the learned restrictions.

2 Problem formulation

This paper presents a new algorithm to learn the kinematic model of a generic robot. The

key point of our approach is to consider the problem from an unsupervised point of view,

where data points consist of vectors containing both controlled and observed variables, thus

allowing to easily recover the relation among any set of variables. These vectors define a

surface that can be seen as the graphic of a function. Consider Dc the number of controlled

— or independent — variables and Do the number of observed variables. A point belonging

to the robot kinematic manifold x in a D = Dc +Do dimensional space will lie in a sub-space

of dimension Dc. This manifold can be represented by the implicit function:

H(x) = 0 , (1)

where H(x) imposes the D −Dc restrictions arising from kinematics considerations.

Learning the complete manifold can provide significant advantages over other supervised

learning based techniques. It will be shown that such knowledge can provide both the for-

ward and inverse kinematics in a straightforward manner, and can as well supply any other

restrictions among controlled and observed variables. The proposed algorithm is also able to

deal with situations where multiple outcomes arise from a single input. Note that all this

information can be obtained with no necessity to conduct further learning, i.e., one can easily

140

change from an inverse kinematics problem to a forward one maintaining the manifold previ-

ously learned. The manifolds resulting of several sensory-motor coordination task have been

studied in [7].

Unsupervised learning of a Dc-dimensional manifold in a D-dimensional space can be

interpreted as a probability density estimation problem: given a set of (possibly corrupted

with noise) sample points xi belonging to the manifold, i = 1 . . . N , estimate the probability

of a point x belonging to the manifold, i.e.,

p(H(x) = 0 |x1,x2, . . . ,xN) . (2)

For small regions the manifold can be approximately described by a hyperplane with

dimension Dc. The covariance of a set of data points belonging to a small neighborhood

provides a description of the manifold around that location. The Dc first principal components

(in the sense of Principal Component Analysis (PCA)) of the covariance span a hyperplane

given a local estimate of the manifold in that point. The remaining PCA dimensions can be

neglected as they represent the noise affecting data.

In this paper the robotic kinematic manifold will be approximated by a collection of M

models, where each model describes the manifold in the vicinity of its center µm by a local

covariance matrix Cm. This gaussian mixture representation provides a good estimate of the

manifold if there are sufficient local models to appropriately cover the entire manifold, so that

in the domain of each model the true manifold is approximately linear.

The quality of estimates obtained using the proposed learning scheme depends severely

on the manifold learning mechanism. ISOMAP [11] and LLE [10] are two standard methods

to do generic manifold estimation and both provide convergence proofs. Unfortunately, these

methods need to gather all data in an offline fashion before being able to perform the estima-

tion. Also, they do not provide a parametric model, not even a local one, making available

only the manifold coordinates of the points in the dataset: for new data points a metric must

be used to interpolate among the neighbors.

There are two major issues to address in this paper: first, the location and covariance of

each model must be estimated. This is a classical unsupervised learning problem, where the

parameters of the mixture are to be estimated. The manifold estimate can be used to obtain

the direct and inverse robot kinematics, i.e. given an actuation value we would like to have

an estimate of the observed variables, or, inversely, obtain the actuators position that leads

to a desired observation.

3 Learning

One of the most popular methods to estimate a mixture of Gaussians is the expectation-

maximization algorithm (EM) [3]. It is a method prone to local minima, specially if the data

141

dimensionality is high. In its original formulation EM is a batch algorithm; the sequential

nature of data acquisition in real robots, however, suggests modifying it to an online version,

making it able to provide estimatives while acquiring new data. This can be easily done if

we keep some memory traces along the learning process, as described in [8] (to appear soon).

Once in possession of a collection of local models describing the kinematics manifold, a neigh-

borhood between models can be obtained, allowing us to define a rough measure of distance

between points along the manifold. This will be very useful when the estimation process can

generate multiple outcomes.

Suppose data points x are divided into a query component and an answer component,

x = [xT
q x

T
a]T , such that Dq + Da = D, where Dq is the query dimension and Da is the

answer dimension, not necessarily equal to Dc and Do. The answer component is the set xa

of elements of x to be estimated given a specific value of the remaining elements xq. For

instance, for a forward kinematics problem xq corresponds to the actuation variables, while

for an inverse kinematics problem xq matches the observed variables.

The key point to estimate xa is to understand that, for a specific local model and for a

given value of xq, xa should be the value that maximizes the likelihood of the whole data

point x, given the model. This can be achieved by minimizing the corresponding Mahalanobis

distance to the center of the model, using the respective covariance. Calculation are simple,

and details can be found in [8] (to appear soon).

After obtaining an estimate x̂a for each local model we can merge these local solutions to

obtain the definitive solution. These local solutions can be combined, for instance, using a

weighted average. Multiple answers can also be obtained, for non-injective input-output rela-

tions, using the neighborhood between models to group local models into different solutions.

Once again, further details can be found in [8].

4 Experiments

We performed several simulations to assess the quality of the proposed algorithm. Figure 1(a)

shows a one dimensional manifold in a three dimensional space. As we can see, after the

learning step the distance along the manifold prevails over the Euclidean distance between

model centers when defining the neighborhood relationships. Figure 1(b) shows how correctly

are estimated the multiple outcomes for xq = 0.5. Note that any of the remaining two

dimensions could also be used as the query variable.

142

−1 −0.5 0 0.5 1
−1

0

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 1: (a) Learned manifold (D = 3, Dc = 1). Red circles represent model centers, red

lines represent the principal components of the covariance for each model, black lines represent

the neighborhood relations between models and blue crosses stand for the sample points. (b)

Recovering the forward model embedded in the manifold. With xq = 0.5 the six possible

outcomes are successfully estimated (represented in the figure by black asterisks).

5 Conclusions

We presented a general algorithm to learn the manifold resulting from robotic kinematic

structures. This algorithm is computationally very efficient: the most time consuming op-

erations are local models covariance matrices inversions that must be performed each time

a new point is incrementally incorporated by the learning mechanism. Considering only a

subset of the nearest models in this update step can significantly speed up the process when

the number of models starts to grow. Note also that in high dimension spaces the inversion

of the updated covariance matrix can be done efficiently using the Woodbury identity.

This online learning algorithm can provide a robot with real-time learning without a pre-

vious acquisition of data, and it does not need any previous information about the underlying

manifold. The convergence of this modified EM algorithm is a key issue when dealing with

high dimension data. So far, the proposed learning algorithm can only deal efficiently with

low dimension data. As N increases, the solution tends to be stuck in poor local maxima of

the likelihood function. Also, it becomes increasingly difficult to tune the few parameters of

the algorithm. Work is currently being done to deal with these severe limitations. It should

be stressed, however, that the major claim of this work is the way we can efficiently use a

learned mixture of gaussians in the product space of the actuated and observed variables to

infer both the forward and backward kinematics. Such a scheme can even be used to infer

143

a mixture of both controlled and observed variables, and has enough flexibility to be easily

replaced by any other mixture of gaussians learning method (see, for example, [1]). The pro-

posed method deals naturally with the classical problem of redundancy and non-injectivity in

the forward-backward maps, being able to extract multiple solutions when multiple answers

do exist. These solutions can then be used by a higher level algorithm to choose the final

solution, e.g., taking into account obstacle avoidance or energy minimization schemes.

References

[1] Matthew Brand. Charting a manifold. Advances in Neural Information Processing Sys-

tems, 15:985–992, 2003.

[2] John J. Craig. Introduction to Robotics. Addison-Wesley Pub Co, 1989.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm. J. Royal Statistical Society B, 39:1–38, 1977.

[4] Fujitsu. Humanoid Robot HOAP-2. http://www.automation.fujitsu.com, 2003.

[5] L. Geppert. Qrio, the robot that could. IEEE Spectrum, 41(5):34–37, May 2004.

[6] M. Hirose, Y. Haikawa, T. Takenaka, and K. Hirai. Development of humanoid robot

ASIMO. In Workshop on Exploration towards Humanoid Robot Applications at IROS,

Hawaii, USA, 2001.

[7] R.A. Peters II and O.C. Jenkins. Uncovering manifold structures in robonaut’s sensory-

data state space. In IEEE-RSJ International Conference on Humanoid Robotics,

Tsukuba, Japan, December 2005.

[8] Manuel Lopes and Bruno Damas. A learning framework for generic sensory-motor maps.

In International Conference on Intelligent Robots and Systems, San Diego, USA, 2007.

[9] J. P. Merlet. Parallel Robots. Springer, 2006.

[10] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, december 2000.

[11] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

[12] Lung-Wen Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators.

Wyley-Interscience, 1999.

144

Optimal control of cooperative multi-robot systems

using mixed-integer linear programming

Christian Reinl∗ Oskar von Stryk∗

Abstract

A new planning method for optimal control of multi-robot systems is discussed which

accounts for the (continuous) physical locomotion dynamics of the robots and its tight

coupling to the distribution and allocation of (discrete) subtasks to the robots to fulfill a

joint mission. The point of departure is a nonlinear and nonconvex hybrid optimal control

problem (HOCP) formulation which incorporates a detailed hybrid automaton model.

Because of the many difficulties involved in solving this problem like large computational

times and the lack of good or global convergence properties it is transcribed into a mixed-

integer linear program (MILP). This can be solved much more efficiently using existing

algorithms. The proposed approach is outlined for an example problem of cooperative

soccer robots. The MILP solution itself may serve either as a good initial solution estimate

for a method addressing the nonlinear HOCP or may later become the kernel of a model

predictive control method for cooperative multi-robot systems. Despite the promising

results obtained so far a variety of open questions yet remains to be answered including the

”best” way of transcribing HOCP to MILP with respect to both computational efficiency

and good HOCP solution approximation.

1 Introduction

In this paper multi-robot systems are considered where the individual nonlinear physical

motion dynamics is of fundamental importance for the mission success which depends on

optimizing physical values like the robots’ positions or energy consumption.

The problem’s possible combinatorial character complicates an analytical inspection and

hardly theoretically proved results are available for the most general problem formulation. The

key idea in this paper is to build up a centralized MILP-based (cf. [3]) controller for multi-

vehicle systems, starting with a systematic HOCP description (Sect. 2) and a consistent

transformation (Sect. 3) towards optimization based control (Sect. 4). Tight coupling of

discrete states (e.g. actions) an respective continuous state variables (positions, velocities

etc.) is a basic feature in there. Especially in an uncertain setting (failures, uncontrollable

∗Technische Universität Darmstadt, CS Dept., E-mail: {reinl, stryk}@sim.tu-darmstadt.de.

145

y

x

�����
�����
�����
�����(xD, yD)

defender

xfield(vx,B, vy,B)

(vx,1, vy,1)

ygoal

(x1, y1) (xB, yB)

(x2, y2)

(vx,2, vy,2)(0, 0)

(vx,D, vy,D)

yfield

Figure 1: Setting of the soccer benchmark problem

������������
(xD, yD)

(x2, y2)

(x1, y1)

(xB, yB)

x

y

Figure 2: Contributions to objective

objects), the robustness of MILP offers an efficient (cf. [2]) way to be used in receding horizon

controllers. To illustrate this approach we refer to a benchmark problem from robot soccer (cf.

Fig. 1) with two strikers versus one (passive) defender, all modeled as moving point masses.

The intention is to find the control which optimizes the attackers’ chances for a considered

time horizon [t0, tf]. Results for this representative example will be given in Sect. 4.

2 Modeling the cooperative multi-robot system

We are considering (in-)direct controllable and not controllable moving objects i in our system.

Each one is characterized by its continuous dynamic state xi (e.g. position, velocity,...) and a

discrete value qi that denotes a certain subtask or role. Together with the continuous control

variable ui, the continuous state evolves subject to ẋi = f qi,i
(xi,ui). By defining (usually

unknown) switching times ts and corresponding specifications, how to connect xi when qi

switches at ts, the individual trajectory for an object is determined.

For the regarded soccer example, i ∈ {1, 2, B, D} denotes two strikers, one ball and a

defender. As modes of motion qi for the strikers we distinguish free moving and dribbling.

2.1 Modeling switched dynamics with hybrid automata

We are regarding multi-robot systems consisting of moving objects with specific modes of

motion and rules that define feasible sequences for them. Thus we are using hybrid automata

to describe the cooperative system. They are well established in the context of robot control.

A hybrid automaton [5] H = (V,E, X, U, ini, f, j, i, e) consists of a finite directed multi-

graph (V,E) with knots in V (called states) and edges in E (so-called switches), a set of

continuous state variables X, a set of continuous control variables U, a map ini which assigns

an initial condition to each edge, the invariants provided by the map i which assigns each

knot with a feasible region for the continuous states and controls using equality and inequality

constraints, a map f which assigns a flow equation or state dynamics to each state, a map

j which assigns jump conditions to edges and a map e which assigns events to edges which

occur at switches. For the proposed soccer application (cf. Fig. 3) we added another hierarchy

146

i: dist2,D ≥ γ2,D

i: dist1,D ≥ γ1,D i: dist1,2 ≥ γ1,2

i: distD,B ≥ γD,B
i: xB ∈ goal

i: g1(ẋ1, u1) ≤ 0
i: g2(ẋ2, u2) ≤ 0

Ball in goal 5
�

f: ẋ1 = 0

f: ẋD = 0

f: ẋ2 = 0

f: ẋB = 0

e: goal

Game is running 1
�

i: g2(ẋ2, u2) ≤ 0

Ball free 3
�

j: dist1,B ≤ εdribble

e: kick(1)

e: kick(2)

e: catch(2)

f: ẍ1 = f 1(x1, ẋ1, u1)

i: dist1,B > εdribble

i: dist2,B > εdribble

i: g1(ẋ1, u1) ≤ 0

f: ẍ1 = f 1,B(x1, ẋ1, u1)

Player 1 dribbles ball 2
�

j: |yB| ≤ ygoal

f: ẋB = fB(xb)
f: ẍ2 = f2(x2, ẋ2, u2)

j: |xB| ≥ xfield

Player 2 dribbles ball 4
�

i: g2(ẋ2, u2) ≤ 0

i: g1,B(ẋ1, u1) ≤ 0
i: dist1,B ≤ εdribble

f: ẍB = f 1,B(x1, ẋ1, u1)

f: ẍ2 = f2(x2, ẋ2, u2)

i: g2,B(ẋ2, u2) ≤ 0
i: g1(ẋ1, u1) ≤ 0
i: dist2,B ≤ εdribble

f: ẍB = f 2,B(x2, ẋ2, u2)

f: ẍ1 = f 1(x1, ẋ1, u1)

f: ẍ2 = f 2,B(x2, ẋ2, u2)

j: dist2,B ≤ εdribble

e: catch(1)

f: ẋD = fD(x1, x2, xB)
i: xB ∈ field

Figure 3: Hierarchical hybrid automaton model of the switched motion dynamics

there that contains conditions that are similar in the covered knots. In this model we only

distinguish whether the ball is dribbled, rolls free or is inside the goal. The respective motion

dynamics of a dribbling robot is indexed by “B”. The initial conditions ini are defined with

the position xi(t0) of the objects i. Catching and kicking a ball are modeled by events

kick(i) : ẋB(ts + 0) = 3 · ẋi(ts − 0) , catch(i) : xB(ts + 0) = xi(ts − 0) , (1)

ts ± 0 := limε→0,ε>0 ts ± ε. All other state trajectories are required to be continuous at ts.

The auxiliary variable disti1,i2 represents a distance measure between objects i1, i2 and is

used to express collision avoidance (with a constant γi1,i2). Further constraints on state and

control variables according to the specific motion modes are modelled as invariants i.

The dynamic of the defender is not considered to be switched here. We tested our approach

with a simple model for the dynamic of robots and ball and set for all states except 5
�

f: ẋB(t) = vB(t), f: ẍ♦(t) =

(

ẍ♦(t)

ÿ♦(t)

)

=

(

v̇x,♦(t)

v̇y,♦(t)

)

= u♦(t) =

(

ux,♦(t)

uy,♦(t)

)

(♦ ∈ {1, 2}) (2)

For a dribbling robot the upper bound on its velocity is reduced by a factor cU
v,dr.

The numerical method proposed in [4] for the general HOCP formulation uses piecewise

polynomials and binary variables to transfer the hybrid automaton and an objective function

into a finite dimensional sparse non-linear mixed-binary optimization problem. It was solved

with a combination of sequential quadratic programming and Branch-and-Bound techniques.

More details and results for this model are given there. Now we are interested in a MILP-

formulation that provides a efficient optimization-based control considering the basic system

characteristics.

2.2 The linearized model

We are introducing a fixed (not necessary) equidistant grid of time points with the sampling

time T s := tk − tk−1. For the evolution of the continuous state and control variables we are

defining x(k) := x(tk+1) and u(k) := u(tk+1). The knots in the describing automaton can

147

switch only at these time points and are not free any more. All (in-)equalities that were used

to describe the different states and the motion dynamics in the systems will be reformulated

or transformed into linear expressions now. Thus the differential flow conditions f must be

reformulated as difference equations

ẋ = f q,i(x,u) x(k + 1) = Aq,i · x(k) + Bq,i · u(k) . (3)

Additional state variables and binary variables may be necessary here for case differentiations
and combination of these cases with logical expressions. In the context of hybrid automata,

this case differentiations are treated as new subknots. This splitting up strongly depends on

the nonlinearity of the expression and the desired accuracy of the transformed model.The

regions defined by the invariants i are approximated in a polygonal manner. Linear inequali-

ties are combined logically therefore. If nonlinear expressions occur in the jump conditions j

of events e, they have to be treated respectively. Afterwards, the automaton is clocked and

covers only linear expressions and logical constraints. Application to the example results in

x♦(k + 1) = x♦(k) + Ts vx,♦(k) , vx,♦(k + 1) = vx,♦(k) + Ts ux,♦(k),

xB(k + 1) = xB(k) + Ts vx,B(k) , vx,B(k + 1) =

{

vx,♦(k) (dribbling)

ctrac Ts vx,B(k) (ball free)

(♦ ∈ {1, 2}, ctrac · Ts < 1, yi, vy,i, analogously). A simple, reactive defender that is always

moving towards the current ball position is modeled by

xD(k + 1) = xD(k) + Ts vx,D(k) , vx,D =
vU

x,D

Dmax
(xb(k)− xD(k)), (4)

(Dmax ≥ maxx,y,k{|xb(k)−xD(k)|, |yb(k)−yD(k)|}, yD, vy,D, analogously). The constant vU
x,D

is the upper bound for |vD|. In the investigated example the controls and velocities are con-

straint by quadratic expressions. Generally expressions of the form

±
√

(x1 − x2)2 + (y1 − y2)2 ≤ ±r can be transformed by using nγ ≥ 4 linear expressions

± sin(
i

3
π) (x1 − x2)± cos(

i

3
π) (y1 − y2) ≤ ±r (i = 1, . . . , nγ) . (5)

Thus the invariants i: gqi,i
(ẋi) = ||(vx,i, vy,i)

T ||2− vU
qi,i
≤ 0 were reformulated (vU

qi,i
constant,

for uqi,i respectively). For the distance disti1,i2 between two objects as an auxiliary state

variable the column-sum norm was used.

3 Transforming the model into a mixed-integer linear program

For each knot and each edge of the (hierarchical) automaton a time-dependent binary variable

b(t) is introduced so that b = 1 iff the state or edge is active. The structure then is transcribed

with simple linear inequalities, e.g. b(2)(k) + b(4)(k) + b(3)(k) ≤ 1, b(2)(k) + b(4)(k +1) ≤ 1,etc.

148

Logical relations combined with inequalities are translated using the ’Big-M’-technique (cf.

[1]). Thus flows and invariants get connected with the respective binary variable, e.g.

IF b(3) = 1 THEN vx,B(k + 1) = ctrac vx,B(k) ⇔

{

(1− b(3))m ≤ vx,B(k + 1)− ctrac vx,B(k)

vx,B(k + 1)− ctrac vx,B(k) ≤ (1− b(3))M

M ≥ max{vx,B(k + 1)− ctracvx,B(k)}, m ≤ min{vx,B(k + 1)− ctracvx,B(k)} constant.

To rate the quality of a computed attack, we mainly look at the situation at the final

time tN+1 and primarily regard the following components (cf. Fig. 2). The positions of the

attacking robots and the ball (xi(k), yi(k))T , distances between the robots, defender and ball

disti1,i2(k) and also the events ”ball in goal” and ”one robot dribbling” b(5), b(2), b(4). With

carefully determined coefficients then the objective function J is implemented as a weighted

sum. Due to remaining degrees of freedom, ui(k) is further added to it. The intention is to

minimize J where the tactical behavior of the team is varied with the coefficients in J .

4 Optimization

Results for the linear implementation of the proposed benchmark problem with the parameters

Ts = 0.8, N = 10, xfield = 270, yfield = 180, ygoal = 40, εdr = 5,

γ2,D = 30, γB,D = 30, Dmax = 700, ctrac = 0.88, vU
B,x = 135, cv,dr = 60.7,

vU
♦,y = 45, uU

♦,x = 40, uU
♦,y = 40, vU

♦,y = 90, vU
♦,x = 45,

and the objective function

J =

N
∑

k=1



−0.2 distB,D − 320 b(5) + 0.001
∑

i∈{1,2}

(|ux,i|+ |uy,i|)





∣

∣

∣

∣

∣

∣

t=k

+ (6)



−xB + 0.6 |yB | − 0.15 distB,D − 0.01 dist1,2 − 160 (b(2) + b(4)) + 0.02
∑

i∈{1,2}

(−xi + |yi|)





∣

∣

∣

∣

∣

∣

t=N+1

.

are given. The MILP was solved with CPLEX 10.0 (from ILOG, Inc.) on a PC (Intel(R)

Pentium(R) M processor 1.86GHz; 1024 MB RAM) in 30 sec (see Fig. 4 for details).

5 Conclusion and outlook

A MILP formulation has been developed which accounts for the tight coupling of discrete

decisions and continuous flow variables in optimal control of cooperative mobile robot systems.

A consistent modeling towards a linearized formulation was shown. The numerical approach

is applicable to a wide range of scenarios. Ongoing work considers techniques to improve the

MILP by decoupling and additional constraints. Also various methods to linearize the given

nonlinear description more systematically are investigated. MILP-models can cope well with

the non-convexities, the combinatorial character and their efficiency hardly depends on initial

149

0 2 4 6 8
−100

0

100

200

t

x i(t
)

0 2 4 6 8
−40

−20

0

20

40

60

t

v i,x
(t

)

0 2 4 6 8
−40

−20

0

20

40

t

u i,x
(t

)

0 2 4 6 8
−100

0

100

200

t

y i(t
)

0 2 4 6 8
−40

−20

0

20

40

60

t

v i,y
(t

)

0 2 4 6 8
−40

−20

0

20

40

t

u i,y
(t

)

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

Figure 4: First two rows: Optimal positions, velocities and controls for the attackers ()

and the ball (). Third row: Computed optimal behavior shown at timesteps k = 1, 7, 11.

Attacker 1 goes to ball, dribbles and kicks it towards the penalty area. Attacker 2 catches it

there and dribbles to a promising position. The defender () follows the ball.

guesses. They are therefore well suited for repeated application to account for changes in

uncertain environments.

Acknowledgement

Parts of this research have been supported by the German Research Foundation (DFG) within

the Research Training Group 1362 “Cooperative, adaptive and responsive monitoring in mixed

mode environments”.

References

[1] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and con-

straints. Automatica, 35(3):407–427, 1999.

[2] F. Borrelli, D. Subramanian, A. U. Raghunathan, and L. T. Biegler. MILP and NLP

techniques for centralized trajectory planning of multiple unmanned air vehicles. American

Control Conference, June 2006.

150

[3] M. G. Earl and R. D’Andrea. Iterative MILP methods for vehicle control problems. In

IEEE Conference on Decision and Control, volume 4, pages 4369 – 4374, December 2004.

[4] M. Glocker, C. Reinl, and O. von Stryk. Optimal task allocation and dynamic trajectory

planning for multi-vehicle systems using nonlinear hybrid optimal control. In Proc. 1st

IFAC-Symposium on Multivehicle Systems, pages 38–43, Salvador, Brazil, 2006.

[5] T.A. Henzinger. The theory of hybrid automata. In M.K. Inan and R.P. Kurshan, editors,

Verification of Digital and Hybrid Systems, NATO ASI Series F: Computer and Systems

Sciences 170, pages 265–292. Springer, 2000.

151

152

Central pattern generator for legged locomotion: a

mathematical approach

Carla M. A. Pinto∗

Abstract

This paper is a survey of the work done by Pinto and Golubitsky [18] on a model of

a central pattern generator (CPGs) for biped leg rhythms, leg, and its contribution to a

new insight on the study of CPG models for humanoid robotic locomotion.

Leg is a network of four all-to-all coupled neurons (cells). Each leg (joint) receives

signals from two cells. The symmetry of this network predicts periodic solutions associated

with the rhythms of known biped gaits, such as walk, run, two-legged hop, two-legged jump,

skip, gallop, asymmetric hop, and one-legged hop.

Similarly to the network leg, CPG models for locomotion in robots are commonly

modeled by neural network oscillator circuits coupled to the joints of the robot. Each

oscillator model consists of two simulated coupled neurons.

We find that the mathematical properties of the network leg may be considered new

tools to the understanding and implementation of locomotion biped patterns in humanoid

robots.

1 Introduction

Biologists often assume that vertebrate locomotion is controlled by a central pattern generator

(CPG), located somewhere in the nervous system. A CPG, induced by command neurons,

generates signals according to the movement patterns of specific gaits in animals [2, 7, 16].

Legged locomotion involves a large number of degrees of freedom, such as, pelvic rotation

about a vertical axis, pelvic tilt, knee flexion, and many others till up to two hundred [3] and

references therein. In this sense, a CPG plays an important role for having well-coordinated

movements of these degrees of freedom.

Mathematically, CPGs are modeled by networks of identical systems of differential equa-

tions. A brief explanation to this fact is that CPGs consist of neurons, neurons are modeled

∗Instituto Superior de Engenharia do Porto. Centro de Matemática da Universidade do Porto. Rua Dr

António Bernardino de Almeida, 431, 4200-072 Porto E-mail:cpinto@fc.up.pt.

153

by electrical circuits (see for example [8]), and these circuits are described as systems of dif-

ferential equations. Each individual system, which we call cell, model neurons or collections

of neurons.

Golubitsky et al. [5] introduce two locomotor CPG models for legged movements: an

eight-cell quadruped locomotor CPG model, quad, and the analogous four-cell CPG model,

leg, for leg rhythms in bipeds, see Figure 1. Quad and leg are the minimal models capable of

producing the usual quadruped gaits of walk, trot and pace, and the biped gaits of walk and

run, respectively. A physiological interpretation can be given to the fact that these models

have two cells per limb [5]. Most joints are driven by two muscle groups and the activity of

these muscles must be coordinated. If we think of locomotor CPGs abstractly as controlling

muscle groups rather than legs then it makes sense that minimal locomotor CPG networks

should have two cells for each leg. Each graph, the network architecture, corresponds to a

class of systems of differential equations [6]. Each of these systems can be considered to be a

model CPG.

2

3 4

 1

Figure 1: CPG network leg for the control of biped legs. Cells 1 and 3 send signals to the

left leg, cells 2 and 4 send signals to the right leg. The arrows denote the coupling strength

between cells. Different arrows denote different coupling strengths.

There has been a growing interest in the study of CPG models in robotics. They have been

used to model a variety of robotic tasks, such as arm motion [20], swinging [11], bipedal walk-

ing [21, 15], quadruped walking [10], one-legged hopping [19], and other rhythmic patterns.

CPGs for robotic locomotion are commonly modeled by neural network oscillator circuits cou-

pled to the joints of the robot. Each oscillator is usually modeled by two simulated coupled

neurons. The output of the oscillator unit is used as the angular speed of the joint. Examples

of models used in the oscillators are the Matsuoka model [13], the van der Pol equations [3],

the Wilson-Cowan equations [14].

Humanoid locomotor models have been increasinly studied. Bipedal robots are best suited

for many tasks in real life, such as walking in real terrain [9], work in specialized environ-

ments, such as assembly lines, and other situations where robots need to work with or replace

humans [1].

In this paper, we review the mathematical approach, based on symmetry techniques, used

154

to classify the periodic solutions, along with their associated limb rhythms, of the four-cell

network model leg and we explain why we think leg brings a new insight in the study of CPG

models for humanoid robotic locomotion.

2 CPG for leg rhythms

This section is divided into three parts. We start with a review of the H/K theorem. In

subsection 2.2, we explain the relationship between two computed symmetry types and the

rhythms of the biped walk and run. Finally, in subsection 2.3, we describe the importance of

leg in the study of CPG locomotor models in humanoid robots.

2.1 leg: differential equations and symmetries

CPG networks stand for classes of systems of differential equations. For example, the class

of differential equations corresponding to leg is

ẋ1 = F (x1, x2, x3, x4)

ẋ2 = F (x2, x1, x4, x3)

ẋ3 = F (x3, x4, x1, x2)

ẋ4 = F (x4, x3, x2, x1)

(1)

where xi ∈ R
k and F : (Rk)4 → R

k where all cells are assumed to be identical.

The network leg consists of four cells, each one coupled to all other cells. The coupling

allows two independent permutation symmetries: ρ = (1 2)(3 4), which switches muscle

groups between legs, and τ = (1 3)(2 4), which permutes muscle groups within each leg. The

group of symmetries of leg is the four element group

Γleg = Z2(τ)× Z2(ρ) (2)

Let K be the subgroup of Γleg consisting of symmetries that fix a periodic solution pointwise

(spatial symmetries), and H ⊂ Γleg be the subgroup consisting of symmetries that preserve

the periodic trajectory setwise (spatiotemporal symmetries).

The H/K Theorem [4] establishes the algebraic conditions that a given symmetry pair

(H,K) must satisfy to correspond to symmetries of a periodic solution, in a general Γ-

equivariant system. In the case of the coupled system (1), these conditions are simplified

to: H/K is a cyclic group [18]. The periodic solutions with (H,K) symmetry pairs are then

identified with leg rhythms in bipeds.

The pairs of subgroups K ⊂ H ⊂ Γleg, such that H/K is cyclic and their correspondence

with known biped gait patterns is given in Table 1. Periodic solutions with H = Γ leg are

called primary gaits. Gaits that are not primary gaits are called secondary gaits. All the

secondary gaits are obtained by symmetry-breaking of primary gaits [17]. Each bifurcation

may occur if the cell dynamics and the coupling architecture are general enough.

155

Name H K

two-legged hop Γleg Γleg

walk Γleg Z2(ρτ)

two-legged jump Γleg Z2(ρ)

run Γleg Z2(τ)

asymmetric hop Z2(ρτ) Z2(ρτ)

Z2(ρτ) 1

Z2(ρ) Z2(ρ)

skip Z2(ρ) 1

one-legged hop Z2(τ) Z2(τ)

gallop Z2(τ) 1

1 1

Table 1: Symmetry pairs (H,K) of standard biped leg rhythms. See text for more information.

2.2 Bipedal leg rhythms associated to leg

Walk and run have the property that left and and right legs are half-period phase shifted. In

the run, the flexor and extensor muscles of the ankle joint are in phase whereas in the walk

they are out of phase [12]. Biomechanically, the legs move like pendula (ankle joint rotates)

in the walk and like a pogo stick (ankle joint is held rigid) in the run.

We use the (H,K) symmetry pairs (see Table 1) of these gaits to distinguish between

them. Let X(t) = (x1(t), x2(t), x3(t), x4(t)) be a periodic solution produced by the network

leg, with period normalized to 1. Observe that in the walk, ρτ is a K symmetry, hence the

periodic solution must have the form X(t) = (x1(t), x2(t), x2(t), x1(t)). The spatiotemporal

symmetry τ implies x2(t) = x1(t + 1
2). Thus, the periodic solution has the form

X(t) = (x1(t), x1(t +
1

2
), x1(t +

1

2
), x1(t))

Analogously for the run. The spatial symmetry τ and the spatiotemporal symmetry ρ force

the periodic solution to have the form

X(t) = (x1(t), x1(t +
1

2
), x1(t), x1(t +

1

2
))

2.3 Leg and humanoid robot CPG locomotor models

The bipedal rhythms produced by the minimal CPG model leg are predicted solely by its

symmetry. As discussed above, the H/K Theorem imposes only the restriction that H/K

is cyclic in order for the symmetry pair (H,K) to correspond to a periodic solution of the

system (1). This implies there is no restraint in the form of the function F , i.e., neurons can be

156

modeled by any function F, such that k ≥ 2. The later also allows for the identical couplings

to be of various types, namely, synaptic or diffusive, excitatory or inhibitory. Moreover, all

of the secondary gaits are obtained by breaking the symmetry of the primary gaits. These

properties of the model leg may give a new insight in the study and real implementation of

new gaits in humanoid robotic CPG models.

3 Conclusion

Symmetry techniques show that the four-cell model leg produces the biped rhythms of walk,

run, two-legged hop, two-legged jump, skip, gallop, asymmetric hop, and one-legged hop. We

distinguish between primary and secondary gaits. Moreover, all of the secondary gaits are

obtained by symmetry-breaking of primary gaits.

We find that leg may help in the study of new CPG models for humanoid robotics and in

the real implementation of new gaits, such as the two-legged hop, gallop, or one-legged hop.

References

[1] B. Adams, C. Breazeal, R. A. Brooks, and B. Scassellati. Humanoid robots: A new kind

of tool. IEEE Intelligent Systems, pages 25–31, 2000.

[2] A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams.

Modelling of intersegmental coordination in the lamprey central pattern generator for

locomotion. Trends in Neuroscience, 15:434–438, 1992.

[3] M. S. Dutra, A. C. de Pina Filho, and V. F. Romano. Modeling of a bipedal locomotor

using coupled nonlinear oscillators of van der pol. Biological Cybernetics, 88:286–292,

2003.

[4] M. Golubitsky and I. Stewart. The symmetry perspective. Progress in Mathematics 200,

Birkhauser, Basel, 2002.

[5] M. Golubitsky, I. Stewart, P. L. Buono, and J.J. Collins. Symmetry in locomotor central

pattern generators and animal gaits. Nature, 401:693–695, 1999.

[6] M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in coupled cell networks

with multiple arrows. SIAM J. Appl. Dynam. Sys., 4:78–100, 2005.

[7] S. Grillner, J. T. Buchanan, P. Walker, and L. Brodin. Neural control of locomotion in

lower vertebrates. Neural Control of Rhythmic Movements in Vertebrates, John Wiley

& Sons, pages 1–40, 1988.

157

[8] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve. Journal of Physiology, 117:500–544,

1952.

[9] Q. Huang, K. Li, and Y. Nakamura. Humanoid walk control with feedforward dynamic

pattern and feedback sensory reflection. Paper presented at the IEEE International

Symposium on Computational Intelligence in Robotics and Automation, Seoul, Korea,

2001.

[10] H. Kimura, Y. Fukuoka, and K. Konaga. Adaptive dynamic walking of a quadruped

robot by using neural system model. ADVANCED ROBOTICS, 15:859–876, 2001.

[11] M. Lungarella and L. Berthouze. On the interplay between morphological, neural, and

environmental dynamics: A robotic case study. Adaptive Behavior, 10:223–241, 2002.

[12] R. A. Mann. Biomechanics. Disorders of the Foot (Jahss, M.H. ed), W.B. Saunders and

Co., Philadelphia, pages 37–67, 1982.

[13] K. Matsuoka. Sustained oscillations generated by mutually inhibiting neurons with adap-

tation. Biological Cybernetics, 52:367–376, 1985.

[14] K. Nakada, T. Asai, and Y. Amemiya. Design of an artificial central pattern generator

with feedback controller. Intelligent Automation and Soft Computing, 10:185–192, 2004.

[15] G. C. Nandi and B. Gupta. Bio-inspired control methodology of walking for intelli-

gent prosthetic knee. Proceedings of the 3rd International Conference of Informatics in

Control, Automation and Robotics, ICINCO 2006, 2006.

[16] K. G. Pearson. Common principles of motor control in vertebrates and invertebrates.

Annual Review of Neuroscience, 16:265–297, 1993.

[17] C. M. A. Pinto. Numerical simulations in two cpg models for bipedal locomotion. Journal

of Vibration and Control, 13:1487–1503, 2007.

[18] C. M. A. Pinto and M. Golubitsky. Central pattern generators for bipedal locomotion.

Journal of Mathematical Biology, 53:474–489, 2006.

[19] M. H. Raibert, H. B. Brown Jr., and M. Chepponis. Experiments in balance with a 3d

one-legged hopping machine. The International Journal of Robotics Research, 3:75–92,

1984.

[20] M. M. Williamson. Neural control of rhythmic arm movements. Neural Networks,

11:1379–1394, 1998.

158

[21] T. Zielinska. Coupled oscillators utilised as gait rhythm generators of a two-legged

walking machine. Biological Cybernetics, 74:263–273, 1996.

159

160

Lifted fundamental matrices for mixtures of central

projection systems

João P. Barreto ∗

Abstract

We study the epipolar geometry between views acquired by mixtures of central pro-

jection systems including catadioptric sensors and cameras with lens distortion. Since the

projection models are in general non-linear, a new representation for the geometry of cen-

tral images is proposed. This representation is the lifting through Veronese maps of the

image plane to the 5D projective space. It is shown that, for most sensor combinations,

there is a bilinear form relating the lifted coordinates of corresponding image points. We

analyze the properties of the embedding and explicitly construct the lifted fundamental

matrices in order to understand their structure. The usefulness of the framework is illus-

trated by estimating the epipolar geometry between images acquired by a paracatadioptric

system and a camera with radial distortion.

1 Introduction

A central projection camera is an image acquisition device with a single effective viewpoint.

The vision sensor measures the intensity of light traveling along rays that intersect in a single

point in 3D (the projection center). Examples of broadly used central projection systems

are perspective cameras, central catadioptric systems [1], and cameras with lens distortion.

The projection in conventional perspective cameras is described by the pin-hole model where

scene points are linearly mapped into image points. Corresponding points in two perspective

views must satisfy a bilinear constraint that is usually represented by a 3 × 3 matrix. The

fundamental matrix encodes the calibration and rigid displacement between views, and can

be estimated in closed-form using image correspondences. These facts make the fundamental

geometry one of the most popular and useful concepts in computer vision. Unfortunately,

the projection model for central catadioptric systems and cameras with radial distortion is

non-linear in homogeneous coordinates. The epipolar geometry between views acquired by

mixtures of these systems does no longer have a bilinear form, which considerably limits their

usefulness.

∗ISR/DEEC, University of Coimbra. 3030 Coimbra, Portugal. E-mail: jpbar@deec.uc.pt.

161

The first papers generalizing the epipolar geometry to the non pin-hole case either assumed

pre-calibrated systems [13], or completely relied on non-linear iterative minimization [15].

Closely related with the approach herein presented are the works of Geyer et al. [7], Sturm

[12] and Claus et al. [5]. Geyer et al. propose an image plane lifting to a four dimensional

’circle space’ and prove that there is a 4 × 4 fundamental matrix encoding the epipolar

geometry between two paracatadioptric views. Sturm uses a slightly different lifting strategy

and derives the fundamental matrices for mixtures of perspective, affine and paracatadioptric

cameras. In [5], Claus et al. propose the lifting of image points to a six dimensional space

to build a general purpose model for radial distortion in wide angle and catadioptric lenses.

The epipolar geometry between distorted views is represented by a 6 × 6 matrix. As stated

by the authors, their non-parametric model is algebraic in inspiration rather than geometric.

Therefore, they do not provide any insight or geometric interpretation about the structure of

the lifted fundamental matrix.

In this paper we introduce a representation for the image plane of central systems including

catadioptric sensors and cameras with distortion. The representation is similar to the one

proposed in [5], and consists in the lifting through Veronese maps of the projective plane ℘2 to

the 5D projective space ℘5 [11]. Our goal is to establish a unifying framework for the geometry

of general single viewpoint images. A full theory to lift points, lines, conics and conic envelopes

is presented. It is also shown how to transfer a linear transformation from ℘2 to ℘5 as well

as other geometric relations. We prove that, for most combinations of central projection

views, there is a bilinear form relating the lifted coordinates of corresponding points. Our

embedding theory is used to understand this lifted epipolar geometry and explicitly construct

the different fundamental matrices. The main contributions can be summarized as follows:

� We establish a lifted representation of the image plane and develop a full embedding

theory to transfer geometric entities and relations from ℘2 to ℘5.

� We present the lifted fundamental matrices for different mixtures of central projection

systems. It is proved for the first time that there is a lifted bilinear constraint between

images acquired by a perspective and hyperbolic camera as well as a parabolic sensor

and camera with lens distortion.

� The different fundamental matrices are presented in a systematic manner and their

structure is discussed. We also provide a comprehensive geometric explanation for the

non existence of bilinear forms for hyperbolic views other than the combination with a

perspective.

162

2 Epipolar geometry using Veronese maps

Conventional perspective cameras, central catadioptric systems, and cameras with radial dis-

tortion are vision systems with a single effective viewpoint. All these sensors measure the

intensity of light traveling along rays that intersect in a single point in 3D (the projection

center). Consider a coordinate system attached to the camera such that the R (rotation)

and t (translation) describe its rigid displacement with respect to the world reference frame.

Any visible 3D point X is mapped into a projective ray x = PX with P = R[I| − t]. The

3× 4 matrix P is the conventional projection matrix, and we will say that x = (x, y, z)T is a

projective point in the Canonical Perspective Plane (CPP).

Consider the case of central catadioptric systems, where x is mapped into the image point

x′. The relation between these two projective points is provided in equation 1 where } is a

non-linear function (equation 2) and Hc is a collineation depending on the camera intrinsics,

the relative rotation between camera and mirror, and the shape of the reflective surface.

Function } is equivalent to a projective mapping from a sphere to a plane as shown in Fig. 1

[6]. Parameter ξ in equation 2 depends on the mirror shape and takes values in the interval

]0, 1].

x′ = Hc}(x) (1)

}(x) = (x, y, z + ξ
√

x2 + y2 + z2)T (2)

Equation 3 shows the correspondence between projective rays x and image points x ′ for

the case of perspective cameras with lens distortion. Matrix Kc denotes the camera intrinsic

parameters and ð is a non-linear function modeling the radial distortion. In this work the lens

distortion is modeled using the division model introduced in [4]. For now we will assume that

the coordinates system in the image plane has origin in the distortion center that is known.

The inverse function of ð is provided in equation 4 where parameter ξ quantifies the amount

of radial distortion. Transformation ð has a geometric interpretation similar to the popular

sphere model used for catadioptric systems. It can be proved that function ð is isomorphic

to a projective mapping from a paraboloid to a plane (Fig. 1) [2].

x′ = ð(Kcx) (3)

ð
−1(x′) = (x′z′, y′z′, z′2 + ξ(x′2 + y′2))T (4)

The type of central projection system is defined by the value of parameter ξ. In the

case of barrel distortion the ξ is negative and ð is used. If ξ is positive then the system

is a catadioptric sensor. The parameter is unitary in the parabolic case and ξ ∈]0, 1[for

hyperbolic/elliptical mirrors. For ξ = 0 both equations 1 and 2 become linear and represent

the well known pin-hole model for perspective cameras.

163

Oy

O’y
ξ y

H y

xξ

H y’
−1
y

O x

O’x

y

y’

X

x’

x

y = R.x + t

Figure 1: Geometric relation between views acquired by a catadioptric system and a dioptric

camera with radial distortion. The 3D point X is imaged in point x′ in the dioptric camera,

and in point y′ in the catadioptric image plane.

2.1 Epipolar Geometry

This work aims to study the multi-view relations that hold between images obtained with

any mixture of central projection systems. Fig. 1 shows two views of the same 3D point X

acquired by a camera with lens distortion and a central catadioptric sensor. If x ↔ y are

corresponding projective rays then they must satisfy yT Ex = 0 where E = t̂R is the essential

matrix. Since both } and ð are invertible functions it follows from equations 1 and 2 that

(}−1(H−1

y
y′)

︸ ︷︷ ︸

y

)TEK−1

x
ð
−1(x′)

︸ ︷︷ ︸

x

= 0. (5)

It is broadly known that corresponding points in two perspectives satisfy a bilinear con-

straint called the fundamental equation. The fundamental relation is linear in homogeneous

coordinates and can be represented by a 3 × 3 matrix F. Equation 5 is the equivalent of

the fundamental relation for two views acquired by a catadioptric sensor and a camera with

distortion. Due to the non-linear image mapping the relation is no longer linear which limits

its usefulness when compared with the conventional fundamental matrix.

2.2 Lifting of coordinates using Veronese maps

A standard technique used in algebra to render a nonlinear problem into a linear one is to

find an embedding that lifts the problem into a higher dimensional space. In a certain extent

the homogeneous representation is an embedding of <
2 into <

3. Unfortunately the use of an

additional coordinate does no longer suffice to cope with the non-linearity of equations 1 and

3. The present work aims to overcome this problem and derive a bilinear fundamental relation

that holds for general central projection systems. We propose to embed the projective plane

℘2 in the five dimensional projective space ℘5 using second order Veronese mapping [11].

This polynomial embedding preserves homogeneity and is suitable to deal with quadratic

164

P-H Hyper. Parab. Dist.

P-H 9 1 3 3

Hyper. 1 0 0 0

Parab. 3 0 1 1

Dist. 3 0 1 1

Table 1: Dimension of the null space of matrix Ψ for pairs of views acquired by different

combinations of sensors (P-H = pin-hole; Hyper = Hyperbolic; Parab = Parabolic; Dist =

Radial Distortion).

functions because it discriminates the entire set of second order monomials. The lifting of

coordinates can be performed by applying the following operator

Γ(x, x̄) = (xx̄,
xȳ + yx̄

2
, yȳ,

xx̄ + zx̄

2
,
yz̄ + zȳ

2
, zz̄)T (6)

Operator Γ transforms two 3 × 1 vectors into a 6 × 1 vector. Equation 6 maps the pair

of projective points x, x̄ into one, and only one, point in ℘5. This point lies on a primal

of the 5D projective space called the cubic symmetroid [11]. As shown in equation 7, Γ can

also be used to map a single point x into a point x̃ in the lifted space, lying on a quadratic

surface known as the Veronese surface [11]. The Veronese surface V is a subset of the cubic

symmetroid S.

x −→ x̃ = Γ(x,x) = (x2, xy, y2, xz, yz, z2)T . (7)

2.3 The lifted fundamental matrix z

Fig. 1 shows a pair of corresponding image points x′ ↔ y′. The lifted coordinates of the

two points are x̃′ and ỹ′ (equation 7). The idea of embedding the projective plane in ℘5 is

to obtain a bilinear relation between the two views. The goal is achieved if there is a 6 × 6

homogeneous matrix z such that

ỹ′T
zx̃′ = 0. (8)

Consider the set of lifted correspondences x̃′

i
↔ ỹ′

i
with i = 1, 2 . . . N and N > 35. Matrix

Ψ is obtained by stacking the N lines corresponding to the Kronecker products x̃′T

i
⊗ ỹ′T

i
.

The bilinear relation of equation 8 holds iff matrix Ψ is rank deficient. If Ψ has a left null

space then the non-trivial solutions of equation 9 are solutions for the lifted fundamental

matrix z.

165





x̃
′T

1
⊗ỹ

′T

1

...
x̃
′T

N
⊗ỹ

′T

N





︸ ︷︷ ︸

Ψ

[

f11

...
f66

]

= 0 (9)

We planned a synthetic experiment to determine the combinations of central projection

sensors for which equation 8 holds. For each combination the two vision sensors are placed in

a virtual volume and a set of N points is generated assuming a random distribution (N � 35).

Noise free correspondences are obtained by projecting the 3D points in both views. The lifted

coordinates of the matching points are used to build matrix Ψ. Tab. 1 summarizes for each

case the dimension of the left null space of Ψ. For most of the sensor combinations there is a

bilinear relation between views. The only exception is whenever there is an hyperbolic sensor

involved. In this situation equation 8 holds only if the other view is acquired by a pin-hole. If

one of the views is a conventional perspective then there are multiple solutions for the lifted

fundamental matrix.

3 The embedding in ℘5

In order to interpret the results of Tab. 1 and gain insight about the structure of the lifted

fundamental matrix, we need to understand the way that geometric entities and relations in

the projective plane are embedded in ℘5.

3.1 Lifting lines and conics

A conic curve in ℘2 is usually represented by a 3 × 3 symmetric matrix Ω. Point x lies

on Ω iff equation xTΩx = 0 is verified. Since a 3 × 3 symmetric matrix has 6 parameters,

the conic locus can also be represented by a 6 × 1 homogeneous vector ω̃, that is the lifted

representation of Ω in ℘5 (equation 10).

Ω =
[

a b d
b c e
d e f

]

−→ ω̃ = (a, 2b, c, 2d, 2e, f)T . (10)

Consider the rank 2 conic Ω = mlT + lmT composed by two lines m and l. From equation

10 follows that the corresponding lifted representation is

Ω = mlT + lmT −→ ω̃ = ˜DΓ(m, l) (11)

where ˜D = diag{1, 2, 1, 2, 2, 1}. A single line n = (nx, ny, nz)
T is another example of a

degenerate conic curve Ω = nnT . Line n in the projective plane is mapped into ñ in ℘5 as

shown in equation 12.

n→ ñ = ˜DΓ(n,n) = (n2
x, 2nxny, n

2
y, 2nxnz, 2nynz, n

2
z)

T (12)

166

Conic Ω goes through point x iff the inner product of the corresponding lifted representa-

tions is zero (xT Ωx = 0→ ω̃T
x̃ = 0). Additionally, if points x and x̄ are harmonic conjugates

with respect to Ω, then ω̃T Γ(x, x̄) = 0. The embedding of the projective plane in ℘5 using

Veronese mapping creates a dual relation between points and conics. Moreover, and since

lines are degenerate conics of rank 1, the duality between points and lines is preserved.

3.2 Lifting conic envelopes

In general a point conic Ω has a dual conic envelope Ω∗ associated with it [11]. The envelope

is usually represented by a 3× 3 symmetric matrix. A certain line n is on the conic envelope

whenever it satisfies nTΩ∗n = 0. The conic envelope can also be represented by a 6 × 1

homogeneous vector ω̃∗ (equation 13). In this case a line n lies on Ω∗ iff the corresponding

lifted vectors ñ and ω̃∗ are orthogonal.

Ω∗ =
[

a∗ b∗ d∗

b∗ c∗ e∗

d∗ e∗ f∗

]

−→ ω̃∗ = (a∗, b∗, c∗, d∗, e∗, f∗)T . (13)

If matrix Ω∗ is rank deficient then the conic envelope is said to be degenerate. There

are two possible cases of degeneracy: when the Ω∗ is composed by two pencils of lines going

through points x and x̄ (Ω∗ = xx̄T + x̄xT), and when the envelope is formed by a single

pencil of lines (Ω∗ = xxT). The lifted representations are respectively provided in equations

14 and 15.

Ω∗ = xx̄T + x̄xT −→ ω̃∗ = Γ(x, x̄) (14)

Ω∗ = xxT −→ ω̃∗ = Γ(x,x) (15)

3.3 Lifting linear transformations

The linear transformation H maps points x and x̄ in points Hx and Hx̄. The operator Λ,

that lifts transformation H from the projective plane to the embedding space ℘5, must satisfy

the following relation

Γ(Hx,Hx̄) = Λ(H).Γ(x, x̄) (16)

Such operator can be derived by algebraic manipulation.

Λ([v1 v2 v3]
︸ ︷︷ ︸

H

) = [Γ11Γ12Γ22Γ13Γ23Γ33] ˜D
︸ ︷︷ ︸

H̃

(17)

It can be proved that the operator provided above verifies the following properties

167

Λ(H−1) = Λ(H)−1

Λ(H.B) = Λ(H).Λ(B)

Λ(HT) = ˜D−1.Λ(H)T .˜D

Λ(I3×3) = I6×6

(18)

Operator Λ maps any 3 × 3 matrix H into a 6 × 6 matrix ˜H. A pair of points in the

plane is related by H, iff the pair of corresponding lifted representations in ℘5 is related by
˜H (y = Hx ↔ ỹ = ˜Hx̃). The set of transformations ˜H = Λ(H) is the subset of linear

transformations of ℘5 that fixes both the cubic symmetroid S and the Veronese surface V.

However, neither S nor V are fixed point-wise. The transformation of points, conics and

conic envelopes are lifted in the following manner

y = Hx −→ ỹ = ˜Hx̃

Ψ = H−TΩH−1 −→ ˜ψ = ˜H−T ω̃

Ψ∗ = HΩ∗HT −→ ˜ψ∗ = ˜Hω̃∗

(19)

The operator Λ can be also be applied to lift correlations in ℘2 [11]. A correlation G

maps points x into lines n = Gx. It can been easily proved that the corresponding lifted

coordinates are related by ñ = ˜D ˜Gx̃.

4 Useful relations in ℘5

The previous section shows how a linear transformation in the original space ℘2 can be

transferred to a linear transformation in ℘5. This section focuses on the non-linear features

of the mapping functions of equations 1 and 3. Therefore, and without loss of generality,

collineations Hc and Kc will be ignored for clarity reasons.

The catadioptric projection of a line is in general a conic curve [13, 6]. This is due to the

non-linear characteristics of function } (equation 2) that transforms points x in the Canonical

Perspective Plane (CPP) into image points x′. We show that there is a linear correspondence

between the lifted representation of a line n and the conic curve where it is projected. This

result allows us to derive a linear relation between an image point x′ and its back-projections

in the CPP. The discussion of the this section is of key importance to interpret the results of

Tab. 1.

4.1 Projection of lines

Consider the central catadioptric sensor depicted in Fig. 1 and a plane Π defined by a 3D line

and the system effective viewpoint O. The normal vector of Π is n = (nx, ny, nz)
T that can

also be interpreted has a line projection in the CPP. Plane Π intersects the reference sphere in

a great circle that is projected from O′ into a conic curve Ω′. The non-linear formula relating

168

n

x −

x = x +

λ−x’

λ+x’

�������
�

X

Z

Y

O

O

’
x’

ξ

Z

X

O
Y

’

’

’ ’

Figure 2: Back-projection of points in an hyperbolic sensor. The projective ray associated

with x′ intersects the unitary sphere in two points. These points define two distinct back-

projections x+ (forward looking direction) and x− (backward looking direction)

a line n in the CPP and the image conic Ω′ is provided in [6]. If ñ and ω̃′ are the lifted

coordinates of n and Ω′ then it is straightforward to prove that equation 20 holds. The 6× 6

matrix ˜∆c of equation 21 transforms a line in the CPP into the corresponding conic curve in

the catadioptric image plane. Remark that the structure of ˜∆c does not follow equation 17,

which means that there is no linear counterpart in ℘2.

ω̃′ = ˜∆cñ. (20)

˜∆c =







1−ξ2 0 0 0 0 −ξ2

0 1−ξ2 0 0 0 0
0 0 1−ξ2 0 0 −ξ2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1






; ˜∆r =





0 0 0 0 0 ξ
0 0 0 0 0 0
0 0 0 0 0 ξ
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1



 (21)

The projection of a line by a camera with lens distortion is also a conic curve. Function ð

of equation 4 is equivalent to projecting the scene on the surface of an unitary paraboloid and

re-projecting from its vertex. As shown in Fig. 1 a projective ray x going through the camera

projection center O is mapped in x′ going through O′. In this case plane Π, containing the

original 3D line, cuts the reference paraboloid in a great circle that is projected into a conic

Ω′. The lifted representations of the line n in the CPP and the image conic are linearly related

in ℘5 by ω̃′ = ˜∆rñ. The 6× 6 matrix ˜∆r is provided in equation 21 where ξ quantifies the

amount of radial distortion.

4.2 Back-projection of image points in central catadioptric systems

Fig. 2 shows the sphere model for a catadioptric sensor. A 3D point X defines a projective

ray/point x that is mapped at x′ = }(x). Given an image point x′ = (x′, y′, z′)T , we intend to

invert the mapping in order to compute its back-projection x in the CPP. The equation of the

reference sphere in the coordinates system centered in O′ is x′2+y′2+(z′−ξ)2 = 1. Since x′ is

169

a projective ray going through O′, there is a scalar λ such that λx′ is a 3D point lying on the

sphere surface. The scalar λ can be computed by solving equation (λx′)2+(λy′)2+(λz′−ξ)2 =

1. Since it is a second order equation, there are two solutions λ+ and λ− that are provided

below.

λ± =
z′ξ ±

√

z′2 + (1− ξ2)(x′2 + y′2)

x′2 + y′2 + z′2
(22)

The projective ray x′, with origin in O′, intersects the reference sphere in two points

λ+x′ and λ−x′ (Fig. 2). By representing these points in the reference frame centered in

the effective viewpoint O we obtain two distinct back-projections x+ and x− (equation 23).

Since the camera is forward looking the mirror, the correct solution for the back-projection

is x = x+. Point x− is just a spurious algebraic solution.

x± = (λ±x′, λ±y′, λ±z′ − ξ)T (23)

Assume a line n in the CPP going through one of the back-projections of x′. Line n is

projected into a conic curve Ω′ that must go through the image point x′. Therefore, and

considering the embedding in ℘5, it follows that ω̃′T x̃′ = 0. Replacing ω̃′ by the result of

equation 20 yields

ñT
˜∆c

T
x̃′

︸ ︷︷ ︸

ω̃∗

= 0. (24)

Equation 24 is satisfied by any line n going through one of the back-projections of x ′

which means that ω̃∗ is the lifted representation of a the conic envelope in the CPP. The

conic envelope is degenerate (rank 2) because it is composed by two pencils of lines defined

by points x+ and x−. Equation 25 is derived taking into account that ω̃∗ = Γ(x+,x−)

(equation 14). The embedding in ℘5 allowed us to establish a linear relation between a point

in the catadioptric image plane and the corresponding back-projections in the CPP.

Γ(x+,x−) = ˜∆c

T
x̃′. (25)

4.3 Back-projection of image points in paracatadioptric systems and cam-

eras with distortion

For the case of paracatadioptric systems the parameter ξ is unitary and the projective mapping

of Fig. 2 becomes a stereographic projection [6]. If ξ = 1 then λ− = 0 and the spurious back-

projection is always x− = (0, 0, 1)T (equations 22 and 23). Since the re-projection center is

on the sphere, the projective ray x′ must always intersect the surface in O′ which explains

the result. Assume that the back-projection in the forward-looking direction is x = (x, y, z)

(x+ = x). Since Γ(x+,x−) = (0, 0, 0, x/2, y/2, z)T , it follows from equation 25 that

170

Pin-Hole Hyperbolic Parabolic Distortion

Pin-Hole K−T

y
EK−1

x

˜K−T

y

˜D˜E ˜∆T
c

˜H−1

x
K−T

y
EΘT

˜H−1

x

K−T

y
EK−1

x

˜ΦT
x

Hyperbolic ˜H−T

y

˜∆c
˜D˜E ˜K−1

x
- - -

Parabolic ˜H−T

y
ΘEK−1

x
- ˜H−T

y
ΘEΘT

˜H−1

x

˜H−T

y
ΘEK−1

x
ΦT

x

Distortion ΦyK
−T

y
EK−1

x
- ΦyK

−T

y
EΘT

˜H−1

x

ΦyK
−T

y
EK−1

x
ΦT

x

Table 2: This table summarizes the results for the lifted fundamental matrices z relating

pairs of views acquired by any mixture of central projection systems. The perspective image

plane should not be lifted to avoid multiple solutions for the fundamental geometry (see Tab.

1). Therefore, z is a 3× 3 matrix in the case of two pin-hole images, and a 3× 6 matrix for

the situation of a perspective view and a paracatadioptric/distortion view. In the remaining

cases z is always a 6× 6 square matrix.

x =
[

2 0 0
0 2 0
0 0 1

] [

0 0 0 1 0 0
0 0 0 0 1 0
−1 0 −1 0 0 1

]

︸ ︷︷ ︸

Θ
T

x̃′. (26)

According to equation 26 there is a linear transformation that maps the lifted coordinates

of a point in the paracatadioptric image into the corresponding point x in the CPP. Remark

that the 3× 6 matrix is the transpose of the three last columns of ˜∆c when ξ = 1 (equation

21).

For the case of cameras with lens distortion the re-projection center is located on the

vertex of the paraboloid (Fig. 1). This case is similar to the paracatadioptric system because

O′ also lies on the reference surface. The spurious back-projection x− is always (0, 0, ξ), and

there is a 3× 6 matrix ΦT that maps lifted image points x̃′ into points x = ð
−1(x′).

x =
[

2 0 0
0 2 0
0 0 1

] [

0 0 0 0.5 0 0
0 0 0 0 0.5 0
ξ 0 ξ 0 0 1

]

︸ ︷︷ ︸

Φ
T

x̃′ (27)

5 Fundamental matrices in ℘5

In the experiment of section 2.3 we artificially generated a set of noise-free correspondences

and investigated the dimensionality of the null space of matrix Ψ to find the mixtures of

central projection systems with a fundamental matrix in lifted coordinates. The results of

Tab. 1 are a good guideline, however they do not provide a geometric insight on the problem.

171

In this section we apply the embedding theory presented in sections 3 and 4 to explicitly

derive the lifted fundamental matrices.

5.1 Views acquired by pin-hole cameras

Consider two views acquired by a pair of perspective cameras with intrinsic parameters Kx

and Ky. Corresponding image points x′ ↔ y′ must satisfy y′TFx′ = 0 with F the conventional

3 × 3 fundamental matrix. F is a correlation in the projective plane because it transforms

points in one view into lines in the other view (the epipolar lines). According to section 3.3, a

correlation F in ℘2 is lifted to ˜D˜F in the 5D projective space. Taking into account the result

of equation 18, it follows that

F = K−T

y
EK−1

x
−→ ˜D˜F = ˜K−T

y

˜D˜E˜K−1

x
(28)

The experiment of section 2.3 confirms that if y′TFx′ = 0 then ỹ′T
˜D˜Fx̃′ = 0. Matrix

z = ˜D˜F is a lifted fundamental matrix relating two views acquired by perspective cameras.

However there are other solutions for equation 9. It is easy to see that the following equation

holds

ỹ′T
[

0 0

0 F

]

x̃′ = 0.

Tab. 1 shows that the null space of matrix Ψ is multidimensional. For the case of image

pairs acquired by pin-hole cameras the epipolar geometry is described by a bilinear form in

℘2. Since there is a fundamental matrix F, the lifting to ℘5 is just an over parameterization

that leads to multiple z solutions.

5.2 Views acquired by paracatadioptric sensors and cameras with radial

distortion

Consider the scheme of Fig. 1 showing a camera with lens distortion and a paracatadiop-

tric system. The projection centers are respectively Ox and Oy, Kx represents the intrinsic

parameters of the dioptric camera (equation 3), and Hy encodes the calibration of the para-

catadioptric sensor (equation 1). The 3D point X defines two projective rays, x and y, going

through the effective viewpoints Ox and Oy. The two points verify yTEx = 0 where E

stands for the conventional essential matrix. Point x is mapped in the distorted image plane

at x′ = ð(Kxx) (equation 3). From equation 27 follows that x = K−1

x
ΦT

x x̃′. The projection

in the paracatadioptric image plane is y′ = Hy}(y) and the inverse mapping is y = ΘT
˜H−1

y
ỹ′

(equations 1, 17, 18 and 26). Replacing x and y in the essential relation yields

ỹ′T
˜H−T

y
ΘEK−1

x
ΦT

x
︸ ︷︷ ︸

z

x̃′ = 0 (29)

172

The derived matrix z is the 6 × 6 fundamental matrix observed in section 2.3 for the

mixture of distorted and paracatadioptric views. Remark that z is still a correlation in

℘5, transforming the lifted coordinates of points in one view into the corresponding epipolar

curves in the other view (ω̃′

y = zx̃′ and ω̃′

x = z
T ỹ′). The reasoning to derive the lifted

fundamental matrices for mixtures of two paracatadioptric sensors and two cameras with

radial distortion is similar. The results are presented in Tab. 2.

For views acquired by a parabolic sensor and a pin-hole camera there are multiple 6 ×

6 fundamental matrices z satisfying equation 8 (Tab. 1). As discussed above, by lifting

the point coordinates in a perspective image we end up with an over-parameterization that

generates multiple solutions. The problem is solved by using lifted coordinates only for the

paracatadioptric view. Equation 30 shows the corresponding 3× 6 fundamental matrix. The

case of a pin-hole and a camera with lens distortion is identical.

y′T K−T

y
EΘT

˜H−1

x

︸ ︷︷ ︸

z3×6

x̃′ = 0 (30)

The division model is a simple second order model that requires the center to be known and

the distortion to be isotropic [10]. There are other distortion models without such limitations

[14, 8]. Remark that our framework can be used with any non-linear projection model, as

far as there is a 3× 6 linear transformation between lifted image coordinates and undistorted

points (equation 27).

5.3 Views acquired by hyperbolic sensors

According to the synthetic experiment of section 2.3, the lifting of coordinates fails in enforcing

a bilinear form for the epipolar geometry of mixtures that include hyperbolic sensors. As

explained in section 4.2, the lifted representation of an image point x̃′ can be mapped by a

linear transformation into a conic envelope that encodes the correct back-projection x = x+,

and a spurious solution x−. For the case of paracatadioptric systems and cameras with lens

distortion the spurious solution is constant and there is a linear transformation that maps x̃′

in x. The results of equations 26 and 27 proved to be crucial in deriving the lifted fundamental

matrices for mixtures involving these systems. For the case of hyperbolic sensors it is not

possible to decouple x− and x+, which explains the non existence of fundamental matrices.

One possible solution is to increase the dimensionality of the Veronese lifting. However, the

corresponding estimation problem would probably be non tractable. An alternative is to

find an embedding that simultaneously encodes orientation and preserves homogeneity. Such

embedding, as far as we are aware, does not exist.

The only case that admits a lifted fundamental matrix is the combination with a per-

spective view. The structure of the corresponding 6 × 6 fundamental matrix z is provided

in equation 31. Curiously, the epipolar curve in the perspective plane ω̃′

y = zx̃′ is a rank

173

2 conic. This conics is composed by two lines: the forward looking epipolar line and the

backward looking epipolar line.

ỹ′T
˜K−T

y

˜D˜E ˜∆T
c

˜H−1

x

︸ ︷︷ ︸

z

x̃′ = 0 (31)

Outliers
Inliers
Test

Outliers
Inliers
Test

Figure 3: Estimation of the lifted fundamental matrix for views acquired by a paracatadioptric

sensor and a camera with radial distortion. The Lowe’s detector found 101 correspondences

from which 54 were marked as inliers. The high rejection percentage is explained by the

difficulty in establishing robust correspondences between images that look so different.

6 Experiments with real images

Tab. 2 shows the mixtures of central projection systems for which there are lifted bilinear

constraints between views. For these cases, and under the assumption of an ideal noise-free

situation, the computation of the fundamental matrix z from a set of image correspondences

is straightforward. As shown in equation 9, we just need to build matrix Ψ and determine its

right null space. In practice the correspondences are always affected by noise and matrix Ψ

is in general full rank. In this situation we can always apply SVD decomposition to enforce a

null space and estimate z. The problem is that not every 6×6 matrix is a lifted fundamental

matrix. As discussed in the previous section, z must be a rank 2 matrix with a specific

structure that depends on the type of central cameras used to acquire the views (Tab. 2).

In [5], Claus et al. report an experiment in estimating the fundamental matrix between

two views acquired with a fish-eye lens using a standard linear algorithm. According to the

report, they succeeded in obtaining a bilinear form that seems to fit the data, however they

were unable to extract correct distortion information. This suggests that the use of purely

algebraic approaches is not enough, and that the structure of z must be taken into account.

174

Figure 4: Correction of the Radial Distortion in a 853×1280 image. The estimated distortion

was 145.7 pixels at the image corner

To prove the applicability of our framework we ran an experiment to estimate the geometry

between two uncalibrated images acquired by a paracatadioptric system and a camera with

lens distortion (Fig. 3). The estimation problem is simplified by considering a skewless

parabolic system with unitary aspect ratio. Under this assumption the lifting of coordinates

is similar to the one used in [7, 12], and the dimension of z is 4×4. From the correspondences

we build a matrix Ψ (equation 9) and estimate z using linear least squares. The rank

constraint on z is enforced using SVD. From the analysis of the structure of z it follows

that the null space on the side of the distorted view encodes the undistorted epipole and the

amount of distortion. This information is extracted and used as a prior to re-fit the matrix to

the correspondences. The sub-optimal two step factorization approach is entirely linear and

provides a fundamental matrix with the desired structure (for further details see [3]). Since the

estimation has a closed-form solution, it can be run in a RANSAC approach to discard outliers.

Fig. 3 shows the results in estimating the lifted fundamental matrix. The correspondences

were automatically detected using SIFT features [9]. To test the correctness of the result

we manually selected 7 correspondences and drew the corresponding epipolar curves (Fig.

3). Additionally we extracted the radial distortion information from the estimated z and

corrected the distorted view (Fig. 4).

7 Conclusions

We proposed a representation for central projection images through a lifting of the projective

plane to the 5D projective space. In addition, we presented a full embedding theory to transfer

geometric entities and relations between the original and lifted spaces. The theory was applied

to explicitly construct the lifted fundamental matrices and understand their structure. We

believe that such geometric insight is essential to develop robust estimation algorithms and

extract information from the estimated matrices.

175

References

[1] S. Baker and S. Nayar. A theory of catadioptric image formation. In Proc. of ICCV,

1998.

[2] J. P. Barreto and K. Daniilidis. Unifying liftings for catadioptric and dioptric cameras.

In Proc. of OMNIVIS, 2004.

[3] J. P. Barreto and K. Daniilidis. Fundamental matrix for cameras with radial distortion.

In Proc. of ICCV, 2005.

[4] C. Brauer-Burchardt and K. Voss. A new algorithm to correct fish-eye- and strong

wide-angle- lens-distortion from single images. In Proc. of ICIP, 2001.

[5] D. Claus and A. Fitzgibbon. A rational function for fish-eye lens distortion. In Proc. of

CVPR, 2005.

[6] C. Geyer and K. Daniilidis. A unifying theory for central panoramic systems. In Proc.

of ECCV, 2000.

[7] C. Geyer and K. Daniilidis. Structure and motion from uncalibrated catadioptric views.

In Proc. of CVPR, 2001.

[8] R. Hartley and S. B. Kang. Parameter-free radial distortion correction with center of

distortion estimation. In Proc. of ICCV, 2005.

[9] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[10] B. Micusik and T. Padjla. Estimation of omnidirectional camera model from epipolar

geometry. In Proc. of CVPR, 2003.

[11] J. G. Sample and G. T. Kneebone. Algebraic Projective Geometry. Claredon Press, 1998.

[12] Peter Sturm. Mixing catadioptric and perspective cameras. In Proc. of OMNIVIS, 2002.

[13] T. Svoboda and T. Pajdla. Epipolar geometry for central catadioptric cameras. IJCV,

August 2002.

[14] S. Thirthala and M. Pollefeys. The radial trifocal tensor: A tool for calibrating radial

distortion of wide-angle cameras. In Proc. of CVPR, 2005.

[15] Z. Zhang. On the epipolar geometry between two images with lens distortion. In Proc.

of ICPR, 1996.

176

On topology of G-configuration spaces of polyhedra

M. Rostami∗

Abstract

The family P of all convex 3-polytopes P in Euclidean space E3 may be partitioned

into combinatorial types or configuration spaces by isomorphism of face lattices, and

the configuration space [P] of any such 3-polytope P may be subdivided further into

G-Configuration space 〈P 〉 by equivalence of actions of symmetry group G(P) on face

lattices. With respect to a natural topology induced by Hausdorff metric on P , each [P]

is a contractible manifold of a certain dimension related to the number of edges of P . This

is a consequence of Steinitz’s fundamental theorem of convex polyhedra. In this article

we prove an extension of this theorem which states that if P is a convex 3-polytope with

symmetry group G(P) , then the G-Configuration space 〈P 〉 is also a smooth manifold.

The dimension , dim〈P 〉 of this manifold is calculated with respect to the orbits of the

action of symmetry group G(P) on face lattice of P .

1 Introduction

A 3- polytope or polyhedron is a convex- hull of finitely many points in Euclidean space

E3 which are not all coplanar. Polyhedra are fundamental objects in geometry and key

components in robot motion planning as well [4, 5, 9].

For any polyhedron P we denote the set of all vertices, edges and faces of P by F0(P),

F1(P), F2(P), respectively. These sets, together with empty set ∅ and P itself, form a lattice

F (P) under set inclusion. Let us label the the polygonal faces of P by A1, A2, . . . , As and the

vertices by v1, v2, . . . , vr . Define M(P) = (mi,j) an r×s matrix with mi,j = 1 if vi ∈ Aj and 0

otherwise. The number of non- zero elements of M(P) is called multiplicity of P and denoted

by µ(P) [6]. Clearly we have µ(P) = 2e, where e is the number of edges of polyhedron P .

Two polyhedra P and Q are said to be combinatorially equivalent, denoted by P ≈ Q , if their

face lattices are isomorphic .We denote by [P] the set of all polyhedra that are equivalent to

P .

Let Γ = (V,E) be a graph with vertex set V and edge set E. A connected graph Γ is

called 3-connected if the deletion of any two vertices in V together with their corresponding

edges in E leaves the graph Γ connected. Γ is a planar graph if it can be embedded on the

∗Departamento de Matemática, Universidade da Beira Interior. E-mail:rostami@mat.ubi.pt.

177

plane without edge crossing. The following classical theorem, called fundamental theorem of

convex polyhedra, is due to Steinitz [7, 9].

Theorem 1.1 (Steinitz). The edge graphs of convex polyhedra are exactly the simple, planar

and 3-connected graphs.

The following should also be taken as a part of the Steinitz’s Fundamental Theorem.

Theorem 1.2 (Steinitz). [7, 9] For every polyhedron P , the configuration space [P] is a

smooth manifold of dimension dim[P] = e + 6, where e is the number of edges of P . Fur-

thermore, [P] has isotopy property in the sense that if Q,Q′ ∈ [P] then there is a continuous

one-parameter family of configurations that starts with Q and ends with Q′, i.e., a path in

E3n connecting Q and Q′ such that each point of the path represented by a polyhedron com-

binatorially equivalent to P .

For each polyhedron P a symmetry of P is a rigid transformation of E3 that preserves P

set-wise. Any such symmetry maps vertices to vertices, edges to edges and faces to faces and

preserves inclusions (incidences). Hence any symmetry induces an automorphism on F (P).

The set G(P) of all symmetries of P is a finite subgroup of the Euclidean group E(3), acting

on F (P) as a group of automorphisms. We can take G(P) as a finite subgroup of orthogonal

group O(3). Two polyhedra P and Q are said to be symmetry equivalent [6] if the action

of G(P) on F (P) is equivalent to the action of G(Q) on F (Q). This means that there is an

isomorphism λ : F (P) → F (Q) of face lattices and isometry f : E3 → E3 such that for all

g ∈ G(P) and all x ∈ F (P), λg(x) = (f−1 ◦ g ◦ f)(λ(x)).

If we further assume that P and Q have the same (rather than conjugate) subgroups then

λ(g(x)) = g(λ(x)). In this case we write P ∼= Q, and say that P and Q are G–equivalents.

By a configuration we mean an indexed collection of planes and points in E3 such that the

points being indexed by vertices of P , and the planes indexed by polygonal faces contained

on those planes. Hence there is an obvious correspondence between a configuration and a

polyhedron P . We can topologize [P] by Hausdorff metric and call it Configuration space or

C-space of P .

Now, C-space [P] of polyhedron P may be refined by taking the symmetry group G(P)

into account. By the proof of the Steinitz’s theorem, we know that [P] is a contractible

manifold of dimension dim[P] = e + 6. Let 〈P 〉 denote the set of all polyhedra G–equivalent

to P . Then, clearly [P] is a union of these symmetry types, one of which is 〈P 〉 itself. We

call 〈P 〉 the configuration space or G–space of P .

2 Transformation groups and slice theorem

A Lie group is a manifold and a group such that the operations (multiplication and inversion)

of the group are continuous. The actions of Lie groups on manifolds result orbit spaces. The

178

structure of these obits is usually quite complicated. But sometimes it can be shown that

they are stratified into smooth manifolds.

The stratification mainly is done by the help of a theorem, called Slice Theorem, which

is fundamental in studying the structure of Transformation Groups. Hence we give a brief

resumé of the relevant facts about this theorem and referring the reader to [2] and [6] for

details.

Let M be a smooth manifold and G a compact subgroup of the orthogonal group O(3)

acting smoothly on M via:

ϕ : G × M → M.

Then, (M,G) = (M,G,ϕ) is called a transformation group and M is called a G–manifold. If

the action is transitive (having precisely one orbit) then M is called homogeneous space.

For each x ∈ M , G(x) = {g(x) : x ∈ G} is an orbit and Gx = {g ∈ G : g(x) = x} is the

stability subgroup of G at x. If H is closed subgroup in G then the orbit type of H is the

subset of M of those points x ∈ M such that Gx is conjugate to H. So each orbit type

is a union of G–orbits. Hence it is possible to write the orbit space M/G as disjoint union

of orbit types. Thus a homogeneous space is a transformation group of the form (G/H,G),

x ∈ M . For any compact transformation group (M,G) the orbit G(x) through x is a compact

homogeneous space embedded in M . The statements in the following theorem are among the

consequences of the Slice Theorem.

Theorem 2.1. [2] Let G be a compact Lie group and M a (smooth) G–manifold. Then we

have:

1. The orbit G(x) of x is a G–invariant submanifold of M , x ∈ M ;

2. If every orbit in M has type G/Gx, x ∈ M , then the orbital space M/G is a smooth

manifold;

3. If H is a closed subgroup of G, then the union M(H) of the orbits of type G/H is a G–

invariant submanifold of M . Furthermore, the orbit space M(H)/G again is a smooth

manifold of M . For the proof see [2, 4.10, 4.18 and 4.19]

3 The topology of GC–spaces

Now consider P , with centroid O and symmetry group G ⊆ O(3) and let Fx = fixGx =
{

y ∈ E3 : for all g ∈ Gx, g(y) = y
}

be the fixed point set of Gx. Thus Fx is linear subspace

of E3. Define an equivalence relation ∼G in E3 by x ∼G y ⇔ Fx = Fy. Now y ∈ Fx implies

that Gx ⊆ Gy, Fx ⊆ Fy and the equivalence class [x] ⊆ Fx. Then the equivalence classes [x],

x ∈ E3 stratify E3 by finitely many such strata (orbit types) [2]. Hence [x] is a union of

179

G–orbits. In particular G(x) partitions in E3 into finitely many orbital types of G [6]. Now,

consider 〈P 〉 and let Q ∈ 〈P 〉. Each vertex of Q may be moved along a line within a plan or

in any direction in E3 in a small neighbourhood of its original position in P itself, likewise

each face of polyhedron close to the corresponding face A of P , according as A intersects a

one-stratum in an exterior point of A (necessarily at right angle) or intersects 2-stratum in

interior of A, or neither of these. Let v be a vertex of P . Then, δ(v) = k, k = 1, 2, 3 if v lies

on a k-stratum of G, and δ(A) = k, k = 1, 2, 3 if the face A has k degrees of freedom within

the above restrictions.

Let v = {g(v) : g ∈ G}, A = {g(A) : g ∈ G}, F0(P)/G = {v : v ∈ F0(P)} and F2(P)/G =
{

A : A ∈ F2(P)
}

. We denote by M(P) the set of all pairs (v,A) ∈ F0(P) × F2(P) for which

v ∈ A, and M(P)/G = {(g(v), g(A)) : g ∈ G and (v,A) ∈ M(P)}. Denote by µ∗(P) the car-

dinality of M(P)/G. Recall that µ(P) is the number of incidences between the vertices and

faces of P . Hence µ∗(P) is the number of orbits of such incidences under the action of G(P)

on F (P). For example, if P is square right pyramid (Figure 1), then µ(P) = 2e = 16, but

µ∗(P) = 1 + 2 = 3.

Clearly, if v, u ∈ F0(P) and v = u then the dimension of Fv is equal to the dimension of

Fu, i.e., δ(v) = δ(u). The same holds for the faces of P . The following part of the theorem

will be sketchy, adopted from Robertson [6], we refer the reader there for further details.

Theorem 3.1. Let P be polyhedron in E3 then 〈P 〉, the GC–space of P , is a smooth manifold.

Proof: Let NP be the set of all polyhedra in [P] with centroid O and say radius one [6].

Then NP is a submanifold of codimension 4, by simply factoring out the effects of dilations

and translations. This is called the submanifold of normal polyhedra. Hence, (NP , O(3)) is

a compact transformation group. For each Q in NP , the isotropy group O(3)Q is just the

symmetry group G(Q) of Q [6]. But (NP , O(3)) is a differentiable transformation group and

according to Theorem 2.1 the orbit space NP /O(3) is smooth manifold .Consequently, 〈P 〉 is

smooth manifold as well [6]. �

As an example, let P be a polyhedron combinatorially equivalent to cube, “cuboid” [6].

Then [P] is an 18-manifold and the principal orbit type corresponds to the configuration of

polyhedra Q ≈ P with G(Q) = 1 is an open submanifold of [P] of dimension 18. All other

configuration spaces have dimensions lower than 18.

Now, according to Theorem 1.2 the configuration space [P] of polyhedron P is a smooth

manifold of dimension e + 6 where e is the number of edges of P .

An intuitive derivation of the dimension of the GC–space 〈P 〉 can be given as follows:

Suppose that the polyhedron P has n vertices, e edges and f faces. If the vertices of P were

allowed to move independently in E3, they would have 3n degrees of freedom. However, it

180

requires k vertices to specify a k-gonal face k ≥ 3, and consequently the d losses k−3 degrees

of freedom. Thus the whole configuration space [P] has d = 3n−
∑

k≥3

(k−3) degrees of freedom;

the sum being taken over all faces of P .

Now, using xk to denote the number of k-gonal faces of P , and taking into account that

each edge is contained in two faces, we have
∑

kxk = 2e and the dimension of the GC–space

dim[P] = 3n −
∑

k≥3

(k − 3) = 3n − kxk + 3f = 3(n + f) − 2e = 3(n + f) − µ(P). By Euler

formula in convex polyhedra , we have n − e + f = 2. Hence dim[P] = e + 6.

Consider a square right pyramid (Figure 1):

Figure 1.

Now, G(P) the symmetry group of P is dihedral group. Suppose we fix the group G =

G(P). Then vertex v1 can be chosen only on the axis of G. Therefore it has one degree of

freedom. Likewise v2 must lie on reflection plane, hence has only two degrees of freedom.

Having chosen v2, the vertices v3 and v4 which are on the same orbit of v2, have no degree

of freedom at all, since they are determined by our choice of G and v2. Hence the vertices

have a total of 1 + 2 = 3 degrees of freedom. Similarly for the faces, each triangular face

or equivalently the plane that contains it has only two degrees of freedom in the space of

affine plane in E3, since each plane is invariant under a reflection element of G. But the

square face has only one degree freedom, because it is orthogonal to the axis of rotation of

G. Therefore the faces have just 2 + 1 = 3 degrees of freedom. Of course the faces and

vertices can not be chosen independently of one another. The incidence of v1 with respect

to any of the four triangular faces adjacent to it, determines the incidence of that vertex to

the other three faces under the action of G. Hence v1 has only one “independent” incidence.

The vertices v2, v3 and v4 are in the same G-orbit and each one is incident with two triangles

181

and one square faces. Take one of them say v2. There is a reflection which fixes v2 and sends

adjacent triangular faces each one to the other. Thus the number of independent incidences

µ∗(P) of P is 1 + 2 = 3. Each such incidence relation in the form of the condition that a

vertex lies in a particular face, reduces the dimension of the GC-space by one. Hence we get

: dim〈P 〉 = (1 + 2) + (1 + 2) − (1 + 2) = 3.

The idea of this example can be applied in general to find the dimension of the symmetry

type of any polyhedron P . Indeed, we can factor out the relation dim[P] = 3(n + f) −

µ(P) by the action of G(P) on F (P) to find the dimension of the GC-space, dim〈P 〉 =
∑

⌊

δ(v) + δ(A)
⌋

− µ∗(P), where the summation
∑

is extended over all vertex orbits v ∈

F0(P)/G and face orbits A ∈ F2(P)/G.

References

[1] M. Farber and M. Grant. Symmetric motion planning. math.AT] 27 Oct.2006.

[2] K. Kawakubo. The theory of transformation groups. Oxford University Press, 1991.

[3] Y. Liu and Popplestne. Symmetry constraint inference in assembly planning automatic

assembly configuration specification. Proc.of AAAI-90, pages 1038–1044, 1990.

[4] T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE Tran. Comput.,

C–32:108–120, 1983.

[5] T. Lozano-Pérez and M. Wesley. An algorithm for planning collision free paths among

polyhedral obstacles. Comm. ACM, 22(10):560–570, 1979.

[6] S. A. Robertson. Polytopes and symmetry. Number 90 in London Math. Soc. Lecture

Notes. Cambridge University Press, 1984.

[7] E. Steinitz and H. Rademacher. Vorlesugen uber die theorie der polyhder. Springer, 1934.

reprint 1976.

[8] Z. H. Xiong and Z. X. Li. On the discrete symmetric localization problem. In Proceedings

of the 2002 IEEE International Conference on Robotics, Washington, DC, 2002.

[9] G. M. Ziegler. Lectures on polytopes. Number 152 in Graduate Texts in Mathematics.

Springer, New York, 1995.

182

Generalized least squares problems on Riemannian

manifolds

L. Machado∗ F. Silva Leite† K. Hüper ‡

Abstract

Our objective is to present a generalization of classical least squares method to Rie-

mannian manifolds M . The main drawback to adapt the classical approach relies on the

non availability of explicit forms for polynomial curves on non-Euclidean spaces. This

difficulty is overcome with a convenient formulation of a variational problem whose so-

lutions turn out to give rise to curves that best fit a given set of data on M and are

called “smoothing geometric splines”. A detailed analysis of this approach when M is the

Euclidean space R
n supports our strong believe that this is the natural generalization.

1 Introduction

A typical task in robotics is to plan movements from a given end-effector configuration (po-

sition and orientation) to a desired new configuration. Since the configuration space of most

mechanical systems fails to be a vector space and typically has components which are smooth

manifolds, such as the rotation group or the Euclidean group of rigid motions, problems

of path planning and tracking in robotics have been an important source of motivation for

the study of interpolation problems on non-Euclidean spaces. References where the classical

interpolation problems have been replaced by generalizations to Riemannian manifolds are

already quite vast and vary from deep mathematical foundations [17], [6, 7], [5], [10], [13],

[2, 3], to more applied results, where low dimensional manifolds are at play [19], [11], [8], [18],

[4].

Most of the cited work deals with geometric cubic splines and the main feature of these

interpolating curves relies on the fact that they minimize that component of acceleration that

lies tangent to the manifold.

∗Institute of Systems and Robotics, University of Coimbra, and Department of Mathematics, University of

Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal. E-mail: lmiguel@utad.pt.
†Institute of Systems and Robotics, and Department of Mathematics, University of Coimbra, 3001-454

Coimbra, Portugal. E-mail: fleite@mat.uc.pt.
‡National ICT Australia, Canberra Research Laboratory, Locked Bag 8001,Canberra ACT 2601, Australia,

and Department of Information Engineering, Research School of Information Sciences and Engineering, The

Australian National University, Canberra ACT 0200, Australia. E-mail: knut.hueper@nicta.com.au.

183

The study of higher order geometric splines has also been required in the context of robotic

motion planning. Such is the case when the robot mechanisms, instead of having just rigid

components, have a complex deformable attachment like fluid or elastic components [1]. These

higher order geometric splines have also been defined using a variational approach, but con-

trary to what happens in Euclidean spaces, no explicit solutions are know for generalizations

of splines to Riemannian manifolds.

There are many circumstances, however, when interpolation is not a crucial requirement.

Such is the case when the data can’t be measured exactly and is corrupted by noise. A

more realistic alternative is to require that the curve passes close to the data, and such small

deviation usually results in a significant decrease in the computational cost, making them

more appropriate for many problems arising in physics and engineering.

Our objective is to address the problem of finding smoothing splines on non-Euclidean

spaces that best fit a given set of points at given instants of time, generalizing the classical

least squares problems to Riemannian manifolds. These problems are well understood in

Euclidean spaces, but a straightforward generalization would require that we have at hand

explicit formulas for the analogues of polynomials. This was the main drawback in generalizing

least squares problems on manifolds. However, since polynomials on Euclidean spaces can be

seen as solutions of certain variational problems, our approach to least squares problems is

also variational.

2 Revisiting the classical least squares problem

The classical least squares method can be seen as a typical method for curve fitting on Eu-

clidean spaces. In this classical method, we are given a set of N+1 points in R
n, p0, p1, . . . , pN ,

and a monotone increasing sequence of instants of time t0 < t1 < · · · < tN , and the objective

is to find among the class of polynomial functions of degree not exceeding m (m ≤ N), that

we denote by Pm, a polynomial parameterized by t 7→ γ(t) = a0 + a1t + . . . + amtm ∈ R
n,

that best fits the given data set of points, in the sense that the functional

E(γ) =
N

∑

i=0

∥

∥pi − γ(ti)
∥

∥

2
,

should be as small as possible, where
∥

∥·
∥

∥ denotes the Euclidean norm in R
n.

It is well known [12], that for each m ∈ N, there is a unique polynomial in Pm minimizing

the functional E above.

3 Generalization to Riemannian manifolds

The non availability of explicit forms to the analogues of polynomial curves on general Rie-

mannian manifolds is the main drawback for presenting the straightforward generalization of

184

the classical least squares approach given in section 2. However, when M is a connected and

complete manifold, equipped with a Riemannian metric 〈·, ·〉 and corresponding Riemannian

distance d, we can formulate a variational problem which gives rise to the natural generaliza-

tion of the classical least squares problem. In what follows, we first formulate this variational

problem, then find the corresponding necessary optimality conditions and finally present the

case when the manifold is the Euclidean space. This detailed analysis supports our convic-

tion that the presented variational approach is the natural generalization of the classical least

squares problems to non-Euclidean spaces.

In what follows, D
dt

denotes the covariant derivative along a curve and R plays the role of

the curvature tensor on M .

3.1 A variational approach

We consider a collection of N points, p0, . . . , pN , on M and a partition of the time interval

[0, 1]: 0 = t0 < t1 < · · · < tN = 1, and look for an appropriate admissible curve γ : [0, 1]→M ,

that minimizes the functional

J(γ) =
1

2

N
∑

i=0

d2 (pi, γ(ti)) +
λ

2

∫ 1

0

〈

Dmγ

dtm
,
Dmγ

dtm

〉

dt, (1)

over the class Ω, of all Cm−1 paths γ : [0, 1] −→ M such that γ

∣

∣

∣

[ti,ti+1]
is smooth, for i =

0, . . . , N−1, and, in addition, has bounded limits lim
t→t−i

Djγ
dtj

(t) and lim
t→t+i

Djγ
dtj

(t), for every integer

j ≥ m. d is defined for points p and q sufficiently close [9], as d2(p, q) =
〈

exp−1
p q, exp−1

p q
〉

.

The parameter λ ∈ R
+ controls the trade-off between the smoothness of the fitted curve and

its closeness to the given points and can therefore be considered as a smoothing parameter.

For the above reasons, the authors have introduced the term “smoothing geometric splines”

to characterize the solutions of the above variational problem.

Remark 3.1. We note that the integral term in (1) is the functional which gives rise to

analogues of higher order polynomials on Riemannian manifolds, as explained in [5].

3.2 Necessary optimality conditions

We start the analysis of the generalized least squares problem by presenting the necessary

optimality conditions for the functional J given by (1).

Theorem 3.1. [14] A necessary condition for γ to be an extremal for the functional J , given

by (1), over the class Ω, is that γ is C2m−2 in the whole interval [0, 1] and for t ∈ [ti, ti+1]

and i = 0, . . . , N − 1, γ satisfies

D2mγ

dt2m
+

m
∑

j=2

(−1)jR

(

D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)

dγ

dt
= 0. (2)

185

Moreover, at the knot points ti, γ satisfies the following regularity conditions

Djγ

dtj
(t+i)−

Djγ

dtj
(t−i) =



















0; j = 0, . . . ,m− 1, (i = 1, . . . , N − 1)

0; j = m, . . . , 2m− 2, (i = 0, . . . , N)

(−1)m

λ
exp−1

γ(ti)
(pi); j = 2m− 1, (i = 0, . . . , N)

,

(3)

where we assume for the sake of simplicity that

Djγ

dtj
(0−) =

Djγ

dtj
(1+) = 0, j = m, . . . , 2m− 1.

By the analysis of the necessary optimality conditions for the previous minimization prob-

lem, we can see that smoothing geometric splines are thus obtained by piecing smoothly

together segments of geometric polynomials of degree 2m − 1 and satisfy some regularity

conditions at the knot time points ti’s.

The complexity of the nonlinear differential equation (2) encountered by using the La-

grangian formalism unable us to write down the explicit solution for the minimization prob-

lem stated in subsection 3.1, unless we particularize M to be the Euclidean space R
n. This

is the goal of the next subsection.

3.3 Particular case when M = R
n

When M is the Euclidean space R
n, the covariant derivative coincides with the usual derivative

and the curvature tensor vanishes. Therefore, the differential equation (2) reduces simply to

d2mγ

dt2m
(t) = 0, ∀t ∈

[

ti, ti+1

]

, (4)

and the regularity conditions (3) become

djγ

dtj
(t+

i
) −

djγ

dtj
(t−

i
) =



















0; j = 0, . . . , m − 1, (i = 1, . . . , N − 1)

0; j = m, . . . , 2m − 2, (i = 0, . . . , N)

(−1)
m

λ

(

pi − γ(ti)
)

; j = 2m − 1, (i = 0, . . . , N)

. (5)

The above variational problem in the Euclidean space has a unique solution (see [14], for more

details) that can be achieved by integrating the differential equation (4) in each subinterval
[

ti, ti+1

]

and the spline coefficients can then be found using the regularity conditions (5). In [16] and [15], the

authors presented the explicit solutions for the cases when m = 1 and m = 2, respectively. It has

also been proved that when the smoothing parameter λ goes to +∞, the smoothing splines approach,

respectively, the center of mass of the given points and the linear regression line.

To find explicit solutions for m ≥ 3 is not an easy task. However, using the software Mathematica

5.0, it is possible to illustrate our method. The cases m = 3 and m = 4 are presented in figure 1.

186

-4 -2 2 4 6 8

-2

-1

1

2

3

-4 -2 2 4 6 8

-2

-1

1

2

3

Smoothing splines for m = 1, p0 = (−5,−1),

p1 =
(

−2, 3

2

)

, p2 =
(

2,− 3

2

)

, p3 =
(

5, 2
)

and

p4 =
(

8, 1

2

)

, t0 = 0, t1 = 1

4
, t2 = 1

2
, t3 = 3

4
and

t4 = 1. The smoothing splines were obtained for

the following values of λ: λ1 = 10−3, λ2 = 10−1,

λ3 = 1 and λ4 = 4.

Smoothing splines for m = 2, p0 = (−5,−1),

p1 =
(

−2, 3

2

)

, p2 =
(

2,− 3

2

)

, p3 =
(

5, 2
)

and

p4 =
(

8, 1

2

)

, t0 = 0, t1 = 1

4
, t2 = 1

2
, t3 = 3

4
and

t4 = 1. The smoothing splines were obtained for

the following values of λ: λ1 = 10−5, λ2 = 10−3,

λ3 = 10−2 and λ4 = 10.

-2 2 4 6 8 10

-2

-1

1

2

3

-2 2 4 6 8 10

-2

-1

1

2

3

Smoothing splines for m = 3, p0 = (−3, 2),

p1 =
(

0,− 1

2

)

, p2 =
(

3, 3

2

)

, p3 =
(

5,−1
)

and

p4 =
(

8, 5

2

)

, t0 = 0, t1 = 1

4
, t2 = 1

2
, t3 = 3

4
and

t4 = 1. The smoothing splines were obtained for

the following values of λ: λ1 = 10−7, λ2 = 10−6,

λ3 = 10−5 and λ4 = 103 .

Smoothing splines for m = 4, p0 = (−3, 0),

p1 =
(

0, 0
)

, p2 =
(

3, 3

2

)

, p3 =
(

5,−1
)

and

p4 =
(

10, 3
)

, t0 = 0, t1 = 1

4
, t2 = 1

2
, t3 = 3

4
and

t4 = 1. The smoothing splines were obtained for

the following values of λ: λ1 = 10−10 , λ2 = 10−7,

λ3 = 10−6 and λ4 = 107.

Figure 1: Solutions of the variational problem in R
2 for the cases when m ≤ 4.

What can be noticed in the above figures is that, for all of the proposed data, the solutions of the

variational problem approach the corresponding solution of the classical least squares problem as long

as the smoothing parameter λ goes to +∞. This is the main reason why we believe that our approach

is the natural way to generalize the classical least squares method to Riemannian manifolds.

References

[1] J. Baillieul. Kinematic Redundancy and the Control of Robots with Flexible Components. IEEE

International Conference on Robotics and Automation, Nice, France, 1992.

[2] A. Bloch and P. Crouch. Nonholonomic and Vakonomic Control Systems on Riemannian Mani-

folds. SIAM J. Control and Optimization, 33(1):126–148, 1995.

[3] A. M. Bloch and P. Crouch. Nonholonomic Control Systems on Riemannian manifolds. SIAM

Journal on Control and Optimization, 33(1):126–148, 1995.

187

[4] F. Bullo and M. Zefran. On Mechanical Systems with Nonholonomic Constraints and Symmetries.

Systems and Control Letters, 42(1/2):135–164, 1998.

[5] M. Camarinha, F. Silva Leite, and P. Crouch. Splines of class Ck on Non-Euclidean Spaces. IMA

Journal of Mathematical Control and Information, 12:399–410, 1995.

[6] P. Crouch and F. Silva Leite. Geometry and the Dynamic Interpolation Problem. Proc. American

Control Conference, Boston, pages 1131–1137, 1991.

[7] P. Crouch and F. Silva Leite. The Dynamic Interpolation Problem: on Riemannian Manifolds,

Lie Groups and Symmetric Spaces. Journal of Dynamical and Control Systems, 1(2):177–202,

1995.

[8] Q. J. Ge and B. Ravani. Geometric Construction of Bezier Motions. ASME Journal of Mechanical

Design, 116:749–755, 1994.

[9] H. Karcher. Riemannian Center of Mass and Mollifier Smoothing. Communications on Pure and

Applied Mathematics, 30:509–541, 1977.

[10] A. K. Krakowski. Geometrical Methods of Inference. PhD Thesis, Department of Mathematics

and Statistics, The University of Western Australia, Australia, 2002.

[11] V. Kumar, M. Zefran, and J. Ostrowski. Motion Planning in Humans and Robots. The Eighth

International Symposium of Robotics Research, Hayama, Japan, 1997.

[12] P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press, 1990.

[13] A. Lewis. Controllability of Simple Mechanical Control systems. SIAM J. Control and Optimiza-

tion, 35(3):766–790, 1997.

[14] L. Machado. Least Squares Problems on Riemannian Manifolds. PhD Thesis, Department of

Mathematics, University of Coimbra, Portugal, 2006.

[15] L. Machado and F. Silva Leite. Fitting Smooth Paths on Riemannian Manifolds. International

Journal of Applied Mathematics & Statistics, 4(J06):25–53, 2006.

[16] L. Machado, F. Silva Leite, and K. Hüper. Riemannian Means as Solutions of Variational Prob-

lems. LMS J. Comput. Math., (8):86–103, 2006.

[17] L. Noakes, G. Heinzinger, and B. Paden. Cubic Splines on Curved Spaces. IMA Journal of

Mathematics Control and Information, 6:465–473, 1989.

[18] F. Park and B. Ravani. Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematic

Applications. ASME Journal of Mechanical Design, 117:36–40, 1995.

[19] M. Zefran, V. Kumar, and C. Croke. On the Generation of Smooth Three-dimensional Rigid

Body Motions. IEEE Trans. on Robotics and Automation, 14(4):579–589, 1995.

188

Model predictive control of under-actuated

mechanical systems

Amélia C. D. Caldeira∗ Fernando A. C. C. Fontes†

Abstract

Model Predictive Control (MPC) is an optimization-based control technique that has

received an increasing research interest and has been widely applied in industry. Similarly

to optimal control, MPC has an inherent ability to deal naturally with constraints on the

inputs and on the state. Moreover, since the controls generated are closed-loop strategies

obtained by optimizing some criterion, the method possesses some desirable performance

properties [8] and also intrinsic robustness properties [7]. Thousands of applications have

been reported [9], making MPC being classified as the only advanced control technique

with a substantial impact on industrial control [6]. Until recently, a technical difficulty

prevented the continuous-time MPC approaches to be used to stabilize important classes

of nonlinear systems, such as under-actuated mechanical systems which frequently ap-

pear in robotics. Such class of nonlinear systems cannot be stabilized by a continuous

time-invariant feedback. As a consequence, the trajectories cannot be described by clas-

sical (Caratheodory) solutions to differential equations.This difficulty is overcame in the

framework proposed in [1] that describes how a continuous-time MPC framework using a

positive inter-sampling time, combined with the use of an appropriate concept of solution

to a differential equation, can address nonholonomic systems. An implementation of an

MPC strategy to control a wheeled mobile robot using the results above is reported in

[4, 5].

An MPC framework with guaranteed robustness properties addressing a general class

of nonlinear systems is discussed in [2, 3]. Preliminary results on the implementation of

a robust MPC strategy, devised in the above references, to a wheeled robot are reported.

Conditions under which steering to a set is guaranteed are established.

Keywords: Model predictive control; stability analysis; under-actuated mechanical

systems

∗Departamento de Matemática, Instituto Superior de Engenharia do Porto, R. Dr. António Bernardino de

Almeida, 431, 4200-072 Porto, Portugal. E-mail:acd@isep.ipp.pt
†Departamento de Matemática para a Ciência e Tecnologia, Universidade do Minho. Campo de Azurém,

4800-058 Guimarães, Portugal. E-mail:ffontes@mct.uminho.pt

189

1 Introduction

Under-actuated mechanical systems can model many interesting applications arising in robotics

such as under-actuated manipulators, wheeled vehicles, etc.. Also, these systems typically ex-

hibit a nonlinear and nonholonomic behavior and have fewer control inputs than degrees of

freedom. So, the design stabilizing feedback controllers for these systems offers some interest-

ing challenges. Namely, these systems are inherently nonlinear: they cannot be handled by

any linear control method and are not transformable into linear systems (even locally) in any

meaningful way. Furthermore, a (time-invariant) feedback law capable of stabilizing this class

of systems must be allowed to be discontinuous. As a consequence, nonclassical definitions of

a solution to a differential equation are needed to analyse the resulting trajectories. Despite

these difficulties, a continuous-time Model Predictive Control (MPC) framework has been

shown to be an appropriate methodology to generate stabilizing feedbacks for such systems.

Model Predictive Control (MPC) is an increasingly popular control technique that has been

developed both by the systems theory community where it is also known as Receding Horizon

Control, and by the process engineering community where it is often referred to by commer-

cial names such as Dynamic Matrix Control. This technique constructs a feedback law by

solving on-line a sequence of open-loop optimal control problems, each of them using the cur-

rently measured state of the plant as its initial state. Similarly to optimal control, MPC has

an inherent ability to deal naturally with constraints on the inputs and on the state. Since

the controls are obtained by optimizing some criterion, the method possesses some desirable

performance properties, and also intrinsic robustness properties [7]. These facts can partially

explain the substantial impact it has made on industry: surveys carried out a decade ago

with five MPC software vendors, identified more than 2200 industrial applications [9].

The framework proposed in [1] that describes how a continuous-time MPC framework

using a positive inter-sampling time, combined with the use of an appropriate concept of

solution to a differential equation, can address nonholonomic systems. An implementation

of an MPC strategy to control a wheeled mobile robot using the results above is reported in

[4, 5].

An MPC framework with guaranteed stability properties addressing a general class of

nonlinear systems is discussed in [2, 3]. Preliminary results on the implementation of a

stabilizing MPC strategy, devised in the above references, to a wheeled robot are reported.

Conditions under which steering to a set is guaranteed are established.

2 Kinematic Model of the Robot

Consider the mobile robot of a unicycle type which is represented by the model:
[

.
x,

.
y,

.

θ
]

=
[

u1+u2

2 cos θ, u1+u2

2 sin θ, u1−u2

L

]

, u1 (t) , u2 (t) ∈ [−umax, umax].

The Cartesian coordinates (x, y) are the position in the plane of the midpoint of the

190

axle connecting the rear wheels (L is the distance between the rear wheels) and θ denotes

the heading angle measured anticlockwise from the x-axis. The controls u1 and u2 are the

angular velocity of the right wheel and of the left wheel, respectively.

The velocity control of the two rear wheels determines the translation velocity of the robot:

v = u1+u2

2 and the angular velocity: w = u1−u2

L
. Suppose L = 1 without lost of generality.

So, the model of the unicycle can be represented by the model:
.
x = [v cos θ, v sin θ, w]T or,

.
x(t) = f (x(t),u(t)) , where x = [x y θ]T and u = [v w]T . Considering umax = 1, we have

that v ∈ [−1, 1] and w ∈ [−1, 1]

The system is subject to one nonholonomic constraint, the velocity vector is always or-

thogonal to the wheel axis, so the nonholonomic constraint
(.
x,

.
y
)T

(sin θ,− cos θ) = 0. When

trying to obtain a linearization of this system around any operating point (x0;u1 = 0;u2 = 0)

the resulting linear system is not controllable. Therefore, linear control methods, or any

auxiliary procedure based on linearization, cannot be used to handle this system.

3 The MPC Formulation

Consider a nonlinear plant with input constraints, where the evolution of the state after time

t is predicted by the model
.
x(s) = f (x(s),u(s)), for s ∈ [T,+∞) and x(t) = xt ∈ X0.

The data of this model comprise a set X0 ⊂ R
n containing all possible initial states,

a vector xt ∈ X0 that is the state of the plant measured at time t, a given function f :

R × R
n × R

m → R
n, and a multifunction U : R → R

m of possible sets of control values.

These data combined with a particular measurable control function u : [t,+∞[→ R
m define

an absolutely continuous trajectory x : [t,+∞[→ R
n.

Suppose this system is uniformly asymptotically controllable on X0.

Consider a sequence of sampling instants π := {ti}i≥0¸ with a constant inter-sampling

time δ > 0 such that ti+1 = ti + δ, ∀i ≥ 0. Let the control horizon Tc and prediction horizon

Tp, with Tc ≤ Tp, be multiples of δ. Consider also a terminal set S (⊂ R
n), a terminal cost

function W : R
n → R, and a running cost function L : R

n × R
m → R.

The objective is to drive this system to the origin. In practice we consider target set

Θ =
{

(x, y, θ) ∈ R
2 × [−π, π] : ‖(x, y)‖ ≤ ε1, |θ| ≤ ε2

}

where ε1, ε2 > 0.

The feedback control is obtained by repeatedly solving online open-loop optimal control

problems (OCP) at each sampling instant ti, every time using the current measure of the

state of the plant xti .

The MPC control law is obtained with the algorithm described now:

1. Measure state of the plant xti ;

191

2. Get u : [ti, ti + T]→ R
n solution of the OCP:

Minimize
∫ ti+T

ti
L (x(t),u(t)) dt + W (x (ti + T))

subject to:
.
x= f (x (t) ,u (t)) , a.e. t ∈ [ti, ti + T]

x (ti) = xti

u (t)∈ U (t) , a.e. t ∈ [ti, ti + T]

x (ti + T)∈ S

(1)

3. Apply to the plant the control u∗ (t) := u (t) in the interval [ti, ti + δ[. The remaining control

is (u (t) , t > ti + δ) discarded;

4. Repeat the procedure from (1.) for the next sampling instant: ti = ti + δ, using the new

measure of the state of the plant xti+1.

The pair (x,u) denotes an optimal solution to an open-loop OCP. The process (x∗,u∗) is

the closed-loop trajectory and control resulting from the MPC strategy. The design param-

eters (the variables present in the open-loop OCP that are not from the system model) are:

the time horizon T , the functions L and W , and the set S. They must satisfies the stability

conditions (SC) and therefore guarantee that the resulting MPC strategy is stabilizing, and

are constructed based on a simple strategy that drives the system to the origin.

Consider the following stability condition SC[1]:

Theorem: Choose the design parameters satisfying:

SC1 The set S is closed and contains the origin.

SC2 The function L is continuous, L(., 0, 0) = 0, and there is a continuous positive definite and

radially unbounded function M : R
n → R+ such that L (t,x,u) ≥M (x) for all (t,u) ∈ R+×R

m.

Moreover, the ”extended velocity set” {(v, l) ∈ R
n ×R+ : v = f (t,x,u) , l ≥ L (t,x,u) ,u ∈ U (t)}

is convex for all (t,x).

SC3 The function W is positive semi-definite and continuously differentiable.

SC4 The time horizon T is such that, the set S is reachable in time T from any initial state

and from any point in the generated trajectories: that is, there exists a set X ⊃ X0 such that for

each pair (t0,x0) ∈ R+ ×X there exists a control u : [t0, t0 + T]→ R
m, with u (s) ∈ U (s) for all

s ∈ [t0, t0 + T], satisfying x (t0 + T ; t0,x0,u) ∈ S. Also, for all control functions u in the conditions

above x (t; t0,x0,u) ∈ X for all t ∈ [t0, t0 + T] .

SC5 For every time t ∈ [T,∞[and each xt ∈ S , we can choose a control function ũ continuous

from the right at t, satisfying:

Wt (t,xt) + Wx (t,xt) · f (t,xt, ũ ((t))) ≤ −L (t,xt, ũ ((t))) (SC5a)

x (t + δ; t,xt, ũ) ∈ S (SC5b).

Then, for a sufficiently small inter-sample time δ, the closed-loop system resulting from the appli-

cation of the MPC strategy is asymptotically stable.

Consider: Θ =
{

x =(x, y, θ) ∈ R
2 × [−π, π] : ‖(x, y)‖ ≤ 0.05, |θ| ≤ 0.1

}

. It is convenient

to define φ(x, y) to be the angle that points to the origin from position (x, y) away from the

192

origin, more precisely: φ(x, y) = 0 if ‖(x, y)‖ ≤ 0.05. Otherwise, φ(x, y) = − (π/2)sign(y) if

x = 0, y 6= 0, φ(x, y) = tan−1 (y/x) + π if x > 0, or φ(x, y) = tan−1 (y/x) if x < 0.

A possible auxiliary stabilizing strategy ũ is: if ‖(x, y)‖ < 0.05 then v = 0 and w = − π
4×θ.

Otherwise v = 0.1 and w = −π
4 × [θ − φ(x, y)].

Define the terminal set S to be the set of states heading towards the origin of the plane

together with the origin of the plane, that is:

S =
{

x =(x, y, θ) ∈ R
2 × [−π, π] : (x, y, θ) ∈ Θ ∨ (x, y) = (0, 0)

}

.

This set can be reached for any state if we define the horizon to be the time to complete

an 180 degrees turn, that is T = π/wmax = π.

Define L (x) = x2 + y2 + θ2 and W (x) = 2
∫ t

0 L (x (t) , y (t) , θ (t)) dt, using the auxiliary

strategy ũ defined in [2] and where t is the time to reach the origin. An explicit formula is:

W (x) = 1
3

(

r3 + |θ|3
)

+ rθ3, where r =
√

x2 + y2 [2].

It is an easy task to check that these design parameters satisfy conditions SC1 to SC4

and SC5b. We verify SC5a below.

∇W (x) =
(

xr + 2xθ2/r, yr + 2yθ2/r, θ |θ|+ 2θr
)

when θ 6= 0 and r 6= 0. Suppose

‖(x, y)‖ ≤ 0, 05 and if |θ| ≤ 0.1 then we are already in Θ. Consider now the case when

|θ| > 0.1. Since r ≤ 0.05 ≤ 0.1 then |θ| > r. The controls are chosen as v = 0 and

w = −π
4 × θ, suppose r 6= 0 therefore:

∇W (x) · f (x,u) = −π
4 × θ (θ |θ|+ 2θr) ≤ −L (x, y, θ)

Suppose ‖(x, y)‖ > 0.05. The controls are chosen as v = 0.1 and w = − π
4 × [θ − φ (x, y)] .

Let a = θ − φ(x, y) (note that a ≤ π
4). Then

f (x,u) =
(

cos φ cos a−sinφ sin a
10 , sin φ cos a+cos φ sina

10 ,−π
4

[

θ + π − tan−1
(

y
x

)]

)

.

It is easy to prove, in the case x > 0, that cos φ = cos
[

tan−1
(

y
x

)

+ π
]

= − x√
x2+y2

, and

sinφ = sin
[

tan−1
(

y
x

)

+ π
]

= − y√
x2+y2

.

If θ 6= 0 the gradient of W is well defined and (note that 2rθ ≤ r2 + θ2):

∇W (x) · f (x,u) = − r2+2θ2

10 cos a− π
4 (a + 2π) (θ |θ|+ 2θr) ≤ −L (x, y, θ)

The cases when x < 0 and x = 0 can be verified in a similar way.

It follows from our main stability result that this choice of design parameters guarantees

the stability of the closed-loop trajectory.

4 Implementation and simulation

The optimal control 1 (in Bolza form) is reformulated in an equivalent Mayer form and

discretized. The resulting nonlinear programmes are then solved in MATLAB using as initial

guess the auxiliary stabilizing strategy. Simulation results are shown both using the auxiliary

stabilizing strategy as well as the MPC strategy for the initial position x0 =
(

0, 1, π
2

)T
.

193

Fig.1: MPC Trajectory Fig.2: MPC Control Fig.3: Trajectory using ũ

5 Conclusions

In this work we report preliminary results on the implementation of a stabilizing MPC strategy

to a wheeled robot. Conditions under which steering to a set is guaranteed are established.

A set of design parameters satisfying all these conditions for the control of a unicycle mobile

robot are derived. How to improve the computation efficiency is currently under investigation.

References

[1] F. A. C. C. Fontes. Discontinuous feedbacks, discontinuous optimal controls, and

continuous-time model predictive control. International Journal of Robust and Nonlin-

ear Control, 13(3-4):191-209, 2003.

[2] F. A. C. C. Fontes and L. Magni. Min-max model predictive control of nonlinear systems

using discontinuous feedbacks. IEEE Transactions on Automatic Control, 48:1750-1755,

2003.

[3] F. A. C. C. Fontes, L. Magni and E. Gyurkovics. Sampled-data model predictive control

for nonlinear time-varying systems: Stability and robustness. In Allgower, Findeisen, and

Biegler, editors, Assessment and Future Directions of NMPC, volume 358 of Lecture Notes

in Control and Information Systems, pages 115-129. Springer Verlag, 2007.

[4] D. Gu, H. Hu. A stabilizing receding horizon regulator for non-holonomic mobile robots.

IEEE Transactions on Robotics, 21(5):1022-1028, 2005.

[5] D. Gu, H. Hu. Receding horizon tracking control of wheeled mobile robots. IEEE Tran-

sations on Control Systems Techonology, 14(4):743-749, 2006.

[6] J. M. Maciejowski. Predictive Control with Constrains. Prentice Hall, Harlow, England,

2001.

[7] L. Magni and R. Sepulchre. Stability margins of nonlinear receding horizon control via

inverse optimality. Systems and Control Letters, 32:241-245, 1997.

194

[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model

predictive control: Stability and optimality. Automatica, 36:789-814, 2000.

[9] S. J. Qin and T. A. Badgwell. An overview of nonlinear model predictive control aplica-

tions. In NMPCWorkshop, Ascona, Switzerland, 1998.

195

196

Perceptual grouping of edges and corners:

grammatical inference for implicit object

reconstruction from 2-manifold 3D-data

Peter Michael Goebel∗ Markus Vincze†

Abstract

The work of this paper shows how perceptual grouping can be applied within a recently

presented framework to support learning of object reconstruction recipes by grammatical

inference. Furthermore, the ability to collect information of views from different view-

points enables us to deal with implicit object topology. We use the perceptual grouping

of 3D point-cloud image points into planes by probabilistic robust fitting and the segmen-

tation of edges and corners by intersecting the planes. The edge and corner primitives

found by processing of Monte-Carlo simulations and real 3D point-cloud images, are used

to train a N-gram model that build object prototypes by Bayesian belief networks. We

use perplexity to find out the best performing belief network under candidates. The mod-

eling approach can be utilized for the representation and recognition of object types with

occlusions in cluttered, and noisy environments.

1 Introduction

Psychological findings of mammalian visual perception generate supports for cognitive vision

models in machine-vision in that they assume the most regular and simplest organization

that is equivalent with an image of a given setup [21]. Hence, Gestalt theory appears to be

the root of perceptual grouping (PG) and aims at the detection of structure and regularities

over several stimuli by extraction of groups of image features that occurred non-accidental,

where the grouping principles are based on similarity, proximity, common fate, collinearity,

good continuation and past experience [13].

Thus, a one-to-one mapping is found, which maps geometric primitives to sets of numerical

parameters into a subset of R
n, where n is the dimension of the representation [4].

∗Vision for Robotics Lab., Automation and Control Institute ACIN, Vienna University of Technology.

E-mail: gp@acin.tuwien.ac.at. Supported by project S9101 ”Cognitive Vision” of the Austrian Science

Foundation.
†Vision for Robotics Lab., ACIN, Vienna University of Technology.E-mail:vincze@acin.tuwien.ac.at.

197

Since identification of objects within a familiar scene is influenced by the observer’s loca-

tion, reconstruction can be supported by contextual information about where we are in space

and in which direction we are looking [3]. Although projective views from objects possess

some invariance to viewpoint change [2], they appear very different when the change gets

above a certain limit. A general mathematical definition is needed in order to generate ap-

propriate and complete object representations, since it appears rather impossible to collect

all necessary information for a reconstruction of object-topology of all possible object-views

in advance. In our approach, we find this definition in the notion of manifolds, where the

key idea is that all appearing object-views are projections from the same original object and

therefore smoothly interrelated.

Definition 1.1. When, as shown as in Figure 1 – X is a set of points in R
n, (Ui ⊂ X) an

open set, ϕi maps
{

ϕi := Ui ∩X 7→ R
d | d < n

}

of projective representations of the set X

– and Iff {Ui ∩ Uj 6=i 6= ∅} and
(

ϕi · ϕ
−1
j

)

,
(

ϕj · ϕ
−1
i

)

are two mappings R
d 7→ R

d infinitely

differentiable – then the set X together with the open sets Ui and the maps ϕi is called a C∞

manifold of dimension d (adapted from [4]).

Figure 1: A 2-Manifold: element x ∈ X is represented by a pair (p, i), where p ∈ R
d and i is

the index, ϕi such that p = ϕi(x), then the set of pairs (Ui, ϕi) is called an atlas of set X[4].

However, object reconstruction methods that are state-of-the-art commonly utilize a priori

knowledge for each object that should be recognized. To be of practical interest in a real world

sense a method must also be able to deal with objects for which it has no explicit prior model

ready. In recent work we proposed a cognitive framework [8] with the implementation of

an vision module based on mammalian psychophysical findings by using predefined object

recipes for object reconstruction [6].

The work of this paper shows how perceptual grouping can be applied within the frame-

work to support learning of object reconstruction recipes by grammatical inference. We

use the PG of 3D point-cloud image points into planes by probabilistic robust fitting with

RANSAC [5] and the segmentation of edges and corners by intersecting the planes. The edge

198

and corner primitives found by processing of Monte-Carlo simulations and real 3D point-cloud

images, are used to train a N-gram model that build object prototypes by Bayesian belief

networks. We use perplexity to find out the best performing recipe under candidates.

The paper is organized as follow: Section 2 shows related work; Section 3 shows how

object detection is related to representation; followed by Section 4 with presenting a N-gram

model as the learning corpus; Section 5 concludes with an outlook to future work.

2 Related work

There exist a vast literature on PG in vision, see e.g. [19] for a survey. Early work in

PG dates back to Marr [16], who was first who suggested to incorporate grouping based on

curvilinearity into larger structures by his primal sketch approach; Witkin and Tenenbaum [22]

postulated non-accidentalness for spatiotemporal coherence; Lowe [15] derived an expectation

estimate for accidental occurrences by assuming an uniform distribution to line segments;

Sarkar and Boyer [18] developed a Bayesian network method for geometric knowledge-based

representation; Zucker [24] introduced closure as more global feature to better deal with

occlusions; and Ackermann et al [1] introduced a Markov random field grouping approach

with learning from hand-labeled trainings sets; however, this list is still far from completeness.

More recent work of Procter [17] investigated grouping of edge-triple features, to recognize

polyhedrons from 2D image projections, however, the method turned out to be too sensitive

to noise and thus failed practical demonstration.

Levinshtein et al [14] proposed recovering a Marr [16] like abstraction hierarchy from a

set of examples by applying a multi-scale blob and ridge detector for feature extraction, here

draw backs arise from the fact that positional information of the blobs is lost during a graph

embedding and that a vast number of parameters are to be defined.

Zillich [23] aimed at issues concerning complexity and robustness by proposing an incre-

mental processing scheme for the PG of edges in indoor scenes. He proposed using Gestalt

principles to support PG and implemented successfully a Markov random field approach in

order to deal with real-world objects. Although, in abstract sense, the approach relates very

close to our approach, his self-criticism is, he unfortunately highly assumed the getting of

clean edges by local edge detectors, which degraded system performance in complexer setups.

The main difference to our approach is that we focus on robustness by applying multireso-

lution methods [8] and to use more global approaches rather than localized ones. We intend

to get first only a coarse representation of an object at hand and refine the representation

afterwards when more information is required.

199

3 From detection to representations

Objects, seen on a very abstract level, can be represented by graphs. These graphs are

representations of the connections between structural elements, such as (i) corners; (ii) edges;

and (iii) boundaries, where two areas meet: in a fold1, or in a blade2, or a face3. Structural

elements and their connections are defined by relations between image primitives. Image

primitives are composed by groupings of image features that are extracted from image points.

Thus, the more abstract process is that the structural elements, which constitute an object,

are searched in a reduced search space by defining some relations between them. To get ready

for corner classification, one has first to segment edges within the image.

3.1 Structural segmentation in 3D

Image segmentation is commonly the partitioning of an image into regions that separate

different areas from each other and also from its background. Because of lack of space, we

refer [9] for a comprehensive review of low-level segmentation methods4.

In our present approach we use structural properties such as cutting-edges between in-

tersecting planes that are detected in the 3D-point-cloud images by using a robust plane

grouping method applied in [20]. The method uses the Random Sample Consensus Algo-

rithm (RANSAC) [5], which is a probabilistic algorithm for robust fitting of models in the

presence of many data outliers and noise. The plane fitting algorithm randomly selects points

from the 3D-point-cloud image and groups triples together in order to define triangles. Only

triples that form triangles that lie within a cube’s face are grouped into planes, where a

plane is then defined by its vector to the origin c (center) and its normal vector n that is

perpendicular to the plane5.

3.2 Symbolic corner labeling

Depending on the viewpoint, corners may appear very differently. In our approach, we classify

corners into four junction types, such as: (L)-type which means an occluding line and denotes

a blade that is an object region in front of the background; (Y)-type means a 3-junction,

where three surfaces intersect with the angles between each pair are < 180 degree; (T)-type

means a 3-junction with one of the angles has exactly 180 degrees; and (W)-type means a

3-junction with one angle > 180 degrees.

1when both areas are from the same object
2when one area is from the object and one from the background
3when one area appears closed
4Their performance compared to human observers is low, especially when applied in noisy environments.
5Note the method appears akin to a 3D Hough transform.

200

�

���

 .����
���

����

����

����

��

���

������

�	�

�
�

����

��
�������

��
��
�����

��
�������

��

��

��

�������
��	
��
��

Figure 2: shows the grouping

of points from the point-cloud

into planes by RANSAC trian-

gle fitting method. Hence, ev-

ery face of the cube gets de-

fined its own normal vector n,

sitting at the end of the cen-

ter vector c from the origin O.

The intersection of two planes

results in a crossing edge g with

the space point a. Herein a

point p, already on line g, (i.e.

p equals the base point f and

therefore d = 0) is connected

by λ · rv with the endpoint of

space point vector a.

Figure 3: a real object’s

3D point-cloud with the seg-

mentation result, where white

marks at the folds represent

the final proximity points at

the crossing edges. The re-

sulting edge lines are shown

in black; the black blade lines

are segmented at the border

between the point-cloud face

and the object shadow by

local segmentation methods.

The white crosses depict the

location of the corners of the

cube, where the 2 faces and

the ground plane cross.

�

��

�
�

��

�

��

��

��

��

��

��

��

���������	
���
��

Figure 4: the junction-types

for corner labeling of an ex-

ample cube, as used in our

approach: (L) means an oc-

cluding boarder and denotes

a blade where two surfaces

meet and just one of them

is visible; (Y) means a 3-

junction, where three sur-

faces intersect with the an-

gles between each pair are

less than 180 degree; and

(W) means a 3-junction with

one angle greater than 180

degree. Note: no (T)-

junction type is present here.

4 The graphical model and grammatical inference

There exist two principal methodologies in modeling: (i) discriminative, versus (ii) generative

approaches. Graphical models are generative approaches, since they may generate synthetic

data by sampling from a distribution, define prior probabilities or complete probability dis-

tributions. Such models appear commonly too complex for discriminative6 direct estimation

of posterior probabilities. Thus, the distributions must be factorized into manageable parts

that can be realized by: (i) naive Bayes - assuming strongly naive independence between

random variables; (ii) N-grams - which model symbol sequences, using statistical properties;

(iii) hidden Markov models - that are Markov processes with unobservable parameters, which

6e.g. by Support Vector Machines, traditional neural networks, or conditional random fields

201

makes its challenge by determining hidden parameters from the observable ones; and (iv)

probabilistic context free grammars - that are context-free grammars, in which each produc-

tion is augmented with a probability. Hence, a formal grammar is defined by the quadruple

G := (N,Σ, P, S); where (N) is a finite set of nonterminal (syntactical) symbols; (Σ) a finite

set of terminal symbols; (P) a finite set of production rules of the form A→ BC, or A→ ω,

where A,B,C ∈ N and ω ∈ Σ; and (S) the start symbol. A grammar is context-free if

(N ∩ Σ) = {} i.e. N,Σ are disjoint sets, and if (∃ string ∈ (N ∪ Σ)∗ : (S, string) ∈ P); a

regular grammar is a finite state automaton which is context-free; regular grammars produce

regular languages. Grammatical inference (GI) aims in learning of regular language from

examples, i.e. by learning the structure of a finite state automaton and by estimating its

transition probabilities [10].

4.1 The statistical language N-gram model

Statistical language models are used for the modeling of sequences of symbols under the

assumption that the underlying generation process is an approximate Markov-chain process,

where the approximate Markovian property of an order n process is that the conditional

probability of future states depends only upon the past n − 1 states, what means that the

process is conditionally independent of the > n− 1 past states. Thus, a statistical language

model, in general, defines a probability distribution over the set of symbols sampled from a

finite alphabet. Its representation by a Markov chain appears as a simple, but high performing

concept [11]. The maximal context symbol length is also called the symbols history, where

lengths with n = 1 are Uni-gram, n = 2 are Bi-gram, and n = 3 are Tri-gram models.

Definition 4.1. A N-gram-Model is a Markov-chain model, giving the probability definition

for non-terminating symbols with a maximal context length of n − 1 predecessors by Bayes’

chain rule

p(ω) ≈

T
∏

t=1

p(ωt|ωt−n+1, . . . , ωt−1
︸ ︷︷ ︸

n symbols history

) (1)

A certain n-tuple of symbols is called a N-gram and is denoted n − G := yz where z is the

predicted symbol and y = [y1, y2, . . . , yn−1] the context length [11].

When one is able to make sure that the training data contain all objects’ data that should

be learned, N-gram models have the advantage over hidden Markov language models to allow

the calculation of optimum parameters directly from training data. In our present approach,

the naive straight ahead solution to the learning problem is to count the absolute frequency

c(ω1, . . . , ωN) of all symbol tuples and all possible contexts ω1, . . . , ωN to define all conditional

probabilities by relative frequencies.

In order to get a satisfying set of sample data, we have tested trigram, bigram and uni-

gram modeling by data from real cube-point-clouds with different viewpoints and also MC 2-

202

manifold projection simulations of polyhedron objects with 4/4, 8/6, and 20/12 vertices/faces

that are tetrahedron, hexahedron, and dodecahedron views, respectively. Figure 5-left, shows

a sequence of projections a)...d) of a polyhedron with n = 8 vertices, a cube, where the data

was generated by MC simulations; at the middle, the respective planar graphs are given, as

described in [6]; and at the right, derived Bayes’ networks are shown that will be discussed in

Section 4.2. In Table 1, four unigram transition matrices of MC-samples of Figure 5 are given,

showing the observed counts of junction-type to junction-type transitions that are cumulated

into training counts for Ni,j | i, j : {L,W, Y, T}, as shown at the left of Table 2.

Table 1: Unigram counts of junction to junction dependencies observed from different view-

points of the Monte-Carlo simulation according to , rows a)...d).
Junction to junction transition counts, observed from

Viewpoint a) Viewpoint b) Viewpoint c) Viewpoint d)

L W Y T L W Y T L W Y T L W Y T

L 0 6 0 0 2 0 0 4 0 6 0 0 2 0 0 4

W 6 0 3 0 0 0 0 0 6 0 3 0 0 0 0 0

Y 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0

T 0 0 0 0 4 0 0 1 0 0 0 0 4 0 0 1

A problem is that the probability for unseen events is per definition zero as one can see

in the matrices of Table 1. Hence, in the case of presenting unseen events to the model,

the N-gram model runs into empirical holes or singularities of its distribution. Therefore, a

post-processing step for smoothing [11] in order to overcome the problem is indicated. The

simplest one would be to apply the Adding-one7 method to all elements in the matrices.

Hence, this would overestimate the probability of the unseen events, since we are gaining only

few counts per sample. Therefore, we apply smoothing that better deals with low counts by

a modified8 Good-Turing discounting (1953) method before normalizing into probabilities, we

estimate the probability for N-grams with zero counts and occurrence NC=0 by looking on the

number of N-grams that occurred with a global minimum count NCmin>0 and calculate counts

Nunseen = NCmin>0/NC=0. The smoothed counts yield ωi,j = (∀Ni,j = 0 : Nunseen) ∪ Ni,j,

and therefore, the transition probabilities τ for the full unigram transition matrix yields

τ(1) = p̂(ωi,j) = ωi,j/

4
∑

k=1

ωi,k | i, j = {1 . . . 4} (2)

Similarly to the calculation of the (4 by 4) unigram transition matrix τ(1), both, a (4 by

4 by 4) bigram transition matrix τ(2), defining twofold9 junction/junction-type conditional

probabilities, and a (4 by 4 by 4 by 4) trigram transition matrix τ(3), defining threefold10

7also referred to as Laplace’s Law
8The modification is to use the minimum count not equal zero rather than a count equal 1 [11]
9i.e. {p(L|LL), p(L|LW), . . . , p(L|LT), p(L|WL), . . . , p(L|TT), p(W |LL), . . . , . . . , . . . , p(T |TT)}

10i.e. {p(L|LLL), p(L|LLW), . . . , p(L|LLT), p(L|LWL), . . . , . . . , . . . , p(T |TTT)}

203

Table 2: Unigram Left: Training counts Ni,j according to Monte-Carlo samples of Figure 5;

Middle: modified Good-Turing smoothed counts ωi,j; Right: transition probabilities τ(1).

Training Counts Ni,j Smoothed Counts ωi,j Transition Probabilities τ(1) = p̂(ωi,j)

L W Y T L W Y T L W Y T

L 4 12 0 8 L 4 12 0.125 8 L 0.166 0.497 0.005 0.332

W 12 0 6 0 W 12 0.125 6 0.125 W 0.658 0.007 0.329 0.007

Y 0 6 0 0 Y 0.125 6 0.125 0.125 Y 0.020 0.941 0.020 0.020

T 8 0 0 2 T 8 0.125 0.125 2 T 0.780 0.012 0.012 0.195

junction/junction-type conditional probabilities, are calculated.

However, in order to model object prototypes by data of the transition matrices, we defined

to have recipes of object prototypes realized by a probabilistic finite state automaton, defined

according to [12, 6] {Q,Σ, δ, τ, S0, F, ϕ}, with Q as a finite set of states, Σ the Alphabet,

δ : Q × Σ 7→ Q the transition function, τ : Q × Σ 7→]0, 1] the transition probabilities, S0

the initial state, F ⊂ Q is a subset of final states from the set Q and ϕ : Q × Σ 7→]0, 1] the

probability for a state to be final. In Section 4.2, we define the states of the automaton of an

object at hand, by Bayes’ belief networks with the probabilities calculated so far.

4.2 Belief networks

Belief networks model firstly the independence relationships between groups of random vari-

ables and secondly reflect their topology graphically in a directed acyclic graph (DAG). The

edges of the DAG show the conditioning variables in their expansions and represent the recipes

for object construction. As in our approach the network starts in S0 at an arbitrary junction,

and the DAG gets assigned directions only in order to satisfy Bayes chain rule, it may end in

an also arbitrary final state FTerminate. Thus, it gets possible to remodel the belief network

for optimization purposes.

In Figure 5, four results of MC simulations of a cube are given: in the first and second

column, the views and their plane graphs are shown; the belief nets with coloring the nodes

by its costs11 are shown in column three. When it turns out that there is a trigram used

by the network, we use perplexity to test if we can minimize the order of the N-grams by

recreating the network with changing link directions and preserving joint probability (see

Figure 5-column four). Perplexity is a related measure of the uncertainty of a language event.

Definition 4.2. The perplexity of a language model is the reciprocal of the geometric average

of the symbol probabilities of a test set Ω = ω1, ω2, . . . , ωN) of the predictions [11]:

PP (Ω) =





|Ω|
∏

i=1

p (ωi|ω1 . . . ωi−1)





−
1

|Ω|

. (3)

11The computationally costs are increasing from using unigrams, to bigrams and trigrams for conditioning.

204

Thus, the higher the conditional probability of the symbol sequence, the lower the per-

plexity, and therefore, minimizing the perplexity is the optimization criteria used.

4.3 Training of the model

For training the model, we split given data in three disjoint sets: (i) the training set T, used

for stepwise learning; (ii) the validation set V, used to verify an order change of the model;

and (iii) the test set A, used to assess the performance of the model.

Hence, in every MC training step, we firstly select a training object t randomly from the

training set T. Secondly, we repeat for i = 1 . . . N times a random selection of viewpoint

positions PP (x,y,z)(t) around each test object t, and calculate transition counts for unigrams,

bigrams, and trigrams of the junction to junction connectivity from the set of junctions

J = 〈W,L, Y, T 〉 as defined as in Section 4.1. Thirdly, we apply smoothing and calculate the

transition probability matrices τ(1), τ(2), and τ(3) that are used to define the belief network

of the new recipe candidate r, representing the conditional probabilities of the dependencies

between all junctions of the object given. Finally, it is checked if a variant recipe can be found

that provides the same or lower perplexity with using lower ordered N-grams, which is then

selected for replacement of the recipe at hand. This new order N-gram recipe candidate is

verified with the validation set V by the verification step in order to preserve performance,

and the selection result is stored as a new recipe r to the set R of known recipes.

The inference step is designated to find the best recipe r ∈ R that fits to a given observa-

tion O. We find a solution by calculating the likelihood p(O, r) and classifying the observation

O into a class that maximizes the posterior probability

p(r∗, O) = maxi
p(O, ri)p(ri)

p(O)
(4)

Since p(O) is independent from r, we only have to consider the nominator of Equ.4 to find

the optimum

r∗ = argmaxr p(r|O) = argmaxr p(O|r)p(r) (5)

Despite to common use of dropping p(r), we though use p(r) to ensure high selectivity in

cases where the observation O is only partly given. The inference step is validated by the test

set A within an confidence interval of 95%.

5 Conclusions and future work

In this work, we have shown segmentation of structural information by perceptual grouping;

we defined a N-gram graphical model and used belief networks to model object reconstruction

recipes with Monte-Carlo simulation training and real data. With further developing the

proposed approach of this work and together with results form previous work [8, 7, 6], learning

205

���

���

���

���
����
�����

�����
����

�����
����

����
����

����
����

����
����

����
����

����
����

����
����

����
			��

	
�

�

		�

	�

		
� 	

�

			� 	
	�

�� ��

��

����

��

�� ��

�����
�	��

����
����

����
�	��

����
����

����
����

����
�	��

����
����

����
�	��

�

	
�

�

		�

	�

		
� 	

�

			� 	
	�

�� ��

�

����

�

�
�

����
�����

����
����

����
����

����
����

����
����

����
����

����
����

����
����

	
�

�

		�

	�

		
� 	

�

			� 	
	�

�� ��

��

����

��

�� ��

����
�	��

����
����

����
����

����
�	��

����
����

����
����

����
�	��

����
�	��

�

	
�

�

		�

	�

		
� 	

�

			� 	
	�

� ��

�

���

��

� ��

Figure 5: A viewpoint sequence a)..d), taken out of the Monte-Carlo training simulation.

From left to right: firstly, the projective views are given; secondly, the planar graphs; thirdly,

the Bayes’ belief networks, showing trigram-realizations and their bigram replacements (i.e.

up to three conditional variables are possible, when using trigrams, shown in red colored

nodes); hence, if it is possible to get a ’cheaper’ junction conditioning with bigrams, the belief

networks are restructured to appear only in two conditional variables at maximum.

206

and especially understanding of unknown complex objects will become feasible. From this

work, it follows that the combination of both, the planar graph representation proposed

in [6], and the statistical approach of grammatical inference by a N-gram model of this work,

performs better than the subgraph matching approach proposed in [7], if they are compared

in terms of runtime complexity and learning efficiency. However, as simple as humans may

investigate an unknown object in order to understand its topology, the approach supports

such a investigation by combining a sequence of images from different viewpoints for learning

of implicit object topology.

Acknowledgment

This work was supported by project S9101 ”Cognitive Vision” of the Austrian Science Foun-

dation. The authors would like to thank Mrs. Fariba Dehghani-Schobesberger for the fruitful

discussions on the topic of this work.

References

[1] F. Ackermann, A. Maßmann, S. Posch, G. Sageder, and D. Schlüter. Perceptual grouping

of contour segments using markov random fields. Patt. Rec. and I. A., 7(1):11–17, 1997.

[2] I. Biederman. Recognition by components. Psych. Rev., 94, 1987.

[3] C. G. Christou, B. S. Tjan, and H. H. Bülthoff. Viewpoint information provided by a

familiar environment facilitates object identification. TR Max-Planck institute f. biol.

cybernetics., 68, 1999.

[4] O. Faugeras. Three-Dimensional Computer Vision. MIT Press., 2001.

[5] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model

fitting. Comm. of the ACM., 24(9):381–395, 1981.

[6] P. M. Goebel and M. Vincze. A cognitive modeling approach for the semantic aggregation

of object prototypes from geometric primitives. In Proc. ACIVS, Delft Univ. (NL), 2007.

[7] P. M. Goebel and M. Vincze. Implicit modeling of object topology with guidance from

temporal view attention. In Proc. of ICVW 2007, Bielefeld University (D), 2007.

[8] P. M. Goebel and M. Vincze. Vision for cognitive systems: A new compound concept

connecting natural scenes with cognitive models. In LNCS, INDIN 07, Austria., 2007.

[9] R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Computer Vision,

Graphics and Image Processing., 29(1):100–132, January 1985.

207

[10] C. Higuera. Data Complexity in Pattern Recognition, Eds. M. Basu and Tin Kam Ho.,

chapter Data Complexity Issues in Grammatical Inference . Prentice Hall., 2006.

[11] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Intro. to Natural

Language Processing, Comp. Linguistics and Speech Recognition. Prentice Hall., 2003.

[12] C. Kermorvant and P. Dupont. Stochastic grammatical inference with multinomial tests.

In ICGI ’02: Proc. on Grammatical Inf. Springer, 2002.

[13] K. Koffka. Principles of Gestalt Psychology. Hartcourt, NY, 1935.

[14] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Learning hierarchical shape models

from examples. In Proc. EMMCVPR 2005, 2005.

[15] D. G. Lowe. Three-dimensional object recognition from single two-dimensional images.

Artificial Intelligence., 31(3):335–395, 1987.

[16] D. Marr. Vision: A Computational Approach. Freeman & Co., 1982.

[17] S. Procter. Model-Based Polyhedral Object Recognition Using Edge-Triple Features. PhD

thesis, Centre for Vision, Speech and Signal Processing, University of Surrey, UK., 1998.

[18] S. Sarkar. and K. L. Boyer. Integration, inference, and management of spatial information

using bayesian networks. IEEE Trans. Patt. Anal. and M. Intell., 15(3):256–274, 1993.

[19] S. Sarkar. and K. L. Boyer. Perceptual organization in computer vision: A review and a

proposal for a classificatory structure. IEEE Trans. on Systems, Man, and Cybernetics.,

23(2):382–399, 1993.

[20] W. Stöcher and G. Biegelbauer. Automated simultaneous calibration of a multi-view

laser stripe profiler. In ICRA ’05: Proc. of IEEE Int. Conf. on Rob. and Aut., 2005.

[21] R. F. Wang and E. S. Spelke. Human spatial representation: insights from animals.

Trends in Cognitive Sciences., 6(9), 2002.

[22] A. Witkin and J. Tenenbaum. On the role of structure in vision, in human and machine

vision. In Proc. Conf. on Human Vision., pages 481–543. Acad. Press Inc., 1983.

[23] M. Zillich. Making sense of images: Parameter-free perceptual grouping. PhD thesis,

ACIN, Automation & Control Institute, Vienna University of Technology., 2007.

[24] S. W. Zucker. Vision, Brain, and Cooperative Computation (M.A. Arbib and A.R. Han-

son, Eds.), pages 231–262. Cambridge, MA: MIT Press., 1987.

208

Local descriptors for visual SLAM

Mónica Ballesta∗ Arturo Gil∗ Óscar Mart́ınez Mozos† Óscar Reinoso∗

Abstract

We present a comparison of several local image descriptors in the context of visual

Simultaneous Localization and Mapping (SLAM). In visual SLAM a set of points in the

environment are extracted from images and used as landmarks. The points are represented

by local descriptors used to resolve the association between landmarks. In this paper, we

study the class separability of several descriptors under changes in viewpoint and scale.

Several experiments were carried out using sequences of images in 2D and 3D scenes.

1 Introduction

Building a map of the environment is a fundamental skill for a mobile robot, since maps are

required for a series of high level tasks. Typical approaches use range sensors to build maps

in two or three dimensions (e.g. [5, 6] [3, 14]).

Recently, the interest on using cameras as the main sensors to build the map has increased

significantly. Such approach is denoted as visual SLAM. Typically, approaches using vision

apply a feature-based SLAM (e.g, [2, 4, 8]), in which significant points in the environment

are used as landmarks. Two steps can be distinguished in the utilization of visual landmarks:

The detection of interest points and the description of the selected points. The first step

involves the selection of suitable points in the images that can be used as landmarks. The

points should be detected at different distances and viewing angles, since they will be observed

by the robot from different poses. In a second step the landmarks are described by a feature

vector which is computed using local image information. The descriptor is used to solve the

data association problem: when the robot observes a landmark in the environment, it must

decide whether the observation corresponds to a previously seen landmark or to a new one.

The data association is a fundamental part of the SLAM process, since wrong associations

will produce incorrect maps.

∗Miguel Hernández University. E-mail:{m.ballesta|arturo.gil|o.reinoso}@umh.es. Supported by the

Spanish Government under projects DPI2004-07433-C02-01 and PCT-G54016977-2005.
†University of Freiburg. E-mail:omartine@informatik.uni-freiburg.de. Supported by the EU under

project CoSy FP6-004250-IP.

209

In practice, however, the interest points detected in the images are not very stable, and the

matching between different views becomes difficult. In consequence, the problem of selecting

a suitable interest point detector and descriptor for visual SLAM is still open.

In a previous work [11], we evaluated some interest point detectors to be used as landmarks

in visual SLAM. The Harris corner detector was found to be the most suitable for visual SLAM

applications. In this paper we present a comparison of different interest point descriptors using

Harris corner detector as point detector.

In [10], Mikolajczyk and Schmid evaluated a set of local descriptors using a criterion based

on the number of correct and false matches between pairs of images. Instead, in this work

we concentrate on the variation of the descriptor when viewed from different angles and dis-

tances. We apply a pattern recognition approach using validity clustering measurements [13]

to estimate how well the descriptors representing the same landmark along a sequence are

grouped in the different descriptor spaces. This measurements will indicate which descriptor

has better separability properties, facilitating the data association. Several experiments have

been carried out using sequences of real indoor environment images. We believe that these

results would help the selection of visual landmarks for SLAM applications.

2 Visual descriptors

Next, we list the set of different descriptors that have been evaluated in this study. For all of

them we compute the descriptors at the local neighborhood of the points detected by Harris.

SIFT: The Scale-Invariant Feature Transform (SIFT) detects distinctive key points in images

and computes a descriptor for them. The algorithm, developed by Lowe, was initially

used for object recognition tasks [9]. SIFT features are located at maxima and minima

of a difference of Gaussian functions applied in scale space. Next, the descriptors are

computed based on orientation histograms at a 4x4 subregion around the interest point,

resulting in a 128 dimensional vector.

SURF: Speeded Up Robust Features (SURF) is a scale and rotation invariant descriptor

presented by Bay et al. [1]. The detection process is based on the Hessian matrix.

SURF descriptors are based on sums of 2D Haar wavelet responses, calculated in a 4x4

subregion around each interest point. The standard SURF descriptor has a dimension

of 64 and the Extended version (e-SURF) of 128. The u-SURF version is not invariant

to rotation and has a dimension of 64.

Gray level patch: This method describes each landmark using the gray level values at a

subregion around the interest point. This method has been used in [2] as descriptor of

Harris points in a visual SLAM framework.

210

Orientation Histograms: The orientation histograms are computed from the gradient im-

age, which represents the gray value variations in the x and y direction. In [7] orientation

histograms are applied for navigation tasks.

Zernike Moments: The moment formulation of the Zernike polynomials [15] appears to

be one of the most popular in terms of noise resilience, information redundancy and

reconstruction capability. They are are constructed using a set of complex polynomials

which form a complete orthogonal basis set defined on the unit disc.

3 Descriptor evaluation

To evaluate the stability of the different interest point descriptors under changes in viewpoint

and scale we track each interest point along different images in a sequence. Examples of se-

quences are shown in Fig. 1. The interest points are extracted using Harris corner detector as

shown in [11]. To track the points along the different images we have implemented two differ-

ent algorithms for 2D and 3D images respectively. In the first case, we used the homography

matrix as in [12]. In the case of 3D images, we have implemented a method that is based on

the fundamental matrix. This method is divided in two steps. First, seven correspondences

between each pair of images are selected, which allows to compute a fundamental matrix

F . Using the fundamental matrix F we find a set of preliminary correspondences that are

used as input for the computation of a second fundamental matrix F ′. In this second step,

the fundamental matrix is computed using a RANSAC approach, which results in a more

accurate matrix F ′, that permits to find the correspondences with more precision.

For each tracked interest point p in a sequence of images S = {i1, . . . , iN}, we obtain a

set Dp of descriptor vectors Dp = {dp1
, . . . , dpN

}. Each descriptor dpn represents the interest

point p in the image in. The set Dp forms a cluster in the vector space representing the

interest point p in the images along the sequence.

In this work, we use the J3 separability criterion [13] to measure the separability of the

clusters representing the interest points. This measure is based on two scatter matrices: Sw

and Sb. Sw is called within-class scatter matrix, and measures the compactness of the clusters.

The between-class scatter matrix Sb measures the separability between vectors belonging to

different clusters. In our case, Sw measures the invariance of the descriptor to viewpoint

and scale changes, whereas Sb measures the distinctiveness of the points described. The J3

criterion is defined as:

J3 = trace(S−1
w Sm), (1)

where Sm is the mixture scatter matrix and is computed as Sm = Sw + Sb. A good descrip-

tor has a low value of Sw, since the variability of the vectors describing the same class is

211

0 4 6 11 15 20

0 3 5 8 10 12

Figure 1: The upper sequence shows a planar object (a poster) under different viewpoints.

The bottom sequence depicts a 3D scene under different scale changes.

small. Furthermore, it is desirable that vectors describing different points are as distinctive

as possible, resulting in a high value of Sb. In consequence, a suitable descriptor would have

a high value of J3. This descriptor would have good results in terms of the data association

problem, despite of changes in the imaging conditions, such as viewpoint and scale changes.

To compare descriptors with different length we use a normalized version J ′

3 = J3

N
, where N

is the descriptor length.

4 Experiments

Tables 1 and 2 show the results of applying the J ′

3 criterion to different sequences of 2D and

3D scenes. The u-SURF descriptor achieves the highest value of separability in 96% of the

sequences. However, u-SURF is not rotational invariant. When comparing only rotational

invariant descriptors, SURF and e-SURF present similar results. In this case, the computa-

tional cost of computing the extended version of SURF is not worthy, since the results are not

improved substantially. E-SURF always outperforms SIFT in changes in viewpoint. However,

in scale changes it is only better in 43% of the cases (2D sequences).

Taking into account the results of Tables 1 and 2 together with the results of our previous

work [11], we believe that the u-SURF descriptor in combination with the Harris corner

detector is suitable for the common situation in which a robot explores the environment with

a camera that only rotates around the vertical axis.

212

Table 1: J ′

3 values computed in the viewpoint changing sequences
Sequence SIFT SURF e-SURF u-SURF Patch Histogram Zernike

2D sequences

1 22.90 36.87 34.18 126.63 15.53 2.48 6.39

2 15.89 39.45 34.00 119.58 9.03 1.83 2.93

3 10.18 30.49 25.81 118.64 6.06 1.85 2.90

4 27.24 68.32 57.81 184.06 15.78 2.13 6.54

5 23.75 27.60 28.32 55.94 13.59 2.02 5.87

6 13.38 29.45 23.47 67.36 6.83 1.77 3.68

3D sequences

7 5.71 10.70 10.70 35.93 2.59 1.46 2.13

8 17.62 16.45 18.96 73.23 5.99 1.51 4.33

9 7.11 7.83 7.65 25.17 3.33 1.72 2.35

10 16.44 14.47 16.60 50.58 7.37 1.54 5.54

11 6.22 9.60 9.41 30.33 2.76 1.78 2.25

12 10.26 9.63 11.13 41.09 4.00 1.43 3.43

Table 2: J ′

3 values computed in the scale changing sequences
Sequence SIFT SURF e-SURF u-SURF Patch Histogram Zernike

2D sequences

1 7.10 3.29 2.87 8.82 2.32 1.78 2.15

2 7.97 6.27 5.89 13.67 2.59 1.51 2.45

3 9.42 4.47 4.50 13.03 3.45 1.92 2.81

4 14.09 7.00 9.05 26.89 4.22 1.94 2.70

5 103.36 17.58 38.58 131.54 27.73 0.87 14.20

6 4.24 3.51 3.22 8.56 2.81 1.12 2.32

7 7.34 4.03 4.90 12.71 4.87 1.77 2.73

8 26.49 5.99 10.62 22.65 12.34 2.89 9.05

3D sequences

9 7.06 10.12 10.24 28.01 4.47 1.70 3.10

10 14.48 10.39 14.97 47.48 5.98 1.67 4.54

11 8.76 9.18 10.02 24.72 3.47 2.48 3.95

12 22.22 15.53 23.09 67.38 8.50 2.15 5.61

13 6.28 8.84 10.00 25.56 3.56 1.94 3.06

14 17.45 11.10 16.86 42.37 7.37 2.10 5.88

213

5 Conclusions

We have performed an evaluation of visual local descriptors to be applied for SLAM tasks.

For this purpose, we analyzed each descriptor according to its separability. The results of the

experiments showed the behavior of seven different descriptors under changes in viewpoint

and scale. We believe that this information will be useful when selecting an interest point

descriptor as visual landmark for SLAM.

References

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.

In European Conference on Computer Vision, 2006.

[2] Andrew J. Davison and David W. Murray. Simultaneous localisation and map-building

using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2002.

[3] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters. In IEEE

Int. Conf. on Robotics & Automation, 2005.

[4] A. Gil, O. Reinoso, W. Burgard, C. Stachniss, and O. Mart́ınez Mozos. Improving data

association in rao-blackwellized visual SLAM. In IEEE/RSJ Int. Conf. on Intelligent

Robots & Systems, 2006.

[5] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with

rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 2007.

[6] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for

generating maps of large-scale cyclic environments from raw laser range measurements.

In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Las Vegas, NV, USA, 2003.

[7] J. Kosecka, L. Zhou, P. Barber, and Z. Duric. Qualitative image based localization

in indoor environments. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition, 2003.

[8] J. Little, S. Se, and D.G. Lowe. Global localization using distinctive visual features. In

IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2002.

[9] D.G. Lowe. Object recognition from local scale-invariant features. In Int. Conf. on

Computer Vision, 1999.

[10] K. Mikolajczyk and C Schmid. A performance evaluation of local descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(10), 2005.

214

[11] O. Mart́ınez Mozos, A. Gil, M.Ballesta, and O. Reinoso. Interest point detectors for visual

slam. In Proc. of the Conference of the Spanish Association for Artificial Intelligence

(CAEPIA), 2007.

[12] C. Schmid, R. Mohr, and C. Bauckhage. Evaluaton of interest point detectors. Interna-

tional Journal of computer Vision, 37(2), 2000.

[13] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, third edition,

2006.

[14] R. Triebel and W. Burgard. Improving simultaneous mapping and localization in 3d

using global constraints. In National Conference on Artificial Intelligence (AAAI), 2005.

[15] F. Zernike. Diffraction theory of the cut procedure and its improved form, the phase

contrast method. Physica, 1:689–704, 1934.

215

216

Computational Laban movement analysis using

probability calculus

Joerg Rett∗ Jorge Dias†

Abstract

This work presents a system which implements the concept of Laban Movement Anal-

ysis (LMA) using probability calculus and Bayesian theory. Our Human-Interaction-

Database (HID) provides sequences of position data from several persons performing dis-

tinct movements in 3-D (magnetic tracker) and 2-D (vision). From the position data a

set of low-level features is calculated. Probability calculus is used to relate these low-level

features and the frame of reference associated to the variables of LMA. The Bayesian

theory provides the concept for calculation, learning and classification.

1 Introduction

When a person observes an actor performing a body movement he tries to anticipate the

information the actor wants to convey. Analyzing the expressiveness of human movements has

been under investigation for many centuries leading to several formalizations and concepts.

Still, these concepts rely on humans analyzing other humans. Proving nowadays human-

machine interfaces with a computational version of those concepts would be a big step toward

socially interactive robots. To accomplish this, the gap of missing higher level cognitive

systems that analyze the observations need to be closed. One can think of the problem as a

scenario where a robot observes the movement of a human, analyzes the movement pattern

and acts according to the extracted information (see fig. 1).

2 Laban movement analysis

Our approach is based on Laban Movement Analysis (LMA), which is a concept that provides

descriptors for the static, as well as for the dynamic content of human body movements [1].

∗Institute of Systems and Robotics E-mail:jrett@isr.uc.pt. Supported by FCT-Fundação para a Ciência

e a Tecnologia Grant #12956/2003 and by the BACS-project-6th Framework Programme of the European

Commission contract number: FP6-IST-027140, Action line: Cognitive Systems.
†Institute of Systems and Robotics E-mail:jorge@isr.uc.pt.

217

Figure 1: Nicole in position to in-

teract.

Figure 2: The concepts of a) Levels of Space, Basic Di-

rections, Three Axes, and b) Three Planes and Icosahe-

dron

Figure 3: The bipolar Effort qualities: a) represented as a 4-D space containing a movement

m, b) with their movement prototypes.

The theory of LMA consists of several major components. Space treats the spatial extent of

the mover’s Kinesphere (often interpreted as reach-space) and what form is being revealed by

the spatial pathways of the movement. Different entities are specified to express movements

in a frame of reference determined by the body of the actor as shown in fig. 2. In [3] the

concept of Vector Symbols was presented, which is based on lines of motion rather than points

in space. One part of these Vectors symbols are movements parallel to one of the Axes and

movements along lines that are equally stressed in all three dimensions (Diagonals) (see fig.

2.a). The Space component also defines three planes, i.e. the Door Plane πv, the Table plane

πh, and the Wheel Plane πs as shown in fig. 2.b). Effort deals with the dynamic qualities of

the movement and the inner attitude towards using energy. It consists of four motion factors:

Space, Weight, Time, and Flow. As each factor is bipolar and can have values between two

extremities, one can think of the Effort component as a 4-D space as shown in fig. 3.a.

Prototypical movements where a certain Effort -value is predominant are presented in fig.

3.b.

218

3 Bayesian framework for LMA

The Bayesian framework enables us to model the dependencies between the low-level features

and the descriptors of LMA. Bayesian-nets show the dependencies in a graphical way using

nodes and links. Probability calculus enables us to compute the probability distribution for

the values of a variable given the sets of known and unknown variables. The definitions for

propositions, variables, probabilities and their conjunctions can be found in annex A.

Figure 4 shows the Bayesian-net of our system, representing the dependencies and thus,

gives the possibility to simplify the joint distribution. The nodes represent variables (e.g.

movement M) while the links describe the dependencies between the nodes. We have chosen

to start with the variables that exhibit the highest level of abstraction (i.e. M), calling it

the Concept Space. Their child nodes are found in the Laban Space which holds the sets of

variables concerned with Effort and Space. We have called the lowest level of abstraction

Physical Space which holds the set of low level variables (i.e. K, V el and Acc). The direction

symbols (i.e. A, B and C) are both, a Laban concept and a low-level feature. Our system uses

movement segmentation to get distinct Effort parameters for each segment (phase Ph) of the

movement [6]. The Space component of LMA is modeled using the concept of vector symbols.

Our direction symbols A, B and C are calculated from the direction of the displacement vector,

one for each plane πv, πh and πs, respectively. The Effort component of LMA models the

dependencies between e.g. the Time E.T i and the velocity V el variable. Table 1 in the annex

presents all variables used in the model with their name, symbol and a short description. The

variable values and their cardinality are shown in (6) of the annex. We can describe the joint

distribution while omitting the conjunction symbol ∧ as:

P (I M Ph E.Sp E.We E.T i E.F l A B C K V el Acc)

= P (I) P (M) P (Ph) P (E.Sp |M Ph) P (E.We |M Ph) P (E.T i |M Ph)

P (E.F l |M Ph) P (A |M I) P (B |M I);P (C |M I)

P (K | E.Sp E.We) P (V el | E.Sp E.We E.T i E.F l)

(1)

Knowing that the variables are all discrete we can express conditional probability distri-

butions (e.g. P (A |M I) as tables. Learning is represented in our model through the process

of filling all the conditional probability tables with values. The tables are filled by collecting

all evidences for a given assumption and creating a probability distribution. In the case of

P (A |M I) a number of direction symbols a1, a2, . . . an is collected form n trials for a known

movement M = m and frame I = i. A distribution can be obtained by building a histogram.

As this scheme requires a set of labeled data we may call it supervised learning.

Classification is the final step after the model has been established and the tables have been

learned. Given our joint distribution P (I M Ph E.Sp E.We E.T i E.F l A B C K V el Acc)

we need to formulate a question, i.e. what we want to classify and what we can observe. In

219

Figure 4: Bayes-Net of the LMA model.

our case we are interested to classify an unknown movement from the evidences observed in

the Physical Space. In the following we continue with a simplified question, i.e. classifying a

movement M taking into account only the direction symbols A and the frame I (2).

P (M | I A) = P (M)P (A |M I) (2)

We can compute the likelihood of a sequence of n direction symbols by assuming that the

observed direction symbols are independently and identically distributed (i.i.d.). The joint

probability will be the product of the probabilities for each frame as shown in (3).

P (a1:n | m i1:n) =

n
∏

j=1

P (aj | m ij) (3)

The probability distribution of the movements M after observing n + 1 direction symbols A

can be formulate in a recursive way. Assuming that each frame I a new observed direction

symbols arrives, we can state and express the online behavior by (4).

P (Mn+1 | i1:n+1 a1:n+1) = P (Mn) P (an+1 |M in+1) (4)

The probability distribution of m for n = 0 is the prior. As a rule for classification we use

the maximum a posteriori (MAP) method.

4 Implementation of LMA

We have created a database of human movements, called Human Interaction Database (HID)

which is accessible through WWW [5]. The database consists of image sequences, high

precision 3-D position data and results from our visual tracker and classifier. The HID holds

the movements suggested in fig. 3. The high precision 3-D position data is obtained from a

6-DoF magnetic tracker (Polhemus Liberty) with sensors attached to several body parts and

objects. To collect the visual tracking data we use the gesture perception system (GP-System)

220

Figure 5: Evaluating the maximum velocity

vmax on several movement trials with known

Effort-Time.

Figure 6: Evolution of the movement proba-

bilities P (M) along the time (i).

[4] of our social robot Nicole. The tracking data consists of: i) the 2-D or 3-D position Xbp

of a point belonging to a body part bp and ii) the timestamp ti given by some timer function

of the system. From the tracking data, the values of velocity, acceleration and curvature are

calculated for each of the three planes πv, πh and πs. To implement learning and classification

we use the Bayesian programming methodology [2]. A Bayesian Program (BP) is a generic

formalism to build probabilistic models and to solve decision and inference problems on these

models. An example for a generic Bayesian Program is shown in fig. 7 in the annex.

5 Results

To evaluate the importance of low-level features as evidences for the Laban parameters, 75

trials were performed, each represented by a sector of the circle shown in fig. 5. It can be

seen that most of the high (130 - 60) velocities can be found in the sudden sector. Similar is

true for the medium velocities (60 - 30) and the neutral sector and also for the low velocities

(30 - 0) and the sustained sector.

The evolution of the anticipated movements and the certainty of the belief is shown in fig.

6. The performance of a Bye-Bye gesture, shows which gesture the agent anticipates due to

the highest probability and how certain he is about his guess.

6 Conclusion

This article gave an introduction to the framework of Laban Movement Analysis (LMA)

emphasizing those entities that were expected to be useful for a computational representation.

221

We presented the Bayesian models for computational LMA in form of Bayesian-nets and joint

distributions. A simplified model using the Space component of LMA to classify movements

was chosen to present the concept of learning and classification. We showed our technical

approach to track human movements (i.e. visual and magnetic) and store the output in our

Human-Interaction Database (HID). We presented the set of low-level features calculated

from the tracked data and the methodology of Bayesian Programming. The results indicated

that there is a set of low-level features that can be used as evidences for the Laban parameters

and that the classifier is able to make online-predictions, thus giving the system a sense of

anticipation. In the application of socially assistive robots we are developing and evaluating

the feasibility of using our social robot Nicole for rehabilitation. We have ongoing work in

the area of smart houses and environments to apply computational LMA to people tracking.

References

[1] I. Bartenieff and D. Lewis. Body Movement: Coping with the Environment. Gordon and

Breach Science, New York, 1980.

[2] Julien Diard, Pierre Bessière, and Emmanuel Mazer. A survey of probabilistic models,

using the bayesian programming methodology as a unifying framework. In Proc. of the

Int. Conf. on Computational Intelligence, Robotics and Autonomous Systems, Singapore

(SG), December 2003.

[3] J. S. Longstaff. Translating vector symbols from laban’s (1926) choreographie. In 26.

Biennial Conference of the International Council of Kinetography Laban, ICKL, Ohio,

USA, pages 70–86, 2001.

[4] J. Rett and J. Dias. Visual based human motion analysis: Mapping gestures using a

puppet model. In Proceedings of EPIA 05, Lecture Notes in AI, Springer Verlag, Berlin,

2005.

[5] J. Rett, A. Neves, and J. Dias. Hid-human interaction database:

http://paloma.isr.uc.pt/hid/, 2007.

[6] N. Rossini. The analysis of gesture: Establishing a set of parameters. In Gesture-based

Communication in Human-Computer Interaction, LNAI 2915, Springer Verlag, pages

124–131, 2003.

222

Variable Symb. Description

Frame I index of the data frame

Movement M Type of movement, e.g. M = pointing

Phase Ph Temporal segment, e.g. Ph = Rest

Effort Space E.Sp e.g. E.Sp = direct

Effort Weight E.We e.g. E.We = strong

Effort Time E.T i e.g. E.T i = sudden

Effort Flow E.F l e.g. E.F l = free

Direct. Symb. A, B, C Vector Symbols (Atoms) in πv , πh, πs

Curvature K Change of displacement angles

Speed V el Velocity level, e.g. V el = low

Speed Gain Acc Acceleration level, e.g. Acc = high

Table 1: Global variables

A Annex

A logical proposition can be either true or false. The conjunction of propositions a and b

is denoted a ∧ b and the negation of proposition a by ¬a. Variables are denoted by names

starting with one uppercase letter. A discrete variable X is a set of logical propositions xi

which means that the variable X takes its ith value. 〈X〉 denotes the cardinal of the set X. To

be able to deal with uncertainty, we attach probabilities to propositions. To each proposition

a a unique real value P(a) in the interval [0, 1] is assigned. The probability of conjunctions of

propositions is denoted by P (a ∧ b). The probability of a proposition a conditioned by some

other proposition b is denoted by P (a|b). The conjunction rule (5) gives the probability of a

conjunction of propositions.

P (a|b) = P (a)× P (b|a) = P (b)× P (a|b) (5)

All variables used in the model are presented in table 1.

223

P
ro

g
ra

m































































































































































D
es

cr
ip

ti
o
n







































































































































S
p
ec

ifi
ca

ti
o
n















































































































Relevant variables:

Xl, X2, ... XN

Decomposition:

P (X1 ∧ X2 ∧ ... ∧ XN =

P (L0) × P (L1|R1) ... × P (LK |RK)

Parametric forms:

P (L0): type of distribution or question to an other BP;

P (L1|R1): type of distr. or question to an other BP;

P (L2|R2): type of distr. or question to an other BP;

...

P (LK |RK): type of distr. or question to an other BP;

Identification:

Learning the free parameters of the parametric forms.

Questions:

P (Search|known)

Figure 7: Generic Bayesian Program.

Variables of the Laban Space and Physical Space with their values and cardinality.

E.Sp ∈ {direct, neutral, indirect} 〈3〉

E.T i ∈ {sudden, neutral, sustained} 〈3〉

E.We ∈ {strong, neutral, light} 〈3〉

E.F l ∈ {bound, neutral, free} 〈3〉

A ∈ {O,U,UR,R,DR,D,DL,L,UL} 〈9〉

B ∈ {O,F, FR,R,BR,B,BL,L,LF} 〈9〉

C ∈ {O,U,UF, F,DF,D,DB,B,UB} 〈9〉

V el ∈ {rest, slow,medium, fast} 〈4〉

Acc ∈ {zero, low,medium, high} 〈4〉

K ∈ {180, 135, 90, 45, 0,−45,−90,−135} 〈8〉

(6)

An example for a generic Bayesian Program.

224

Visual servoing for floppy robots using LWPR

Fredrik Larsson∗ Erik Jonsson ∗ Michael Felsberg∗

Abstract

We have combined inverse kinematics learned by LWPR with visual servoing to correct

for inaccuracies in a low cost robotic arm. By low cost we mean weak inaccurate servos

and no available joint-feedback. We show that from the trained LWPR model the Jaco-

bian can be estimated. The Jacobian maps wanted changes in position to corresponding

changes in control signals. Estimating the Jacobian for the first iteration of visual servoing

is straightforward and we propose an approximative updating scheme for the following

iterations when the Jacobian can not be estimated exactly. This results in a sufficient

accuracy to be used in a shape sorting puzzle.

1 Introduction

Initially an analytical closed-form inverse kinematics solution for a 5 DOF robotic arm was de-

veloped and implemented. This analytical solution proved not to meet the accuracy required

for a general assembly setup, e.g. a shape sorting puzzle like the one used in the COSPAL

(COgnitive Systems using Perception-Action Learning) project [1, 4]. The correctness of the

analytical model could be confirmed through a simulated ideal robot and the source of the

problem was deemed to be nonlinearities introduced by weak servos unable to compensate

for the effect of gravity. Instead of developing a new analytical model, which took the effect

of gravity into account, a learning approach was selected.

As learning method we chose Locally Weighted Projection Regression (LWPR) [11]. This is

an incremental supervised learning method and is considered a state-of-the-art method for

function approximation in high dimensional spaces.

LWPR by itself was not able to give us the accuracy needed and we combined the trainined

LWPR model with the well known concept of visual servoing [8]. We show how to overcome

∗Computer Vision Laboratory. Dep. of EE, Linköping University, Sweden. E-mail: larsson@isy.liu.se.

This work has been supported by EC Grant IST-2003-004176 COSPAL. This paper does not represent the

opinion of the European Community, and the European Community is not responsible for any use which may

be made of its contents.

225

the difficulties that arise from the merge of the two methods and present results showing a

high level of accuracy.

2 Locally weighted projection regression

LWPR is an incremental local learning algorithm for nonlinear function approximation in

high dimensional spaces and has successfully been used in learning robot control [10, 9]. The

key concept in LWPR is to approximate the underlying function by local linear models. The

LWPR-model automatically updates the number of receptive fields (RFs), i.e. local models,

as well as the location (which is decided by the RF center c) of each RF. The size and shape of

the region of validity (decided by the distance metric D) of each RF is updated continuously

based on the performance of each model. Within each local model an incremental version of

weighted partial least-squares (PLS) regression is used.

LWPR uses a Gaussian weighting kernel to calculate the activation or weight of RF k (the

subscript k will be used to denote that the particular variable or parameter belongs to RF k)

given query x according to

wk = exp(−
(ck − x)TDk(ck − x)

2
). (1)

Note that (1) can be seen as a non-regular channel representation of Gaussian type if the

distance metric Dk is equal for all k [5].

The predicted output ŷ is given as the weighted output of all RFs according to

ŷ =

∑K
k=1 wkŷk

∑K
k=1 wk

(2)

with K being the total number of RFs.

The output of each RF can be written as a linear mapping

ŷk = Akx + βk,0 (3)

where Ak and βk,0 are known parameters acquired through the incremental PLS. The incre-

mental PLS bears a resemblance to incremental associative networks [7], one difference being

the use of subspace projections in PLS.

We have been using LWPR to learn the mapping between the configuration x of the end-

effector and the control signals y. All training data was acquired through image processing

since no joint-feedback was available from the robotic arm used. To reach a high level of

accuracy we combined the moderately trained LWPR model with visual servoing.

226

3 Visual servoing based on LWPR

We have been using position based visual servoing (categorized according to [8]) to minimize

the norm of the deviation vector ∆x = xw − x, where x denotes the reached configuration

and xw denotes the desired configuration of the end-effector.

If the current position with deviation ∆x originates from the control signal y, the new control

signal is given as ynew = y − J∆x, where the Jacobian J is the linear mapping that maps

changes ∆x in configuration space to changes ∆y in control signal space. When the Jacobian

has been estimated the task of correcting for an erroneous control signal is in theory rather

simple.

Using LWPR as a basis for visual servoing is a straightforward procedure for the first iteration.

LWPR gives a number of local linear models from which the Jacobian can be estimated. How-

ever, problems arise when we need to update the Jacobian to use it for the following iterations.

Equation (1),(2) and (3) give J as

J =
dŷ

dx
=

∑K
k=1 wk(Ak + (ŷ − ŷk)(x− ck)

TDk)
∑K

k=1 wk

. (4)

The problem of updating J after the first iteration is due to the fact that the current utput

was obtained by use of the old J and not by the LWPR model. This means that we do not

know which query x that would give us the current ŷ and as can be seen in (4) this is needed.

The solution to this non-trivial problem is the main contribution of this paper. We propose

a static approach and an approximative updating approach.

Static approach: The simplest solution is the static approach. The Jacobian is simply not

updated and the Jacobian used in the first step is (still) used in the following steps.

Approximative updating approach: The somewhat more complex solution treats the LWPR

model as if it was exact. This means that we use the reached position as query and estimate

the Jacobian for this configuration. The procedure is explained in Figure 1.

4 Results

The real world experimental setup consisted of a low cost robotic arm of Lynx-6 type [2]

(see figure 2) and a calibrated stereo rig. The end-effector of the robotic arm was equipped

with three spherical markers in distinct colors. By stereo triangulation, the 3D position of

the spherical markers were obtained relative one of the cameras. The positions were then

227

transformed into the robot frame. For the results presented below, we only deal with the

3D-position of the end-effector, neglecting the rotation and approach angle.

The test scenario used is a reduced 3D scenario. The end-effector can be positioned in

two different planes (the grip- or the movement-plane) and the approach vector is to be

perpendicular to the ground plane. The task space of the robotic arm is restricted (by

physical and practical constraints) to a half circle with radius of 240 mm. Training points

were acquired by using the inaccurate analytical model.

A : Given the wanted configuration xw

we obtain the first precidition y
1
. Which

results in deviation ∆x1 .

B : The true Jacobian J1 is estimated.

C : The prediction is updated, giving y
2

.

D : y
2

results in x2 with deviation ∆x2.

E : The true Jacobian J2 can not be es-

timated due to the unknown x?.

F : The approximative Jacobian J̃2 is es-

timated.

Figure 1: The approximative updating approach explained. The dotted line represents the

true function and the solid line the LWPR approximation.

228

Figure 2: Our Lynx-6 robotic arm positioned in the movement-plane. The spherical markers

can be seen at the end of the end-effector

Table 1 contain the results from real world experiments. LWPR denotes the mean deviation

with just the trained LWPR model. J Static/Update denotes whether the static or the updat-

ing approach has been used for visual servoing. It is worth noticing that perfect positioning

with just the estimated noise added would correspond to a mean error of 2.05 mm.

Real World Evaluation

Training points: 100 500 1000 5000

LWPR 16.89 12.83 7.53 8.78

J Static 9.83 5.41 1.79 1.64

J Update 9.07 4.32 1.65 1.65

Analytical solution: 15.87

Table 1: Mean deviation in mm from desired position. 50 test points were used for evaluation

except from in the analytical case were 100 test positions were used. Stopping criteria for the

visual servoing was 10 iterations or a deviation less than 1 mm.

5 Discussion

By combining LWPR with visual servoing we have reached an accuracy sufficient for a shape

sorting puzzle. The main novelty of this paper is to present two methods to overcome the

difficulties that arise from the merge of LWPR and visual servoing. The results show that the

approximative updating approach is favorable. To further improve the accuracy we would

need to reduce the noise in the estimated positions since it is currently the limiting factor.

229

The restrictions imposed by the test scenarios mean that we are avoiding the problems with

the solution to the inverse kinematic problem not being one to one. However, if the training

data shown to the LWPR model would have some ambiguities this may cause problems. In

fact, if all positions would be reachable with servo 1 set to e.g. +π or −π, the linear averaging

of the LWPR model will predict the output for servo 1 to 0. Of course, this can be avoided

with preprocessing of the signals, e.g. using the channel representation [6] which allows for

robust estimation of multiple modes [3].

References

[1] COSPAL project. http://www.cospal.org/, January 2007.

[2] Lynxmotion robot kits. http://www.lynxmotion.com/, January 2007.

[3] M. Felsberg, P.-E. Forssén, and H. Scharr. IEEE Transactions on Pattern Analysis and

Machine, 28(2):209–222, February 2006.

[4] M. Felsberg, J. Wiklund, E. Jonsson, A. Moe, and G. Granlund. Exploratory learning

structure in artificial cognitive systems. In ICVW, 2007.

[5] P-E. Forssén. Low and Medium Level Vision using Channel Representations. PhD thesis,

Linköping University, Sweden, SE-581 83 Linköping, Sweden, March 2004. Dissertation

No. 858, ISBN 91-7373-876-X.

[6] G. H. Granlund. An associative perception-action structure using a localized space vari-

ant information representation. In Proceedings of Algebraic Frames for the Perception-

Action Cycle (AFPAC), Kiel, Germany, September 2000.

[7] E. Jonsson, M. Felsberg, and G. Granlund. Incremental associative learning. Technical

Report LiTH-ISY-R-2691, Dept. EE, Linköping University, Sept 2005.

[8] D. Kragic and H. I. Christensen. Technical report, ISRN KTH/NA/P–02/01–SE, Jan.

2002., CVAP259.

[9] S. Schaal, C.G. Atkeson, and S. Vijayakumar. Scalable techniques from nonparametric

statistics for real time robot learning. Applied Intelligence, 17(1):49–60, 2002.

[10] S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal. Statistical learning

for humanoid robots. Auton. Robots, 12(1):55–69, 2002.

[11] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An O(n) algorithm

for incremental real time learning in high dimensional spaces. In Proceedings ICML, pages

288–293, 2000.

230

	peca_05.pdf
	peca_05.pdf
	Introduction
	Partially observable Markov decision processes
	The POMDP model
	Conclusions and future work

