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Definitions

Let M be a C∞ manifold. A Finsler metric on M is a function
F : TM −→ R+ that is C∞ outside the zero section such that:

1 F is positively homogeneous, i.e.

∀v ∈ TM,∀λ ∈ R+,F (λ v) = λF (v) ;

2 F is positive on TM − {0} ;

3 F is convex.

The Finsler metric F is said to be reversible if, for all v ∈ TM,
F (−v) = F (v).
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Examples

Calculus of variations. A typical problem considers a
functional F on the space of curves on M

c : [a, b] −→ M, F(c) =

∫ b

a
F (ċ(t)) dt ;

if one insists that the problem be invariant under
reparametrization of the curve, then F must be positively
homogeneous. This leads to a degeneracy in the
Euler-Lagrange equations for extremal curves, but the
convexity of F ensures that it is the only one.
Riemannian Geometry. A Riemannian metric g gives rise to
an associated (reversible) Finsler metric Fg defined, for
v ∈ TM, by Fg (v) =

√
g(v , v).
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Examples (continued)

Randers metrics. Let g be a Riemannian metric and β be a
differential 1-form; the associated Randers metric is Fg + β
(typical of the problem of navigation in a flow).

Hilbert metrics. Let C be a bounded convex domain in Rn.
For p, q ∈ C , we set

dH(p, q) =
1

2
log(crossratio[a, p, q, z ])

where a and z are the intersections of the line pq with the
boundary of C .
This comes from the Finsler metric FC on C defined, for
v ∈ TpC , by

FC (v) = Fe(v)

(
1

de(p, p+)
+

1

de(p, p−)

)
.
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Section 2

A Brief Historic Perspective
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A Brief Historic Perspective

1788 Joseph-Louis de LAGRANGE, Méchanique Analytique

1854 Bernhard RIEMANN’s oral defense and essay

1869 Edwin Bruno CHRISTOFFEL’s equivalence problem

1894 David HILBERT

1900 Hilbert’s Problems 4 and 23 at the Paris International
Congress of Mathematicians

1922 Paul FINSLER’s habilitation in Cologne

1926-1929 Paul FUNK, Ludwig BERWALD

1931 A seminar at Chekiang University

1934 Élie CARTAN
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A Brief Historic Perspective (continued)

1934 Élie CARTAN’s book “Les espaces de Finsler”
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A Brief Historic Perspective (continued)

1942 Herbert BUSEMANN

6 HERBERT BUSEMANN [January 

neues Licht werf en), because the results cannot be interpreted geo-
metrically (see [l, p. 278]). 

Here is one of the few instances where Riemann's feeling was 
wrong.2 Nevertheless the passage had a great influence: the general 
case was for a long time entirely neglected, and when it was taken up 
the principles of Riemannian geometry were applied. The results 
thus obtained are not different enough to enrich geometry materially, 
moreover they frequently do not lend themselves to a naïve geo-
metric interpretation. 

The following is a brief sketch of the history. The integral fF(x, &)dt 
is the subject of the Weierstrass theory in the calculus of variations. 
Therefore it is not surprising that the first contributions are due to 
workers in this field. The pioneers are Bliss [2, 3] and his students 
(in particular Underhill [4]) in this country and Landsberg [5] in 
Germany. To develop a geometry it is necessary to have extremals or 
geodesies whose subarcs furnish locally unique shortest connections. 
The Legendre or Weierstrass conditions of the calculus of variations 
suggest to require that F(x, dx) is for fixed x a convex function of dx: 
(1) F(x, dx) + F(x, Ôx) à F(x, dx + ôx) 
or, which is the same, that F(x, y) = 1 is a convex surface in y-space. 
(1) will be assumed henceforth.8 

Bliss' approach is as follows: the homogeneity of F(x, dx) in dx 
permits to write F(x> dx) in the form 
(2) F(x, dx) - [ £ &»(*. dz)d%4%k]lt* 
where the gj*(#, dx) are homogeneous of degree 0 in dx. 

If a field of curves is distinguished and 8(x) is tangent to the field 
at x, then X)g**(x> S(x))dxidxk is the line element of a Riemann 
space. The methods of Riemannian geometry are applicable, but the 

8 It is probable that he did not give the matter much thought. The lecture [l] 
was to give him the privilege to teach at the University of Göttingen. The candidate 
had to propose three topics, and the faculty selected one of them. Riemann had put 
the present topic last. He did not expect to work it out and was pressed for time, 
when it was selected. This is evidenced by the following passage from a letter to his 
brother Wilhelm, dated December 8, 1853: . . . und musste dabei drei Thema ta zur 
Probevorlesung vorschlagen, von denen dann die Fakultât eins wâhlt. Die beiden 
ersten hatte ich fertig und hoffte dass man eins davon nehmen wtirde; Gauss aber 
hatte das dritte gewâhlt, so bin ich wieder etwas in der Klemme, da ich dies noch 
ausarbeiten muss. 

8 On the other hand, many results hold without Riemann's condition F(x, dx) 
= .F(a;, — dx). The present lecture supposes, however, that this relation holds. In the 
sequel it will be convenient to use the term line element both for ds = F(x, dx) and 
for ds2. 
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A Brief Historic Perspective (continued)

1942 Herbert BUSEMANN
1944-1948 Shiing-Shen CHERN’s papers on Finsler Geometry
1955-1970 André LICHNEROWICZ, Hassan AKBAR-ZADEH,
Pierre DAZORD
1986-... Patrick FOULON’s dynamic approach
1992 Shiing-Shen CHERN’s Compte-Rendu note at the Paris
Science Academy
1993-... David Dai-Wai BAO, Zhongmin SHEN, Robert
BRYANT, Juan Carlos ALVAREZ-PAIVA, Daniel EGLOFF, ...
1993-... Viktor BANGERT, Hans-Bert RADEMACHER,
Yiming LONG, Wei WANG,...
2009 Shin-Ichi OHTA
2012 Thomas BARTHELMÉ
...
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Section 3

Relevance in Modelling



1. Definitions. Examples 2. Brief History 3. Modelling 4. Modern Basics 5. Using the Formalism 6. Recent Results

Relevance of Finsler Geometry in Modelling

Physics. Crystals in electromagnetic fields; binocular visual
space; thermodynamics;...

Biology. Ecology; Marine Biology (evolution of corral
colonies); Host/Parasite systems;...

Stochastic Models. Beyond the Brownian motion;...

Control Theory.

...
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4. Modern Basics of Finsler Geometry
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Comparing Riemannian and Finsler Geometry

Basic Object. Riemannian metric g , Finsler metric F .

Covariant derivative. Levi-Civita connection Dg (g -metric
and torsion free), in the Finsler setting connections introduced
by P. BERWALD and É. CARTAN (metric with torsion), also
by S.S. CHERN (torsionfree not metric).

Curvature. Rg
X ,YZ measures the deviation from flatness, in

the Finsler context there are several notions, e.g., flag
curvature.

Geodesics. Extremals of length, generalize straight lines,
behaviour governed by Rg , in the Finsler context they are
extremals of the functional F(c) =

∫ b
a F (ċ(t)) dt.

Space forms. Spaces of constant curvature serve as models.
Many examples of constant curvature spaces.
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Specific Features of Finsler Geometry

To a coordinate system (x i ) on M, one naturally associates a
coordinate system (x i ,X i ) on TM.

The form
∑n

i−1 ∂F/∂X
i dx i = dvF is well defined.

Also, at a point v ∈ TM − {0},

gF (v) =
1

2

n∑
i ,j=1

∂2F 2

∂X i∂X j
(v) dx i dx j

is a well defined Riemannian metric on TpM − {0}.
(Note that, for Fg , gFg ≡ g).

The Cartan tensor AF is defined on TM as

AF (v) =
1

4
F (v)

n∑
i ,i ,k=1

∂3F 3

∂X i∂X j∂X k
(v) dx i dx j dxk .

(For Fg , AFg ≡ 0).
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Different Approaches to Finsler Geometry

Tensorial approach. This was the classical one.
There is a real difficulty to identify the geometric content as
the technicalities are quite formidable.

Moving frame approach. This was the one privileged by
both É. CARTAN and S.S. CHERN.
The key feature is the role of exterior differentiation.
Again one needs a very specific geometric insight in order to
concentrate on the right notions.

Dynamic Approach. This was the one introduced in the late
1980s by Patrick FOULON.
The starting point is more subtle, but later on only
geomerically relevant notions come up.
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The Basic Setting of Finsler Geometry

One starts from the Calculus of Variations. The famous
Euler-Lagrange equations are actually mathematical subtle

d

dt

(
∂L

∂X i

)
− ∂L

∂x i
= 0, 1 ≤ i ≤ n .

In intrinsic form, this is a second order differential equation,
i.e. a map Z : TM −→ TTM which is a section of both
πTM : T (TM) −→ TM and TπM : T (TM) −→ T (M).

We shall see later that, from the second order differential
equation ZF determined by a Finsler metric F , a lot of
geometry follows.
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The Basic Setting of Finsler Geometry (continued)

The basic object is the homogeneous bundle of M, i.e., the
space of half-lines of the tangent bundle πM : TM −→ M
HM = TM/R+ −→ M.
(It is in some sense an intrinsic, but equivalent, way of dealing
with the sphere bundle {v ∈ TM | F (v) = 1}.)
The Hilbert form attached to F , namely dvF , descends to
HM where it is called ωF . The strong convexity of F implies
that ωF ∧ (dωF )n−1 6= 0, i.e., ωF is a contact form on HM.

The dynamics defined by F is the vector field ZF which is the
Reeb field of ωF satisfying

dωF (ZF , .) = 0 , ωF (ZF ) = 1 .
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The Basic Setting of Finsler Geometry (continued)

To any second differential equation Z on HM are associated:

a splitting of THM

THM = R.Z ⊕ VHM ⊕ hZHM ,

where hZHM = kerLZvZ (for vZ the vertical endomorphism
associated to Z defined as vZ (Z ) = 0, vZ ([Z , Ṽ ]) = −V ,
vZ (V ) = 0 for any vertical vector V ∈ VHM);

a dynamical derivative DZ on vector fields on HM defined by

DZ (fZ ) = (LZ f )Z , DZ (V ) = −1

2
vZ ([Z , [Z , Ṽ ]]) ,

DZ (fX ) = f DZ (X ) + (LZ f )X ;

a Cauchy-Riemann structure JZ .
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The Basic Setting of Finsler Geometry (end)

The splitting of THM and the Cauchy-Riemann structure JZ

associated to Z are parallel for DZ

DZ (VHM) ⊂ VHM ,DZ (hZHM) ⊂ hZHM ,DZZ = 0 .

This gives rise to a Jacobi endomorphism RZ on hZHM
defined as by

RZ (X ) = JZ (projVHM([Z ,X̃ ])) .

On HM, any Finsler metric F gives rise to a natural
Riemannian metric gF for which:

the splitting R.ZF ⊕ VHM ⊕ hZF
HM is gF -orthogonal;

gF (ZF ,ZF ) = 1, gF (V1,V2) = dωF ([ZF ,Ṽ1],V2);
gF (X1,X2) = gF (JZF (X1),JZF (X2)).
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5. Using the Formalism
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Second Variation Formula

The variation of geodesics by geodesics gives rise to an index
form IF (as ZF is naturally attached to F , we use F as index
for quantities such as D and R instead of ZF )

IF (A1,A2) =

∫ b

a

(
−gF (X1,DFDFX2)− gF (X1,R

F (X2))
)
dt ,

where Ai = λi ZF + Vi + Xi .

This fits completely with the classical situation in Riemannian
Geometry if one has identified the Finsler Jacobi
endomorphism RF with the Riemannian one by setting

RFg (X ) = Rg (X ,ċ)ċ .

Note that gF is DF -parallel and that RF is gF -symmetric.



1. Definitions. Examples 2. Brief History 3. Modelling 4. Modern Basics 5. Using the Formalism 6. Recent Results

Finsler versus Riemannian

Many global theorems in Riemannian Geometry remain true in
Finsler Geometry (basically all those who have to do with the
calculus of variations of geodesics):

Gauß Lemma
Myers Theorem
Synge Theorem
Hopf-Rinow Theorem
Hadamard-Cartan Theorem
Anosov Theorem
...

The fundamental problem is to understand well what
distinguishes Finsler Geometry from Riemannian Geometry.
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Example of the Hilbert Geometries

If the boundary of the convex body C is smooth, the Jacobi
endomorphism of the associated Finsler metric F is RF = −Id .

Theorem (P. FUNK, L. BERWALD)

Any reversible Finsler metric which is complete and projectively flat
with constant negative curvature on a simply connected manifold
is a Hilbert Geometry.

Theorem (P. FOULON)

Any projectively flat Finsler metric on S2 that is reversible with
constant positive curvature is Riemannian.

R. BRYANT showed that projective flatness was actually not
necessary.
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6. Some Recent Results
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Closed Geodesics

On a compact Riemannian manifold, there are infinitely many
closed (distinct) prime geodesics. (The most difficult case is
that of the sphere!)
On S2 Anatoly KATOK and Wolfgang ZILLER constructed a
non reversible Finsler metric with exactly TWO closed
geodesics. (The metric is rather simple, even of Randers type.)
One gets easily ONE closed geodesic on any compact Finsler
manifold by standard Calculus of Variations argument.

Theorem (Viktor BANGERT, Yiming LONG)

On S2, any Finsler metric has at least TWO distinct closed prime
geodesics.
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Characteristic Forms and Metrics

The starting point is the Gauß-Bonnet formula following
S.S. CHERN’s point of view, namely to lift the characteristic
form to the homogeneous bundle where the form transgresses:

in a Riemannian setting χ(M2m) =
∫
M
P(Rg ) vg , where

P1 =
1

2π
K g , P2 =

1

8π2
(|W g |2 − |Z g |2 + |Ug |2) .

in a Finsler setting things are not that simple.

Here is a partial result:

Theorem (D. BAO, S.S. CHERN, Z. SHEN)

A Gauß-Bonnet formula can be established provided the volume of
the Finsler sphere at each point is constant, or similar technical
assumptions.
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Defining a Finsler Laplace-Beltrami Operator

There has been many attempts to define such an operator on M.
Here I report on the promising efforts by Thomas BARTHELMÉ.

One can construct a volume element on M associated to F
thanks to the key remark that any volume element Ω on M
determines an (n − 1)-form αΩ on HM so that

αΩ ∧ π∗MΩ = ωF ∧ (dωF )n−1 .

By normalizing the integral of αΩ to be the standard volume
of Sn−1, one can determine a unique volume form ΩF so that

αΩF ∧ π∗MΩF = ωF ∧ (dωF )n−1 ;

restricted to VHM, the (n − 1)-form αΩF
gives a solid angle.

Actually, viewing M as a metric space thanks to F , this
volume form is also known as the Holmes-Thomson measure.
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Defining a Finsler Laplace-Beltrami Operator (cont.)

T. BARTHELMÉ defines the Finsler Laplace-Beltrami
Operator for a Finsler metric F as follows

(∆F f )(x) =
n

vole(Sn−1)

∫
HxM
L2
ZF

(f ◦ πM)αΩF .

The operator enjoys a number of important properties:

Theorem (T. BARTHELMÉ)

For a Finsler metric F , the Finsler Laplace-Beltrami operator ∆F is
an elliptic linear second order differential operator that is
symmetric with respect to ΩF .
It coincides with the Laplace-Beltrami operator of a Riemannian
metric g if the Finsler metric is Fg .
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I thank you for your attention.

Jean-Pierre BOURGUIGNON
Institut des Hautes Études Scientifiques

35, route de Chartres
F-91440 BURES-SUR-YVETTE

(France)

JPB@ihes.fr
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