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The use of wavelet analysis is very common in a large va-
riety of disciplines, such as signal and image processing, 
quantum mechanics, geophysics, medicine, biology, etc. 
In economics, however, wavelets are still a mysterious, 
but colorful, tool for time-series analysis. The pioneering 
work of Ramsey and Lampart [26] is unknown to the ma-
jority of economists. Among the exceptions to this rule, 
one can point to [4], [14], and [12]. See [6], for a recent 
survey of wavelet applications to economic data. Prob-
ably, wavelets are not more popular among economists, 
because wavelet multivariate analysis is still incipient. 
Recently, however, Gallegati [11] — using the maximum 
overlap discrete wavelet transform — and Crowley and 
Mayes [5] and Aguiar-Conraria and Soares [1] — using 
the continuous wavelet transform — showed how the 
cross-wavelet analysis could be fruitfully used to uncover 
time-frequency interactions between two economic time-
series. Still, most surely, wavelets will not become very 
fashionable in economics until a concept analogous to 
the spectral partial-coherence is developed. On this re-
gard, the proficient reader may be interested in our most 
recent working-paper [2].
	 We present a brief and self-contained introduction 
to the wavelet tools used, namely the continuous wavelet 
transform, the wavelet coherency and the wavelet phase-
difference. Then we apply these tools to a real world eco-
nomic problem — the study of the synchronization of 

the Portuguese and Spanish economic cycles, in the last 
5 decades. Decades that include the democratic transi-
tion in both countries (mid-1970s), the European Union 
membership of both countries (1986), and the adoption 
of a single currency, the Euro (1999).

Time-frequency localization

In what follows, 𝐿𝐿􏺾􏺾(ℝ) denotes the set of square inte-
grable functions, i.e. the set of functions defined on the 
real line and satisfying ∫

∞
−∞

􏿖􏿖𝑥𝑥𝑥𝑥𝑥𝑥􏿖􏿖
􏺾􏺾
𝑑𝑑𝑑𝑑 𝑑 𝑑, with the usual 

inner product
⟨𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 ∫

+∞
−∞

𝑥𝑥𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

and associated norm ‖𝑥𝑥‖ = ⟨𝑥𝑥𝑥 𝑥𝑥𝑥
􏺽􏺽
􏺾􏺾. By influence of the sig-

nal process literature, this space is usually referred to as 
the space of finite energy signals, the energy of a signal 
𝑥𝑥 being simply its squared norm.
	 Given a function 𝑥𝑥 𝑥 𝑥𝑥􏺾􏺾(ℝ), 􏾦􏾦𝑥𝑥 will denote its Fourier 
transform, here defined as:

􏾦􏾦𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 􏾙􏾙
+∞

−∞
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑. {1}

Note 1.—With the above convention of the Fourier 
transform, 𝜔𝜔 is an angular (or radian) frequency. The 
relation to the usual Fourier frequency 𝑓𝑓 is given by 
𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

Note 2.—We use the symbol 𝑥𝑥 to denote a general func-
tion, since this is a more common notation for time-se-
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{1}		  As it is well known, for a function in 𝐿𝐿􏺾􏺾(ℝ) , the above formula must be understood as the result of a 
limiting process, e.g. 􏾦􏾦𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 ∫

𝑛𝑛

−𝑛𝑛
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 , with l.i.m. denoting the limit in the mean, i.e. the limit in 

the 𝐿𝐿􏺾􏺾 sense; we will use this type of abuse of notation frequently in these notes.
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ries, which are our main objects of interest in this paper.

The spectral representation of a function given by its 
Fourier transform determines  all the spectral compo-
nents embedded in the function, but  does not provide 
any information about when they are present. To over-
come this problem, Denis Gabor, the Hungarian-born 
Nobel laureate in physics, proposed, in his fundamental 
paper on communication theory [10], the use of a mod-
ified version of the Fourier transform which became 
known as a windowed Fourier transform (or short time 
Fourier transform). The idea is simple: we first choose 
a window function 𝑔𝑔, i.e. a well localized function in 
time;{2} by multiplying the function 𝑥𝑥 by translated copies 
of 𝑔𝑔, we are able to selects “local sections” of 𝑥𝑥, whose 
Fourier transforms are then computed. We thus obtain a 
function of  two-variables, 𝜏𝜏 (the translation parameter) 
and 𝜔𝜔 (the angular frequency), given by

ℱ𝑔𝑔𝑔𝑔𝑔(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 ∫
+∞
−∞

𝑥𝑥𝑥𝑥𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑.

We can also view the above procedure in a different man-
ner: starting with a basic window function 𝑔𝑔, a two-pa-
rameter family of functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏 is generated, via transla-
tion by 𝜏𝜏 and modulation by 𝜔𝜔, 𝑔𝑔𝜏𝜏𝜏𝜏𝜏(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡

𝑖𝑖𝑖𝑖𝑖𝑖, and 
the inner products of 𝑥𝑥 with all the member of this fam-
ily are then computed: ℱ𝑔𝑔𝑔𝑔𝑔(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏𝜏⟩. The princi-
pal limitation of this technique is that it gives us a fixed 
resolution over the entire time-frequency plane. In fact, 
the functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏, being obtained by simple translations 
in time and modulations (i.e. translations in frequency) 
of the window function 𝑔𝑔, all have the same “size” as 𝑔𝑔 ; 
see Figure 1.
	 The main idea of the continuous wavelet transform 
is again to compute the inner products ofthe function 𝑥𝑥 
with members of a two-parameter family of functions 
𝜓𝜓𝜏𝜏𝜏𝜏𝜏. In this case, however, the  functions 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 are obtained 

from a given window function 𝜓𝜓 — the so-called mother 
wavelet — which is already oscillatory (and hence, in a 
certain way, can be seen as a function of a given frequen-
cy), by a dilation by a scaling factor 𝑠𝑠 and a translation 
by 𝜏𝜏, 

𝜓𝜓𝜏𝜏𝜏𝜏𝜏(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡
−􏺽􏺽􏺽􏺽􏺽𝜓𝜓𝜓

𝑡𝑡 𝑡𝑡𝑡
𝑠𝑠
);

see Figure 2. For |𝑠𝑠𝑠 𝑠 𝑠𝑠, the windows 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 become larger 
(hence, correspond to functions with lower frequency) 
and when the scales satisfy |𝑠𝑠𝑠 𝑠 𝑠𝑠, the windows become 
narrower (hence, become functions with higher frequen-
cy). The main advantage of the continuous wavelet trans-
form, as opposed to the windowed Fourier transform, is 
now clear: it provides us a time-scale (or time-frequency) 
representation of a function with windows whose size 
automatically adjusts to frequencies.

Wavelet Tools

The Wavelet
The minimum requirement imposed on a function 
𝜓𝜓 𝜓 𝜓𝜓􏺾􏺾(R) to qualify for being a mother (admissible or 
analyzing) wavelet is that it satisfies the following tech-
nical condition, usually referred to as the admissibility 
condition (AC):

􏺼􏺼 􏺼 􏾙􏾙
+∞

−∞

|􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓𝜓
|𝜔𝜔𝜔

𝑑𝑑𝑑𝑑𝑑𝑑  ;

see [7, p.22]. In this case, the constant given by the value 
of the above integral,

𝐶𝐶𝜓𝜓 = 􏾙􏾙
+∞

−∞

|􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓𝜓
|𝜔𝜔𝜔

𝑑𝑑𝑑𝑑,

is called the admissibility constant. The wavelet 𝜓𝜓 is usu-
ally normalized to have unit energy, which we always 
assume here. We should point out that the square inte-
grability of 𝜓𝜓 is a very mild decay condition and that, in 
practice, much more stringent conditions are imposed. In 

(1)

Figure 1.—A Gaussian function 𝑔𝑔 (in red) and the real part of two functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏: 𝑔𝑔􏺼􏺼􏺼􏺼􏺼 
(in black) and 𝑔𝑔􏺼􏺼􏺼􏺼􏺼􏺼􏺼 (in blue).

{2}		  Gabor, in his paper, used Gaussian functions as windows and the transform with this particular class of 
functions is now called a Gabor transform.

(1)
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fact, for the purpose of providing a useful time-frequency 
localization, the wavelet must be a reasonable well local-
ized function, both in the time domain as well as in the 
frequency domain. For functions with sufficient decay, 
imposing the AC (1) is equivalent to requiring that

􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 􏾙􏾙
+∞

−∞
𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓 ;

again, [7, p.24]. This implies that the function 𝜓𝜓 has to 
wiggle up and down the 𝑡𝑡-axis, i.e. it must behave like a 
wave; this, together with the assumed decaying proper-
ty, justifies the choice of the term wavelet (originally, in 
French, ondelette) to designate 𝜓𝜓.

The Continuous Wavelet Transform
As referred before, starting with a mother wavelet 𝜓𝜓, a 
family 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 of “wavelet daughters” can be obtained by 
simply scaling 𝜓𝜓 by 𝑠𝑠 and translating it by 𝜏𝜏

𝜓𝜓𝜏𝜏𝜏𝜏𝜏 (𝑡𝑡) ∶=
􏺽􏺽
√|𝑠𝑠𝑠

𝜓𝜓 􏿶􏿶
𝑡𝑡 𝑡 𝑡𝑡
𝑠𝑠 􏿹􏿹 𝜏𝜏𝜏 𝜏𝜏 𝜏 𝜏𝜏 𝜏𝜏 𝜏 𝜏𝜏.

The parameter 𝑠𝑠 is a scaling or dilation factor that con-
trols the length of the wavelet (the factor 􏺽􏺽􏺽√|𝑠𝑠| being 
introduced to guarantee preservation of the unit norm, 
‖𝜓𝜓𝜏𝜏𝜏𝜏𝜏‖ = 􏺽􏺽) and 𝜏𝜏 is a location parameter that indicates 
where the wavelet is centered.
	 Given a function 𝑥𝑥 𝑥 𝑥𝑥􏺾􏺾(ℝ), its continuous wavelet
transform (CWT) with respect to the wavelet 𝜓𝜓 is a func-
tion of two-variables, 𝑊𝑊𝑥𝑥𝑥𝑥𝑥, obtained by projecting 𝑥𝑥, in 
the 𝐿𝐿􏺾􏺾 sense, onto the over-complete family {𝜓𝜓𝜏𝜏𝜏𝜏𝜏}:

𝑊𝑊𝑥𝑥𝑥𝑥𝑥 (𝜏𝜏𝜏 𝜏𝜏) = ⟨𝑥𝑥𝑥 𝑥𝑥𝜏𝜏𝜏𝜏𝜏⟩ =
􏺽􏺽
√|𝑠𝑠𝑠

􏾙􏾙
∞

−∞
𝑥𝑥 (𝑡𝑡) 𝜓𝜓 􏿶􏿶

𝑡𝑡 𝑡𝑡𝑡
𝑠𝑠 􏿹􏿹 𝑑𝑑𝑑𝑑.

Note 3.—When the wavelet 𝜓𝜓 is implicit from the context, 
we abbreviate the notation and simply write 𝑊𝑊𝑥𝑥 for 𝑊𝑊𝑥𝑥𝑥𝑥𝑥.

Inversion of CWT
The importance of the admissibility condition (1) is due 
to the fact that its fulfilment guarantees that the energy of 

the original function 𝑥𝑥 is preserved by the wavelet trans-
form, i.e., the following Parseval-type relation holds:

􏾙􏾙
+∞

−∞
|𝑥𝑥𝑥𝑥𝑥𝑥𝑥􏺾􏺾𝑑𝑑𝑑𝑑 𝑑

􏺽􏺽
𝐶𝐶𝜓𝜓

􏾙􏾙
+∞

−∞
􏾙􏾙

+∞

−∞
􏿖􏿖𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏􏿖􏿖

􏺾􏺾 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠􏺾􏺾

.

In other words, the operator defined by

		  𝒲𝒲𝜓𝜓 ∶ 𝐿𝐿
􏺾􏺾(ℝ) ⟶ 𝐿𝐿􏺾􏺾􏿵􏿵ℝ × ℝ ⧵ {􏺼􏺼􏺼􏺼

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠􏺾􏺾

􏿸􏿸

		          𝑥𝑥 𝑥
􏺽􏺽

􏽮􏽮𝐶𝐶𝜓𝜓
𝑊𝑊𝑥𝑥𝑥𝑥𝑥

is an isometry. Also, if 𝜓𝜓 satisfies (1), it is possible to re-
cover 𝑥𝑥 from its wavelet transform. In fact, due to the 
high redundancy of this transform (observe that a func-
tion of one variable is mapped into a bivariate function), 
many reconstruction formulas are available. For example, 
when the wavelet 𝜓𝜓 and 𝑥𝑥 are real-valued, it is possible 
to reconstruct 𝑥𝑥 by using the formula

𝑥𝑥𝑥𝑥𝑥𝑥 𝑥
􏺾􏺾
𝐶𝐶𝜓𝜓

􏾙􏾙
∞

􏺼􏺼
􏿰􏿰􏾙􏾙

+∞

−∞
𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏(𝑡𝑡𝑡𝑡𝑡𝑡𝑡􏿳􏿳

𝑑𝑑𝑑𝑑
𝑠𝑠􏺾􏺾

,

showing that no information is lost if we restrict the 
computation of the transform only to positive values of
the scaling parameter 𝑠𝑠, which is a usual requirement, in 
practice; see e.g. [7].

Wavelet Power and Wavelet Phase
When the wavelet 𝜓𝜓 is a complex-valued function, the 
wavelet transform 𝑊𝑊𝑥𝑥𝑥𝑥𝑥 is also complex-valued and can, 
therefore, be expressed in polar form as 

𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏
𝑖𝑖𝑖𝑖𝑥𝑥(𝜏𝜏𝜏𝜏𝜏𝜏,𝜙𝜙 𝑥𝑥 ∈ (−𝜋𝜋𝜋 𝜋𝜋𝜋.

The square of the amplitude, |𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏
􏺾􏺾 is called the wave-

let power and the the angle 𝜙𝜙𝑥𝑥(𝑠𝑠𝑠 𝑠𝑠𝑠 is known as the (wave-
let) phase.
	 For real-valued wavelet functions, the imaginary 
part is constantly zero and the phase is, therefore, unin-
formative. Hence, in order to obtain phase information 
about a time-series, it is necessary to make use of com-
plex wavelets.

Figure 2.—A mother-wavelet 𝜓𝜓 (in black) and two 
functions 𝜓𝜓𝜏𝜏𝜏𝜏𝜏: 𝜓𝜓􏺼􏺼􏺼􏺼􏺼 (in red) and 𝜓𝜓􏺿􏺿􏺿􏺿􏺿􏺿􏺿􏺿 (in blue).

(2)
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Analytic Wavelets
When a complex wavelet 𝜓𝜓 is to be used, it is convenient 
to choose it as analytic (or progressive), where by this 
we mean that its Fourier transform is supported on the 
positive real-axis only, i.e. 􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓 for 𝜔𝜔 𝜔 𝜔𝜔.{3} In fact, 
when 𝜓𝜓 is analytic and 𝑥𝑥 is real, reconstruction formu-
las involving only positive values of the scale parameter 
𝑠𝑠 are still available; in particular, if the wavelet satisfies 
􏺼􏺼 􏺼 􏺼􏺼􏺼𝜓𝜓|<  ∞ where

𝐾𝐾𝜓𝜓 = 􏾙􏾙
∞

􏺼􏺼

􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓
𝜔𝜔

𝑑𝑑𝑑𝑑,

then one can use the following reconstruction formula, 
known as the Morlet formula, which is particularly use-
ful for numerical applications:

𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥􏿵􏿵
􏺽􏺽
𝐾𝐾𝜓𝜓

􏾙􏾙
∞

􏺼􏺼
𝑊𝑊𝑥𝑥(𝑡𝑡𝑡 𝑡𝑡𝑡

𝑑𝑑𝑑𝑑
𝑠𝑠􏺿􏺿􏺿􏺿􏺿

􏿸􏿸,

where ℜ(.) denotes real part; see, e.g. [8] or [17]. For other 
useful features of analytic wavelets, we refer the reader 
to [27], [25], [20], [21] and also [24].

Note 4.—In what follows, we assume that all the wave-
lets considered are analytic and hence, that the wavelet 
transform is computed only for positive values of the 
scaling parameter 𝑠𝑠. For this reason, in all the formulas 
that would normally involve the quantity |𝑠𝑠𝑠, this will 
simply be replaced by 𝑠𝑠.

The Morlet Wavelets
The admissibility condition (1) is a very weak condi-
tion. In fact, it can be shown easily that the set of wave-
let functions, {𝜓𝜓 𝜓 𝜓𝜓􏺾􏺾(ℝ) ∶ 𝜓𝜓 satisfies AC()}, is dense in 
𝐿𝐿􏺾􏺾(ℝ); see, e.g. [23, p. 5]. In practice, however, the choice 
of which wavelet to use is an important aspect to be tak-
en into account, and this will be dictated by the kind of
application one has in mind.
	 To study the  synchronism between different time-
series, it is important to select a wavelet whose corre-
sponding  transform contains information on both am-
plitude and phase, and hence, a complex-valued analytic 
wavelet is a natural choice.
	 The most popular analytic wavelets used in practice 
belong to the so-called Morlet wavelet family. This is a 
one-parameter family of functions, first introduced in 
[15], and given by

𝜓𝜓𝜔𝜔􏺼􏺼(𝑡𝑡𝑡 𝑡 𝑡𝑡
−􏺽􏺽􏺽􏺽􏺽𝑒𝑒𝑖𝑖𝑖𝑖􏺼􏺼𝑡𝑡𝑒𝑒−

𝑡𝑡􏺾􏺾

􏺾􏺾 .

Strictly speaking, the above functions are not true wave-
lets, since they fail to satisfy the admissibility condi-
tion.{4}

 
In fact, since the Fourier transform of the Mor-

let wavelet 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼 is given by 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(𝜔𝜔𝜔 𝜔 √􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽􏺽 𝑒𝑒−

􏺽􏺽
􏺾􏺾
(𝜔𝜔𝜔𝜔𝜔􏺼􏺼)

􏺾􏺾
, one 

has 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(􏺼􏺼􏺼 􏺼 √􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽􏺽 𝑒𝑒−𝜔𝜔􏺼􏺼􏺾􏺾/􏺾􏺾 ≠ 􏺼􏺼. However, for sufficiently 

large 𝜔𝜔􏺼􏺼, e.g. 𝜔𝜔􏺼􏺼 > 􏻁􏻁, the values of 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(𝜔𝜔𝜔 for 𝜔𝜔 𝜔 𝜔𝜔 are 
so small that, for numerical purposes, 𝜓𝜓𝜔𝜔􏺼􏺼 can be consid-
ered as an analytic wavelet; see [9].
	 The popularity of the Morlet wavelets is due to their 
interesting properties. First, for numerical purposes, as 
we have just seen,  they can be treated as  analytic wave-
lets. Second, since the wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 is the product of a 
complex sinusoidal of angular frequency 𝜔𝜔􏺼􏺼, 𝑒𝑒𝑖𝑖𝑖𝑖􏺼􏺼 𝑡𝑡, by a 
Gaussian envelope, 𝑒𝑒−𝑡𝑡􏺾􏺾/􏺾􏺾, it makes perfect sense to asso-
ciate the angular frequency 𝜔𝜔􏺼􏺼 — i.e. the usual Fourier 
frequency 𝑓𝑓􏺼􏺼 = 𝜔𝜔􏺼􏺼/(􏺾􏺾􏺾􏺾􏺾 — to this function; in this case, 
the wavelets at scale 𝑠𝑠 can be associated with frequencies 
𝑓𝑓𝑠𝑠 = 𝜔𝜔􏺼􏺼/􏺾􏺾􏺾􏺾􏺾􏺾; in particular, for the very common choice of 
𝜔𝜔􏺼􏺼 = 􏻂􏻂, we have 𝑓𝑓𝑠𝑠 ≈ 􏺽􏺽􏺽􏺽􏺽 and hence the period (or wave-
length) is 𝑝𝑝𝑠𝑠 ≈ 𝑠𝑠, which greatly facilitates the interpreta-
tion of the wavelet analysis as a time-frequency analysis. 
Finally, the wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 is a function with  optimal joint 
time-frequency concentration, in the sense that it attains 
the minimum possible value of uncertainty associated 
with the Heisenberg uncertainty principle.
	 All our numerical results were obtained with the 
Morlet wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 for the particular choice 𝜔𝜔􏺼􏺼 = 􏻂􏻂.

Computational Aspects
In practice, when one is dealing with a discrete time-
series 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑘𝑘 ∶ 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘 𝑘 𝑘𝑘 𝑘 𝑘𝑘𝑘  of 𝑇𝑇 observations with 
a uniform time step 𝛿𝛿𝛿𝛿, the integral in (2) has to be dis-
cretized and is, therefore, replaced by a summation over 
the 𝑇𝑇 time steps; also, it is convenient, for computation-
al efficiency, to compute the transform for 𝑇𝑇 values of 
the parameter 𝜏𝜏, 𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏𝜏𝜏; 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛. Naturally, the 
wavelet transform is computed only for a selected set of 
scale values 𝑠𝑠 𝑠 𝑠𝑠𝑠𝑚𝑚 ∶ 𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚 (corresponding to 
some frequencies 𝑓𝑓𝑚𝑚; 𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚). Hence, our com-
puted wavelet spectrum of the discrete time-series 𝑥𝑥 will 
simply be a 𝐹𝐹 𝐹 𝐹𝐹 matrix 𝑊𝑊𝑥𝑥 = (𝑤𝑤𝑚𝑚𝑚𝑚) whose (𝑚𝑚𝑚 𝑚𝑚𝑚 ele-
ment is given by

{3}		  Functions with a  positive frequency spectrum were introduced in signal analysis by D. Gabor in [10]. He 
called them “analytic signals”, because they can be extended analytically to the upper-half complex  plane.

{4}		  In order to fulfill the admissibility condition, a correction term has to be added, as:
		  𝜓𝜓𝜔𝜔􏺼􏺼(𝑡𝑡𝑡 𝑡 𝑡𝑡

−􏺽􏺽􏺽􏺽􏺽 􏿴􏿴𝑒𝑒𝑖𝑖𝑖𝑖􏺼􏺼𝑡𝑡 − 𝑒𝑒−𝜔𝜔􏺾􏺾
􏺼􏺼 􏿷􏿷 𝑒𝑒−𝑡𝑡􏺾􏺾/􏺾􏺾.
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𝑤𝑤𝑚𝑚𝑚𝑚 =
𝛿𝛿𝛿𝛿

√𝑠𝑠𝑚𝑚

𝑇𝑇𝑇𝑇𝑇

􏾝􏾝
𝑘𝑘𝑘𝑘𝑘

𝑥𝑥𝑘𝑘𝜓𝜓 􏿶􏿶(𝑘𝑘 𝑘𝑘𝑘 )
𝛿𝛿𝛿𝛿
𝑠𝑠𝑚𝑚
􏿹􏿹.

Although it is possible to calculate the wavelet transform 
using the above formula for each value of 𝑚𝑚 and 𝑛𝑛, one 
can also identify the computation for all the values of 𝑛𝑛
simultaneously as a simple convolution of two sequences; 
in this case, one can follow the standard procedure and 
calculate this convolution as a simple product in the Fou-
rier domain, using the Fast Fourier Transform algorithm 
to go forth and back from the time and spectral domains.
	 As with other types of transforms, the CWT applied 
to a finite length time-series inevitably suffers from bor-
der distortions; this is due to the fact that the values of 
the transform at the beginning and the end of the time-
series are incorrectly computed, in the sense that they 
involve missing values of the series which are then arti-
ficially prescribed. Since the “size” of the wavelets 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 
increases with 𝑠𝑠, these edge-effects also increase with 𝑠𝑠 . 
The region in which the transform suffers from these 
edge effects is called the cone-of-influence (COI). In this 
area of the time-frequency plane the results are less reli-
able and have to be interpreted carefully.
	 We also compute the so-called wavelet ridges which 
are simply the “local maxima” of the wavelet power ma-
trix |𝑊𝑊𝑥𝑥|. These are computed in the following manner: in 
each column, every element is compared with the neigh-
bors located up to a specified distance, and the values 
which are larger than a given factor of the “global maxi-
mum” of |𝑊𝑊𝑥𝑥| (i.e. its largest value) are selected.

Note 5.—Although, numerically, we compute the wave-
let transform in a discrete grid of the time-scale plane, 
the time and scale discretizations are so fine that we still 
refer to this as the continuous wavelet transform. The 
so-called discrete wavelet transform (DWT) often used 
in practice, but which we do not consider in this paper, 
corresponds to a very specific choice of 𝑠𝑠 and 𝜏𝜏 — the 
dyadic grid 𝑠𝑠 𝑠 𝑠𝑠𝑗𝑗 , 𝜏𝜏 𝜏 𝜏𝜏𝑗𝑗𝑗𝑗 ; j, 𝑘𝑘 𝑘 𝑘 — and makes the 
transform non-redundant. This, however, imposes far 
more stringent conditions on the choice of the mother 
wavelet 𝜓𝜓; see, e.g. [7].

Example: time-frequency localization of the CWT
We have argued  that the main advantage of wavelet analy-
sis over spectral analysis is the possibility of tracing tran-
sitional changes across time. To illustrate this, we now 
consider an example,  with simulated data, taken from 
[2]. We generate 100 years of monthly data, according 
to the following data generating process:

𝑦𝑦𝑘𝑘 = cos 􏿵􏿵
􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽
𝑡𝑡𝑘𝑘􏿸􏿸 + cos

⎛
⎜
⎝

􏺾􏺾􏺾􏺾
𝑝𝑝𝑘𝑘
𝑡𝑡𝑘𝑘
⎞
⎟
⎠
+ 𝜀𝜀𝑘𝑘, 𝑘𝑘 𝑘𝑘𝑘𝑘  𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,

with 𝑡𝑡𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and where

𝑝𝑝𝑘𝑘 =
⎧⎪
⎨⎪⎩

􏻁􏻁􏻁 if 􏻀􏻀􏻀􏻀􏻀􏻀 􏻀 􏻀􏻀 􏻀 􏻀􏻀􏻀􏻀􏻀􏻀
􏺿􏺿􏺿 other values of 𝑘𝑘

and 𝜀𝜀𝑘𝑘 is a white noise. The above time-series is the sum 
of two periodic components with a random error term. 
The first periodic component represents a 10-year cy-
cle, while the second periodic component shows some 
transient dynamics. It represents a 3-year cycle that, be-
tween the fourth and and sixth decades, changes to a 
5-year cycle. Figure 3 displays some results related with 
this example.
	 The change in the dynamics of the series is nearly 
impossible to spot in Figure 3 (a), which contains a sim-
ple representation of the time-series. Furthermore, if we 
use the traditional spectral analysis, the information on 
the transient dynamics is completely lost, as we can see 
in Figure 3 (d). The power spectral density estimate is 
able to capture both the 3-year and the 10-year cycles, 
but it completely fails to capture the 5-year cycle that 
occurred in the fifth and sixth decades.
	 Comparing with Figure 3 (c), we observe that spec-
tral analysis gives us essentially the same information as 
the global wavelet power spectrum (GWPS), which is an 
average, across all times, of the wavelet power spectrum. 
On the other hand, Figure 3 (b) shows the wavelet power 
spectrum itself. On the horizontal axis, we have the time 
dimension (in years) and the vertical axis gives us the pe-
riods.{5} The intensity of power is given by the color. The 
color code for power ranges from blue (low power) to 
red (high power), with regions with warm colors thus 
representing areas of high power. The cone-of-influence 
is shown with a thick grey line. The white lines show the 
local maxima (or ridges) of  the wavelet power spectrum, 
giving us a more precise estimate of the cycle period. We 
observe a white line on period 10 across all times, mean-
ing that there is a permanent cycle with this period.  We 
are also able to spot the 3-year cycle that occurs up to 
year 40 and, again, between years 60 and 100. Finally, we 
are also able to identify a yellow/orange region between 
the years 40 and 60, with the white stripes indicating a 
cycle of period five. This means that a cycle of roughly 
5-year periodicity, relatively important in explaining the 
total variance of the time-series and taking place between 
years 40 and 60, was hidden by the Fourier power spec-
trum estimate.

{5}		  Note that, since we are using a 𝜓𝜓􏻂􏻂 Morlet wavelet, the periods are almost identical to the scales.
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	 Figure 3 (b) clearly illustrates the big advantage of   
wavelet analysis over spectral analysis. While the Fourier 
transform is silent about changes that happen across time, 
with wavelets we are able to estimate the power spectrum 
as a function of time and, therefore, we do not loose the 
time dimension. The wavelet power spectrum is able to 
capture not only the 3-year and 10-year cycles, but also 

to capture the change that occurred between years 40 
and 60.

Cross-Wavelet Analysis

In many applications, one is interested in detecting and 
quantifying relationships between two non-stationary 
time-series. The concepts of  cross-wavelet power, wave-
let coherency and wavelet phase-difference are natural 
generalizations of the basic wavelet analysis tools that 
enable us to appropriately deal with the time-frequency 
dependencies between two time-series.

Cross-Wavelet Transform,  Cross-Wavelet Power and 
Phase-Difference
The cross-wavelet transform (XWT) of two time-series, 
𝑥𝑥 and 𝑦𝑦, first introduced by Hudgins, Friehe and Mayer 
[18], is simply defined as

𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝑊𝑊𝑦𝑦(𝜏𝜏𝜏 𝜏𝜏𝜏 ,

where 𝑊𝑊𝑥𝑥 and 𝑊𝑊𝑦𝑦 are the wavelet transforms of 𝑥𝑥 and 𝑦𝑦,
respectively. The modulus of the XWT, |𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏  is 
known as the cross-wavelet power.
	 As for the wavelet transform, if the wavelet 𝜓𝜓 is com-
plex-valued, the cross-wavelet transform is also complex-
valued and can be written as

𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏
𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏𝜏𝜏,

where

𝜙𝜙𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏𝑦𝑦(𝜏𝜏𝜏 𝜏𝜏𝜏,

with 𝜙𝜙𝑥𝑥 and 𝜙𝜙𝑦𝑦 denoting the phases of 𝑥𝑥 and 𝑦𝑦 respec-
tively,{6} is the phase-difference of 𝑥𝑥 and 𝑦𝑦 (also called the 
phase-lead of 𝑥𝑥 over 𝑦𝑦). A phase-difference of zero indi-
cates that the two time-series move together at the speci-
fied (𝜏𝜏𝜏 𝜏𝜏𝜏 value; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (􏺼􏺼􏺼 􏺼􏺼􏺼􏺼􏺼􏺼, then the series move in-
phase, but the time-series 𝑥𝑥 leads over 𝑦𝑦; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (−𝜋𝜋𝜋𝜋𝜋𝜋 𝜋𝜋𝜋, 
the series also move in-phase, but, in this case, is the se-
ries 𝑦𝑦 that is leading; a phase-difference of 𝜋𝜋 indicates an 
anti-phase relation; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (𝜋𝜋𝜋𝜋𝜋𝜋 𝜋𝜋𝜋, then the series are 
out-of-phase, and 𝑦𝑦 is leading; finally, if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (−𝜋𝜋𝜋 𝜋𝜋𝜋𝜋𝜋𝜋𝜋 , 
the series are out-of-phase and 𝑥𝑥 is leading.

Complex Wavelet Coherency
In analogy with the  concept of coherency used in Fou-
rier analysis, given two time-series 𝑥𝑥 and 𝑦𝑦 one can de-
fine their complex wavelet coherency, 𝜚𝜚𝑥𝑥𝑥𝑥, by:

𝜚𝜚𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏
𝒮𝒮 􏿴􏿴𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏􏿷􏿷

􏿮􏿮𝒮𝒮 􏿴􏿴|𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏
􏺾􏺾􏿷􏿷𝒮𝒮 􏿴􏿴|𝑊𝑊𝑦𝑦(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏

􏺾􏺾􏿷􏿷􏿷􏿷
􏺽􏺽􏺽􏺽􏺽,

Figure 3.—(a) Series 𝑦𝑦𝑘𝑘 = cos(􏺾􏺾􏺾􏺾􏺾􏺾𝑘𝑘/􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽𝑘𝑘/𝑝𝑝𝑘𝑘)+  𝜀𝜀𝑘𝑘 . 
(b) Wavelet power spectrum of 𝑦𝑦— The cone-of-influ-
ence is shown with a grey line; the color code for power 
ranges from blue (low power) to red (high power); the 
white lines show the local maxima of the wavelet power 
spectrum. (c) Global wavelet power spectrum, i.e. aver-
age wavelet power (over all times) for each frequency. 
(d) Fourier power spectral density.

{6}		  More correctly, we have 𝜙𝜙𝑥𝑥𝑥𝑥 = 𝜙𝜙𝑥𝑥 − 𝜙𝜙𝑦𝑦(mod 􏺾􏺾􏺾􏺾􏺾.

(3)
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where 𝒮𝒮  denotes a smoothing operator in both time and 
scale; smoothing is necessary, because, otherwise, coher-
ency would be identically one at all scales and times. Time 
and scale smoothing can be achieved, e.g. by convolu-
tion with appropriate windows; see [3] or [16], for details.
	 The absolute value of the complex coherency is 
called the wavelet coherency and is denoted by 𝑅𝑅𝑥𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏.
As in the case of the usual Fourier coherency, wavelet co-
herency satisfies the inequality 􏺼􏺼 􏺼 􏺼􏺼𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏, whenev-
er the ratio (3) is well defined. At points (𝜏𝜏𝜏 𝜏𝜏𝜏 for which 
𝒮𝒮 􏿴􏿴|𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏

􏺾􏺾􏿷􏿷𝒮𝒮 􏿴􏿴|𝑊𝑊𝑦𝑦(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏
􏺾􏺾􏿷􏿷 = 􏺼􏺼, we will define

𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏.
	 As referred by Liu [22], the advantage of these 

“wavelet-based” quantities is that they may vary in time 
and can detect transient associations between studied 
time-series.

Significance Tests

As with other time-series methods, it is important to 
assess the statistical significance of the results obtained 

by wavelet analysis. The seminal paper by Torrence and 
Compo [28] is one of the first works to discuss signifi-
cance testing for wavelet and cross-wavelet power. How-
ever, more work needs to be done on this area. For rea-
sonable general processes, like an ARMA process, one 
has to rely on bootstrap techniques or Monte Carlo Sim-
ulations. To our knowledge, there is no good way of as-
sessing the statistical significance of the phase-difference. 
In fact, Ge [13] argues that one should not use signifi-
cance tests for the wavelet phase-difference. Instead, its 
analysis should be complemented by inspection of the 
coherence significance.

Business Cycle Synchronization Between 
Portugal and Spain

In this section we describe the application of the contin-
uous wavelet tools — more specifically, wavelet coher-
ency, phase, and the phase-difference — to the study of 
the synchronization of the economic cycles of Portugal 
and Spain, before and after these two countries joined 

Figure 4.—Total Manufacturing for Portugal (a) and cor-
responding wavelet power spectrum (b). Color codes are 
as in Fig.3. The thick black contour represents the 5% 
significance level.

Figure 5.—Total Manufacturing for Spain (a) and corre-
sponding wavelet power spectrum (b). Color codes are 
as in Fig.3. The thick black contour represents the 5% 
significance level.
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the Euro Zone. The data used consist of the total man-
ufacturing year-to-year growth rates for Portugal and 
Spain. We gathered monthly data from January of 1962 
until February of 2011. The results are displayed in Fig-
ures 4–6. Figures 4 (a) and (b) represent the time-series 
for Portugal and the corresponding wavelet power spec-
trum and Figures 5 (a) and (b) the same  quantities, but 
for Spain. The color codes are as in Figure 3. The black 
thick contour indicates the 5% significance level.
	 Wavelet coherency is shown in Figure 6 (a). Figure 
6 (b) displays the average values of the phases and phase-
difference at the 3–8 year frequency band: the green line 
represents the phase for Spain, the blue line the phase for 
Portugal and the red line the phase-difference between 
Spain and Portugal. Figure 4 (b) tells us that for the en-
tire period of analysis Portugal has a very active business 
cycle around the 8-year frequency. A cycle with a similar 
period is also present in Spain — Figure 5 (b) — how-

ever, it is statistically significant only after 1990. Cycles 
associated with shorter periods are also statistically sig-
nificant in both countries until 1980. It is interesting to 
note that at the end of the sample, probably because of 
the world financial and economic crisis, both countries 
display a large wavelet power spectrum. This is particu-
larly true in the case of Spain, one might add. We recall 
that, although the precise details are different, these two 
countries, during the decade of 1960 and in the first half 
of the decade of 1970, both  had proto-fascist regimes 
([19]) and, in the second half of that decade, they both 
turned into democratic regimes.
	 In 1982, Portugal had a severe Current Account 
crisis that led to an IMF intervention in 1983. The two 
countries applied together to be part of the European 
Economic Community, which they joined in the first of 
January of 1986. It is very interesting to note how this 
historical evolution of the countries is reflected in the 
evolution of the synchronization of their economic cy-
cles and how this can be read with the wavelet tools.
	 In Figure 6 (a), we see that until early 1980’s, the 
two time-series are highly coherent and in Figure 6 (b), 
we observe that their phases, at business cycle frequen-
cies 3–8 years period cycles, were well aligned in this pe-
riod of time, with a slight lead from Portugal. From the 
early 1980s to about 1986, coinciding with the period 
immediately after the IMF intervention, we clearly see 
a de-synchronization between the two countries busi-
ness cycles. Between 1986 and 1995, the two countries 
became more synchronized again, in particular at lower 
frequencies, as we can see in Figure 6 (a), but the phases 
were not aligned anymore. Instead, the phase-difference 
between Spain and Portugal (red line) tells us that the 
Portuguese business cycle was lagging the Spanish one. 
After 1999, when both countries joined the Euro, the 
phase-difference started approaching zero. After 2002, 
the phase-difference became almost zero, suggesting that 
the business cycles became aligned again. After 2004, we 
also observe a region of high coherency, which reinforc-
es our previous conclusion. Therefore, coinciding with 
the adoption of a common currency, the business cycles 
became more synchronized.

Note 6.—The pictures and the numerical results given 
in the paper were obtained using a matlab toolbox de-
veloped by the authors, the ASToolbox, freely available 
at http://sites.google.com/site/aguiarconraria/joanasoares-wavelets.

Figure 6.—(a) Wavelet coherency — coherency rang-
es form blue (low coherency) to red (high coherency); 
the black thick contour designates the 5% significance 
level. (b) Phases and phase-difference at the 3–8 year 
frequency band — The green line represents the phase 
for Spain, the blue line the phase for Portugal and the 
red line represents the phase-difference between Spain 
and Portugal.
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