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A maKor motivation for the development of semigroup the-
ory was, and still is, its applications to the study of formal
languages. Therefore, it is not surprising that the corre-
spondence ൣ  ШൣЩ, associating to each symbolic dy-
namical system ൣ the formal language ШൣЩ of its blocks,
entails a connection beǞeen symbolic dynamics and semi-
group theory. In this article we survey some developments
on this connection, since when it was noticed in an article
by Almeida, published in the CIM bulletin, in 2003 [2].

ʬ SɓȞǬȥȘȋǯ ǵɓȟǡȞȋǯȶ

A topological dynamical system is a pair ШИ Щ consisting of a
topological space  and a continuous self-map ۚ  צ .
It is useǘl to think of  as representing a sort of space,
where each point ച is moved to ШചЩwhen a unit of time has
passed. A morphism beǞeen Ǟo topological dynamical
systems ШႲИ ႲЩ and ШႳИ ႳЩ is a continuous map ࿄ۚ Ⴒ צ
Ⴓ such that ࿄ ٷ Ⴒ Ҳ Ⴓ ٷ ࿄. In this way, topological dy-
namical systems form a category, if we take the identity on
 as the local identity at ШИ Щ. In this category, an isomor-
phism is called a conjugacy, and isomorphic obKects are said
to be conjugate.

We focus on a special class of topological dynamical sys-
tems, the symbolic ones. Their applications in the study
of general topological dynamical systems freRuently stem
from the following procedure: use symbols to mark a ƫnite
number of regions of the underlying space, and register,
with a string of those symbols, the regions visited by a orbit.
In the next paragraph we give a brief formal introduction to
symbolic systems. For a more developed introduction, we
refer to the book [26]. Also, the book review [33] is an excel-
lent short introduction to the ƫeld and its ramiƫcations.

Consider a ƫnite nonempty set , whose elements are
called symbols, and the set Ӗ of seRuences ШചᅎЩᅎٝӖ of sym-

bols of indexed byӖ. One should think of an element ച Ҳ
ШചᅎЩᅎٝӖ of Ӗ as a biinƫnite string НചႼႴചႼႳചႼႲМചႱചႲചႳചႴ Н,
with the dot marking the reference position. A block of ച
is a ƫnite string appearing in ച: a ƫnite seRuence of the
form ചᅒചᅒႻႲ Н ചᅒႻӍ, with ഊ ٝ Ӗ and Ӎ ܔ ѱ, also denoted
ചЪᅒᆠᅒႻӍЫ. Of special relevance are the central blocks ചЪႼᅒᆠᅒЫ,
as one endows Ӗ with the topology induced by the metric
ഁШചИ ഛЩ Ҳ ѳႼᅙႾᅢᆠᅣႿ such that ШചИ ഛЩ is the minimum ഊ ܔ ѱ for
which ചЪႼᅒᆠᅒЫ ܍ ഛЪႼᅒᆠᅒЫ. )ence, Ǟo elements of Ӗ are close
if they have a long common central block. The shift mapping
࿁ۚ Ӗ צ Ӗ, deƫned by ࿁ШചЩ Ҳ ШചᅎႻႲЩᅎٝӖ, shifts the dot
to the right. A symbolic dynamical system, also called subshift,
is a pair ШൣИ ࿁ൣЩ formed by a nonempty closed subspace ൣ
of Ӗ, for some , such that ࿁ШൣЩ Ҳ ൣ, and by the restric-
tion ࿁ൣ of ࿁ toൣ. As it is clear what self-map is considered,
ШൣИ ࿁ൣЩ is identiƫed with ൣ. When ൣ Ҳ Ӗ, the system is a
ǖll shift. The sliding block code from the subshift ൣ ݆ Ӗ to
the subshift  ݆ Ӗ, with block map ۚ͡ ᅔႻᅕႻႲ צ , mem-
ory ഌ and anticipation , is the map ࿄ۚ ൣ צ  deƫned by
࿄ШചЩ Ҳ Ш͡ШചЪᅎႼᅔᆠᅎႻᅕЫЩЩᅎٝӖ. It follows from the deƫnition of
the metric on a ǘll shift that the morphisms beǞeen sub-
shifts are precisely the sliding block codes.

ʭ FȥȲȞǡȘ Șǡȟȃɂǡȃǹȶ

Given a set  of symbols, the set of ƫnite nonempty strings
of elements of  is denoted by Ⴛ. In the Kargon of formal
languages, is said to be an alphabet, the elements of and
those ofႻ are respectively called letters and words, and the
subsets of Ⴛ are languages. Moreover, Ⴛ is viewed as a
semigroup for the operation concatenation of words. For ex-
ample, in ЬИ ЭႻ, the product of  and  is . In
fact, Ⴛ is the free semigroup generated by, since, for every
semigroup , every mapping  צ  extends uniRuely to
a homomorphism Ⴛ צ . Concerning semigroups, for-
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mal languages, and their interplay, we give [4] as a source
of detailed references and as a very convenient guide, since,
in this sort of introductory text, connections with symbolic
dynamics are also highlighted.

Ifൣ is a subshift ofӖ, we let ШൣЩ be the language over
the alphabet such that ഔ ٝ ШൣЩ if and only if ഔ is a block
of some element ച of ൣ. As a concrete example, consider
the subshift Ӡ, known as the even shift, formed by the biinƫ-
nite seRuences of Ŧs and Ŧs that have no odd number of Ŧs
beǞeen Ǟo consecutive Ŧs, that is, the biinƫnite paths in
the following labeled graph:

1 ѳ







A language ೯ is factorial if, for each ഔ ٝ ೯, every factor of
ഔ belongs to ೯. A factorial language over  is prolongable if
ഔ ٝ ೯ implies ഔ ٝ ೯ for some И  ٝ . It is easy to see
that the languages of the form ШൣЩ, with ൣ a subshift of
Ӗ, are precisely the factorial prolongable languages over
. Moreover, the correspondence ൣ  ШൣЩ is a biKec-
tion beǞeen subshifts and factorial prolongable languages.
Moreover, one has ൣ ݆  if and only if ШൣЩ ݆ ШЩ. In
view of this biKection, symbolic dynamics may be regarded
as a subKect of formal language theory.

Semigroups appear in the study of formal languages via
the concept of recognition. In the labeled graph of the ƫgure
above, letters  and  may be seen as the binary relations
 Ҳ ЬШ1И 1ЩЭ and  Ҳ ЬШ1И ѳЩИ ШѳИ 1ЩЭ. Let ШӠЩ be the semigroup
of binary relations, on the vertices 1 and ѳ, generated by 
and . For example,  is the binary relation ЬШ1И ѳЩЭ. The
words in ШӠЩ are precisely the words that in ШӠЩ are not
the empty relation ٙ. Formally, given a semigroup homo-
morphism ࿄ۚ Ⴛ צ , a language ೯ ݆ Ⴛ is recognized
by ࿄ if ೯ Ҳ ࿄ႼႲШЩ for some subset  of . Note that ШӠЩ
is recognized by the homomorphism ࿄ۚ ЬИ ЭႻ צ ШӠЩ
such that ࿄ШЩ Ҳ ЬШ1И 1ЩЭ and ࿄ШЩ Ҳ ЬШ1И ѳЩИ ШѳИ 1ЩЭ, since
ШӠЩ Ҳ ࿄ႼႲШШӠЩХЬٙЭЩ.

A language over  is recognized by the semigroup  when
recognized by a homomorphism from Ⴛ into . It is said
to be recognizable if it is recognized by a ƫnite semigroup.
Recognizable languages constitute one of the main classes
of languages, as they describe finite-like properties of words,
captured by ƫnite devices. FreRuently the devices are ƫnite
automata, which are labeled graphs with a distinguished
set of initial vertices and ƫnal vertices. These devices rec-
ognize the words labeling the paths from the initial to the ƫ-
nal vertices. Recognition by a ƫnite automaton is the same

as recognition by a ƫnite semigroup, because in fact an au-
tomaton may be seen as a semigroup with generators acting
on its vertices.

Another reason why recognizable languages matter is
KleeneŦs theorem (1956) [22], stating that the recognizable
languages of Ⴛ, with  ƫnite, are precisely the rational
languages of Ⴛ, that is, the languages which can be ob-
tained from subsets of  by applying ƫnitely many times
the Boolean operations, concatenation of languages, and
the operation that associates to each nonempty language
೯ the subsemigroup ೯Ⴛ of Ⴛ generated by ೯. The ratio-
nal languages obtainable using only the ƫrst Ǟo of these
three sets of operations, the plus-free languages,1 are pre-
cisely the languages recognized by ƫnite aperiodic semi-
groups [31]. This characterization, due to Schützenberger
and dated from 1965, is one of the ƫrst important applica-
tions of semigroups to languages (for the reader unfamil-
iar with the concept: a semigroup is aperiodic if all its sub-
groups, i.e., subsemigroups that have a group structure, are
trivial). Eilenberg, later on (1976), provided the framework
for several results in the spirit of that of Schützenberger
on aperiodic semigroups, by establishing a natural corre-
spondence beǞeen pseudovarieties of semigroups (classes of
ƫnite semigroups closed under taking homomorphic im-
ages, subsemigroups and ƫnitary products) and the types of
classes of languages recognized by their semigroups, called
varietes of languages [17].

ʮ CȘǡȶȶȋȂȋǯǡȽȋȥȟ ȥȂ ȶɂǬȶȈȋȂȽȶ

The correspondenceൣ  ШൣЩ provides ways of classiǛing
subshifts in special classes with static deƫnitions in terms
of ШൣЩ that, from a semigroup theorist viewpoint, may be
more convenient than the alternative deƫnitions of a more
dynamical Ƭavor.

As a ƫrst example, consider the irreducible subshifts:
these are the subshifts ൣ such that, for every ഔИ ഖ ٝ ШൣЩ,
one has ഔഘഖ ٝ ШൣЩ for some wordഘ. The dynamical char-
acterization is that a subshift is irreducible when it has a
dense forward orbit.

In the same spirit, a subshift ൣ is minimal (for the in-
clusion) if and only if ШൣЩ is uniformly recurrent, the lat-
ter meaning that for every ഔ ٝ ШൣЩ, there is a natural
number ೱᅜ such that ഔ is a factor of every word of ШൣЩ
of length ೱᅜ. Note that uniform recurrence implies ir-
reducibility. A procedure for building minimal subshifts,
with a semigroup-theoretic Ƭavor that was useǘl for get-
ting results mentioned in the ƫnal section, is as follows.
Consider a primitive substitution ࿄ۚ Ⴛ צ Ⴛ, i.e., a semi-

1Actually, SchützenbergerŦs result is usually formulated in terms of ƫnite aperiodic monoids and languages admitting the empty word, with star-free
languages in place of plus-free languages.
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group endomorphism ࿄ of Ⴛ such that every letter of 
appears in ࿄ᅕШЩ, for all  ٝ  and all suǆciently large :
if ࿄ is not the identity in an one-letter alphabet, then the
language of factors of words of the form ࿄ᅒШЩ, with ഊ ܔ 1
and  ٝ , is factorial and prolongable, thus deƫning a
subshift ൣᆕ, and in fact this subshift is minimal.

A subshift ൣ is sofic when ШൣЩ is recognizable. )ence,
the even subshift is soƫc. Soƫc and minimal subshifts are
arguably the most important big realms of subshifts, with
only periodic subshifts in the intersection. Every subshift
ൣ of Ӗ is characterized by a set ೩ of forbidden blocks, a lan-
guage ೩ ݆ Ⴛ such that ച ٝ ൣ if and only if no element
of ೩ is a block of ച. We write ൣ Ҳ ൣᄰ for such a set ೩. It
turns out that ൣ is soƫc if and only if ೩ can be chosen to be
rational. A subshift ൣ is of finite type if there is a ƫnite set
of forbidden blocks ೩ such that ൣ Ҳ ൣᄰ. The class of ƫnite
type subshifts is closed under conKugacy and is contained
in the class of soƫc subshifts. The inclusion is strict: the
even subshift is not a ƫnite type subshift.

The most important open problem in symbolic dynam-
ics consists in classiǛing (irreducible) ƫnite type subshifts
up to conKugacy. A related problem is the classiƫcation of
(irreducible) soƫc subshifts up to flow equivalence. In few
words, Ǟo subshifts are Ƭow eRuivalent when they have
eRuivalent mapping tori, a description that is somewhat
technical, when made precise. Next is an alternative char-
acterization (from [29]), more prone to a semigroup the-
oretical approach. Take ྯ ٝ  and a letter ޑ not in .
Consider the homomorphism ೨ᆀ ۚ Ⴛ צ Ш ڠ ЬޑЭЩႻ that
replaces ྯ by ޑྯ and leaves the remaining letters of  un-
changed. The symbol expansion of a subshift ൣ ݆ Ӗ with
respect toྯ is the subshift whose blocks are factors of words
in ೨ᆀШШൣЩЩ. Flow eRuivalence is the least eRuivalence rela-
tion beǞeen subshifts that contains the conKugacy relation
and the symbol expansions. A symbol expansion on ྯ rep-
resents a time dilation when reading ྯ in a biinƫnite string,
thus Ƭow eRuivalence preserves shapes of orbits, but not in
a rigid way. Finite type subshifts have been completely clas-
siƫed up to Ƭow eRuivalence [18]. The strictly soƫc case re-
mains open. In [10] one ƫnds recent developments.

ʯ TȈǹ KǡȲȥɂǬȋ ǹȟɌǹȘȥȯǹ ȥȂ ǡ ȶɂǬȶȈȋȂȽ

Let ೯ be a language over. Two words ഔ and ഖ ofႻ are syn-
tactically equivalent in ೯ if they share the contexts in which
they appear in words of ೯. Formally, the syntactic congru-
ence ᄶ is deƫned by ഔ ᄶ ഖ if and only if the eRuivalence
ചഔഖ ٝ ೯ خ ചഖഛ ٝ ೯ holds, for all (possibly empty) words
ചИ ഛ over. The Ruotient Ш೯Щ Ҳ ႻФᄶ is the syntactic semi-
group of ೯. The Ruotient homomorphism ྵᄶ ۚ Ⴛ צ ႻФᄶ

is minimal among the onto homomorphisms recognizing ೯:

if the onto homomorphism ࿄ۚ Ⴛ צ  recognizes ೯, then
there is a uniRue onto homomorphism ྶۚ  צ Ш೯Щ such
that the diagram

Ⴛ ᆕ ��

ᆆሯ ��



ᆇ
��

Ш೯Щ

commutes. In particular, ೯ is recognizable if and only if
Ш೯Щ is ƫnite. More generally, ೯ is recognized by a semi-
group of a pseudovariety o if and only if Ш೯Щ belongs to o.
For example, a language is plus-free if and only if Ш೯Щ is an
aperiodic semigroup, in view of SchützenbergerŦs charac-
terization of plus-free languages. Since Ш೯Щ is computable
if ೯ is adeRuately described (e.g., by an automaton), this
gives an algorithm to decide if a rational language is plus-
free. This example illustrates why syntactic semigroups
and pseudovarieties are important for studying rational
languages.

Let be a semigroup, and denote by೨ШЩ the set of idem-
potents of . The ,aroubi envelope of  is the small category
KarШЩ such that

ŭ the set of obKects is ೨ШЩ�
ŭ an arrow from ം to ഃ is a triple ШംИ ഒИ ഃЩ such ഒ ٝ  and
ഒ Ҳ ംഒഃ�

ŭ composition of consecutive arrows is given by
ШംИ ഒИ ഃЩШഃИ ഓИ ഄЩ Ҳ ШംИ ഒഓИ ഄЩ (we compose on the oppo-
site direction adopted by category theorists)�

ŭ the unit at vertex ം is ШംИ ംИ ംЩ.

This construction found an application in ƫnite semigroup
theory in the %elay Theorem [32]. Avoiding details, this re-
sult concerns a certain correspondence o  oᆣ beǞeen
semigroup pseudovarieties, with one of the formulations
of the Delay Theorem stating that a ƫnite semigroup  be-
longs to oᆣ if and only if KarШЩ is the Ruotient of a cate-
gory admitting a faithǘl ǘnctor into a monoid in o. Inter-
estingly, the variety of languages corresponding in Eilen-
bergŦs sense to oᆣ is, roughly speaking, determined by the
inverse images of languages recognized by semigroups of o
via block maps of sliding block codes. )ence, it is natural to
relate the Karoubi envelope with subshifts. This was done
in the paper [15], of which we highlight some results in the
next paragraphs.

The syntactic semigroup ШൣЩ of a subshift ൣ is the syntac-
tic semigroup of ШൣЩ. One ƫnds this obKect in some pa-
pers [20, 21, 8, 9, 12, 13, 11], namely for (strictly) soƫc sub-
shifts. Several invariants encoded in ШൣЩ were deduced.
The ,aroubi envelope of ൣ, denoted KarШൣЩ, is the Karoubi
envelope of ШൣЩ. ConKugate subshifts do not need to have
isomorphic syntactic semigroups, but the Karoubi enve-
lope of a subshift is invariant in the sense of the following
result from [15].
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TȈǹȥȲǹȞ ʬ.Ť If ൣ and  are Ƭow eRuivalent subshifts,
then the categories KarШൣЩ and KarШЩ are eRuivalent.

For some classes of subshifts, the Karoubi envelope is of no
use. For example, all irreducible ƫnite type subshifts have
eRuivalent Karoubi envelopes. But in the strictly soƫc case,
the Karoubi envelope does bring meaningǘl information,
as testiƫed by several examples given in [15]. We already
mentioned the previous existence in the literature of sev-
eral (Ƭow eRuivalence) invariants encoded in ШൣЩ. It turns
out that the Karoubi envelope is the best possible syntac-
tic invariant for Ƭow eRuivalence of soƫc subshifts: indeed,
the main result in [15], which we formulate precisely below,
states that all syntactic invariants of Ƭow eRuivalence of
soƫc subshifts are encoded in the Karoubi envelope. First,
it is convenient to formalize what a syntactic Ƭow invariant
is. An eRuivalence relation ࿊ on the class of soƫc subshifts
is: an invariant of flow equivalence if ൣ ࿊  whenever ൣ and
 are Ƭow eRuivalent� a syntactic invariant if ൣ ࿊  when-
ever ШൣЩ and ШЩ are isomorphic� a syntactic invariant of
flow equivalence if it satisƫes the Ǟo former properties.

TȈǹȥȲǹȞ ʭ.Ť If ࿊ is a syntactic invariant of Ƭow eRuiv-
alence of soƫc subshifts and ൣ and  are soƫc shifts such
that KarШൣЩ is eRuivalent to KarШЩ, then ൣ ࿊ .

Outside the soƫc realm, the Karoubi envelope was success-
ǘlly applied in [15] to what is arguably an almost com-
plete classiƫcation of the Markov-%yck subshifts, a class of
subshifts introduced by Krieger [23]. Loosely speaking, a
Markov-Dyck subshift ೧ᄱ is formed by biinƫnite strings
of several types of parentheses, subKect to the usual par-
enthetic rules, and to additional restrictions deƫned by a
graph ೪. The edges of ೪ are the opening parentheses, and
consecutive opening parentheses appearing in an element
of ೧ᄱ correspond to consecutive edges, with a natural sym-
metric rule for closing parentheses also holding. Flow in-
variance of KarШ೧ᄱЩ, together with a characterization of
Ш೧ᄱЩ, implicit in [19], gives the following result (a diǃer-
ent and independent proof appears in [24]).

TȈǹȥȲǹȞ ʮ.Ť Let೪ and೫ be ƫnite graphs. If each vertex
of ೪ or of ೫ has out-degree not eRual to one and in-degree
at least one, then೧ᄱ and೧ᄲ are Ƭow eRuivalent if and only
if ೪ and ೫ are isomorphic.

ʰ FȲǹǹ ȯȲȥȂȋȟȋȽǹ ȶǹȞȋȃȲȥɂȯȶ

We already looked at the importance of (pseudovarieties of)
ƫnite semigroups in the study of (varieties of) rational lan-
guages. It is well known that free algebras (e.g., free groups,
free Abelian groups, free semigroups, etc.) are crucial for

the study of varieties of algebras, but for pseudovarieties, a
diǆculty arises: there is no universal obKect within the cate-
gory of finite semigroups. To cope with this diǆculty, an ap-
proach successǘlly followed by semigroup theorists, since
the 1980Ŧs, was to enlarge the class of ƫnite semigroups, by
considering proƫnite semigroups. We pause to deƫne the
latter, giving [4] as a supporting reference.

A profinite semigroup is a compact semigroup (i.e., one
with a compact )ausdorǃ topology for which the semi-
group operation is continuous) that is residually finite, in
the sense that every pair of distinct elements ഒИ ഓ of  admits
a continuous homomorphism ࿄ from  onto a ƫnite semi-
group ೩ such that ࿄ШഒЩ ܍ ࿄ШഓЩ, where ƫnite semigroups get
the discrete topology.

Assuming  is ƫnite, consider in Ⴛ the metric
ഁШഔИ ഖЩ Ҳ ѳႼᅙႾᅜᆠᅞႿ such that ШഔИ ഖЩ is the least possible size
of the image of a homomorphism ࿆ۚ Ⴛ צ  satisǛing
࿆ШഔЩ ܍ ࿆ШഖЩ. The completion մႻ of Ⴛ with respect to ഁ
is a proƫnite semigroup. Moreover, each map ࿄ۚ  צ 
from into a proƫnite semigroup  has a uniRue extension
to a continuous homomorphism ճ࿄ۚ մႻ צ . )ence, մႻ

is the free profinite semigroup generated by . The next theo-
rem gives a glimpse of why free proƫnite semigroups mat-
ter [1]. This theorem identiƫes the free proƫnite semigroup
as the Stone dual of the Boolean algebra of recognizable lan-
guages.

TȈǹȥȲǹȞ ʯ.Ť The recognizable languages of Ⴛ are the
traces in Ⴛ of the clopen subsets of մႻ: if ೯ ݆ Ⴛ is rec-
ognizable, then ೯ is clopen in մႻ, and, conversely, if ೮ is
clopen in մႻ, then ೮ ڞ Ⴛ is recognizable.

The elements of մႻ constitute a sort of generalization of
the words in Ⴛ, and for that reason they are often named
pseudowords. The elements in մႻХႻ are the infinite pseu-
dowords over . While the algebraic-topological structure
of Ⴛ is poor, that of մႻ is very rich: for example, Ⴛ has
no subgroups, while մႻ contains all ƫnitely generated free
proƫnite groups when ЦЦ ܔ ѳ, and actually many more
groups [30]. The structure of մႻ is nowadays less mysteri-
ous than it was ƫfteen years ago, symbolic dynamics having
been very useǘl for achieving that. Our goal until the end
of the text is to give examples of such utility.

Most connections beǞeen symbolic dynamics and free
proƫnite semigroups developed over AlmeidaŦs idea of con-
sidering, for each subshift ൣ of Ӗ, the topological closure
ШൣЩ of ШൣЩ in մႻ [2, 4].

In a semigroup , the Ruasi-orderܓ൘ is deƫned by ഒ ൘ܓ ഓ
if and only if ഓ is a factor of ഒ. The eRuivalence relation on
 induced by ൘ܓ is denoted by ൘. By standard compactness
arguments, when ൣ is an irreducible subshift there is a -൘ܓ
minimum ൘-class of մႻ among the ൘-classes contained in
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ШൣЩ (eRuivalently, intersecting ШൣЩ), as explained in [14].
This ൘-class is denoted ೭ШൣЩ. The proof of the existence
of ೭ШൣЩ also entails that it is a regular ൘-class, that is, one
that contains idempotents. One has ೭ШൣЩ Ҳ ೭ШЩ if and
only if ൣ Ҳ , and so ೭ШൣЩ contains all information about
ൣ. Something more holds: one has ൣ ݆  if and only
if ೭ШЩ ൘ܓ ೭ШൣЩ. For the next statement, have in mind
that an inƫnite pseudoword ഔ of մႻ is a ൘-maximalܓ infi-
nite pseudoword if every factor of ഔ either belongs to Ⴛ or
is ൘-eRuivalent to ഔ.

TȈǹȥȲǹȞ ʰ ([ʮ]).Ť An element ഔ of մႻ is a ൘-maximal in-
ƫnite pseudoword if and only if ഔ ٝ ೭ШൣЩ for some minimal
subshift ൣ of Ӗ.

The next theorem states that, in a natural sense, մႻ is very
large and very high (a weaker version appears in [16], with a
harder proof). Its proof is a good example of the potential
of symbolic dynamics in the study of free proƫnite semi-
groups. A regular pseudoword is one that is ൘-eRuivalent
to an idempotent.

TȈǹȥȲǹȞ ʱ.Ť Let  be an alphabet with at least Ǟo let-
ters. For the relation ҳ൘ in մႻ, there are both chains and
anti-chains with ѳӤᆪ regular elements.

PȲȥȥȂ.Ť On the one hand, Ӗ contains ѳӤᆪ minimal sub-
shifts (cf. [27, Chapter 2]), and minimal subshifts clearly
form an anti-chain for the inclusion. On the other hand,
Ӗ contains a chain of ѳӤᆪ irreducible subshifts [34, Sec-
tion 7.3]. )ence, the theorem follows immediately from
the eRuivalence ൣ ݆  خ ೭ШЩ ൘ܓ ೭ШൣЩ for irreducible sub-
shifts. ٧

Since ೭ШൣЩ is regular, it contains a maximal subgroup,
which is a proƫnite group for the induced topology. Be-
cause all maximal subgroups in a regular൘-class are isomor-
phic, we may consider the abstract proƫnite maximal sub-
group ೪ШൣЩ of ೭ШൣЩ. The group ೪ШൣЩ was called in [5] the
Sch»tzenberger group of ൣ. This group is a conKugacy invari-
ant (see [12] for a proof). We collect other facts about ೪ШൣЩ.

ŭ In [3] it was shown that ೪ШൣЩ is a free proƫnite group
of rank ഊ if ൣ is a subshift over a ഊ-letter alphabet
that belongs to an extensively studied class of min-
imal subshifts, called Arnoux-Rauzy subshifts. On
the other hand, also in [3], it was shown that the sub-
stitution ࿄ deƫned by ࿄ШЩ Ҳ  and ࿄ШЩ Ҳ Ⴔ is
such that ೪ШൣᆕЩ is not a free proƫnite group. This
was the ƫrst example of a non-free maximal subgroup
of a free proƫnite semigroup. More generally, proƫ-
nite presentations for೪ШൣᆗЩwere obtained in [5], for
all primitive substitutions ࿆.

ŭ If ൣ is a nonperiodic irreducible soƫc subshift, then
೪ШൣЩ is a free proƫnite group of rank ӤႱ [14].

ŭ A sort of geometrical interpretation for ೪ШൣЩwas ob-
tained in [6], when ൣ is minimal. It was shown that
೪ШൣЩ is an inverse limit of the proƫnite completions
of the ǘndamental groups of a certain seRuence of ƫ-
nite graphs. The-th graph in this seRuence captures
information about the blocks ofൣwith length ѳҬ1.

While free proƫnite semigroups are interesting per se, it is
worthy mentioning that some of the achievements on the
Schützenberger group of a minimal subshift were used in
the technical report [25] to obtain results on code theory,
whose statement may appear to have nothing to do with
proƫnite semigroups. These results were incorporated and
ǘrther developed in [7].
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