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One of the biggest challenges in statistical physics is to understand phenomena out of equilibrium. A common 
setting to model non-equilibrium dynamics is to consider stochastic  processes of Markovian type with an 
open boundary acting on the system at different values, thus creating a flux. In these notes, we consider an 
interacting particle system known in the literature as the symmetric simple exclusion process (SSEP) which is 
connected to two reservoirs. We show how the algebraic construction of such Markov jump processes helps in 
analyzing microscopic quantities used to derive macroscopic universal laws. In particular, we will characterize 
through its moments the non-equilibrium stationary measure.

1 INTRODUCTION

Microscopic dynamics of random walks interacting
on a discrete space under some stochastic rules are
known as interacting particle systems (IPS) and were
introduced in the mathematics community by Spitzer
in 1970 (see [14]) but before were widely used by
physicists, see [15]. The idea of introducing such sys­
tems is that, as it often happens in mathematics and
physics, they can be used as toy models to describe
complex stochastic phenomena involving a large num­
ber (typically of the order of the Avogadro’s number)
of interrelated components. Regardless their simple
rules at the microscopic level, IPS are often remark­
ably suitable models capable of capturing the sort
of phenomena one is interested at the macroscopic
level. Mathematically speaking, they are treated as
continuous time Markov processes with a finite or
countable discrete state space. Typically, in the field
of IPS one is interested in deriving the macroscopic
laws of some thermodynamical quantities by means
of a scaling limit procedure. The setting can be de­
scribed as follows. One considers a continuous space,
which is called the macroscopic space. This space is

then discretized by a scaling parameter 𝑛𝑛 and time is
speeded up by a function of 𝑛𝑛. On the discrete space
one considers a microscopic dynamics consisting of
the infinitesimal evolution of particles according to
some stochastic law. The dynamics conserves one
(or more) thermodynamical quantity and its (their)
space/time evolution is the object of our interest. The
mathematical rigorous derivation of the macroscopic
laws for such quantity, which can be a PDE or a
stochastic PDE, depending on whether one is at the
level of the Law of Large Numbers or at the level of
the Central Limit theorem, is a central problem in the
field of IPS. This derivation gives not only validity to
the equations obtained but also some physical motiva­
tion for their study. In these notes we present, as toy
model, the most classical IPS and our aim is, first, ex­
plain how to rewrite the Markovian generator of the
process in terms of the generators of a Lie algebra, this
is a known procedure in the literature. This technique
allows to derive a dual process for our model, whose
dynamics is simpler. It can be used to give relevant in­
formation about our original model; second, explain
how to extract from our random dynamics a solution
to a PDE, describing the space­time evolution of the
density of our model.
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2 THE MODEL

To make our presentation simple, we consider as
macroscopic space the interval [0, 1]. Let 𝑛𝑛 be a scal­
ing parameter, we split that continuous space into in­
tervals of size 1/𝑛𝑛.

To an interval of the form [𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 we as­
sociate the microscopic position 𝑥𝑥 and then we have
a discrete space which is the microscopic space. Now
we define the random dynamics. Among the simplest
andmost widely studied IPS there is the SSEP, see e.g.
[12], whose dynamics can be described as follows. Af­
ter a certain random time, a particle decides to jump
to a position of the microscopic space. In SSEP, parti­
cles jump among sites under the exclusion rule, namely
each site can accommodate at most one particle, there­
fore, if a particle wants to jump to an occupied site,
that jump is forbidden. Interactions are to nearest­
neighbors (and this is why the process coins the name
simple) and the jump rates to left and right are iden­
tical (symmetric). Our toy model is the SSEP with an
open boundary, namely we attach two reservoirs that
can inject or remove particles from their neighbor po­
sitions. The time between jumps is exponentially dis­
tributed, which guarantees that this process is Marko­
vian, therefore its evolution can be entirely described
via its Markov generator. In the next subsection we
define it rigorously.

2.1 PROBABILISTIC DESCRIPTION

Consider the microscopic space Σ𝑛𝑛 ∶= {1, … , 𝑛𝑛 𝑛 𝑛𝑛,
called bulk, which corresponds to the macroscopic in­
terval [0, 1]. The construction of the SSEP evolving
on Σ𝑛𝑛 is done in the following way. To properly de­
fine the exchange dynamics, for each 𝑥𝑥 𝑥 𝑥𝑛𝑛, we call
𝜂𝜂𝜂𝜂𝜂𝜂 the occupation variable at site 𝑥𝑥: if 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 
(resp. 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  ) it means that site 𝑥𝑥 is empty (resp.
occupied). With this restriction, the state space of our
Markov process is Ω𝑛𝑛 ∶= {0, 1}Σ𝑛𝑛 . We denote by
𝜂𝜂 𝜂𝜂 𝑛𝑛 a configuration of particles. To each bond
of the form {𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥 with 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥      𝑥, we
associate a Poisson process of parameter 1, that we
denote by 𝑁𝑁𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡. Now we describe the boundary
dynamics. We artificially add the sites 𝑥𝑥 𝑥𝑥  and
𝑥𝑥 𝑥𝑥𝑥  that stand for the left and right reservoirs,
respectively. We associate two independent Poisson
Processes to each bond {0, 1} and {𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛𝑛 in the
following way: 𝑁𝑁0,1(𝑡𝑡𝑡 (resp. 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡𝑡) with param­

eter 𝛼𝛼𝛼𝛼−𝜃𝜃 (resp. 𝛿𝛿𝛿𝛿−𝜃𝜃) and 𝑁𝑁1,0(𝑡𝑡𝑡 (resp. 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡𝑡)
with parameter 𝛾𝛾𝛾𝛾−𝜃𝜃 (resp. 𝛽𝛽𝛽𝛽−𝜃𝜃). All the Poisson
processes described above are independent, so that
the probability that two of them take the same value
is equal to zero. This means that only one jump oc­
curs whenever there is a possible transition. Before
we proceed, we note that the role of the parameters
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼    𝛼 𝛼 is to fix the reservoirs’ density/current,
while the role of 𝜃𝜃 𝜃 ℝ is to tune the strength of the
reservoirs’ according to the scale parameter 𝑛𝑛. Taking,
for example, 𝜃𝜃 negative the reservoirs are strong and
for 𝜃𝜃 positive, they are weak and interactions between
the boundary and the bulk is weaker as the value of 𝜃𝜃
increases.

We observe that given the initial configuration of
the system plus the realization of all the Poisson pro­
cesses, it is straightforward to obtain the whole evolu­
tion of the system. The role of the Poisson processes
is to fix the random time between jumps. We show
an example in figure 1 where we consider 𝑛𝑛 𝑛 𝑛: an
initial condition is given namely 𝜂𝜂0 = 𝛿𝛿2, ie the con­
figuration with just a particle at site 2, together with
all the realizations of the Poisson processes.

In figure 2 we exhibit all the configurations that we
obtained from the initial configuration 𝜂𝜂0 = 𝛿𝛿2 and all
the realizations of the Poisson processes given in fig­
ure 1.

Wewarn the reader that belowwe indexed the con­
figurations in terms of the marks of the Poisson pro­
cesses and not in time, since ourMarkov chain evolves
in continuous time.

We denote by 𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥 the configuration obtained
from 𝜂𝜂 by swapping the values 𝜂𝜂𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  ,
that is 𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧  𝑧𝑧Σ𝑛𝑛⧵{𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧{𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
1)+𝟏𝟏  {𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧. On the other hand, when we see
a mark of a Poisson process from the boundary, for
example, 𝑁𝑁0,1(𝑡𝑡𝑡 (resp. 𝑁𝑁1,0), this means that we in­
ject (resp. remove) a particle at the position 𝑥𝑥 𝑥𝑥 ,
if this site is empty (resp. occupied), otherwise noth­
ing happens. More precisely, 𝜂𝜂1 is the configuration
obtained from 𝜂𝜂 by flipping the occupation variable at
1, that is 𝜂𝜂1(𝑧𝑧𝑧𝑧  𝑧𝑧Σ𝑛𝑛⧵{1}(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧{1}(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧

The exchange dynamics is described by the gener­
ator 𝐿𝐿𝑒𝑒𝑒𝑒, which acts on functions 𝑓𝑓 𝑓𝑓 𝑛𝑛 → ℝ as
𝐿𝐿𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓  ∑𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 where
𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜂𝜂𝜂 [𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥)−  𝑓𝑓𝑓𝑓𝑓𝑓] (2)

and the rates are

𝑐𝑐𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂    𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂    𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂
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Figure 1.— An initial configuration and marks of the 
Poisson clocks between each bond.

Figure 3.—Schematic description of dynamics of open SSEP.

Figure 2.—Configurations evolving according to the 
marks of the Poisson processes.

The left reservoir generator acts on functions
𝑓𝑓 𝑓 𝑓𝑛𝑛 → ℝ as

𝐿𝐿ℓ𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1
𝑛𝑛𝜃𝜃 {𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 [𝑓𝑓𝑓𝑓𝑓1)−  𝑓𝑓𝑓𝑓𝑓𝑓]

and the right reservoir𝐿𝐿𝑟𝑟 is defined analogously, with
1 replaced by 𝑛𝑛𝑛𝑛, 𝛼𝛼 by 𝛿𝛿 and 𝛾𝛾 by 𝛽𝛽. Finally, the open
SSEP dynamics is described by a superposition of the
two dynamics described above, the exchange and the

flip dynamics, so that its full generator is given by

𝐿𝐿SSEP = 𝐿𝐿ℓ + 𝐿𝐿𝑒𝑒𝑒𝑒 + 𝐿𝐿𝑟𝑟. (3)

Observe that the left and right reservoirs at differ­
ent densities (respectively 𝜌𝜌𝑎𝑎 = 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 and 𝜌𝜌𝑏𝑏 =
𝛿𝛿𝛿𝛿𝛿𝛿𝛿  𝛿𝛿𝛿) impose a flux of particles throughout the
system. See a picture below for an illustration of the
dynamics just defined.
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2.2 ALGEBRAIC DESCRIPTION

An interesting feature of some IPS is that their gener­
ators can be entirely described by the generators of a
suitable algebra, for our toy model this will be the Lie
algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. More of such constructions were intro­
duced in [10] and further developed in [4]. The Lie
algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 is a 3­dimensional vector space of trace­
less matrices together with the bilinear map [⋅, ⋅] ∶
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 called Lie bracket, which is
anti­symmetric, i.e. [𝑥𝑥𝑥 𝑥𝑥] = − [𝑦𝑦𝑦𝑦𝑦 ] and satisfies the
Jacobi identity, i.e. [𝑥𝑥𝑥 [𝑦𝑦𝑦 𝑦𝑦]]+[𝑦𝑦𝑦 [𝑧𝑧𝑧𝑧𝑧 ]]+[𝑧𝑧𝑧 [𝑥𝑥𝑥 𝑥𝑥]] =
0 for all 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥. We equip 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 with the ad­
joint map ∗ ∶ 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰, i.e. 𝑥𝑥 𝑥 𝑥𝑥∗ such that
(𝑥𝑥∗)

∗ = 𝑥𝑥 and [𝑥𝑥∗, 𝑦𝑦∗] = [𝑦𝑦𝑦𝑦𝑦 ]∗. Usually a basis for
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 is given by the Pauli matrices,

𝜎𝜎1 = (
0 1
1 0) , 𝜎𝜎2 = (

0 −𝑖𝑖
𝑖𝑖 𝑖 ) , 𝜎𝜎3 = (

1 0
0 −1) ,

which are hermitian and unitary. Such matrices sat­
isfy the following commutator and adjoint relations
[𝜎𝜎𝑗𝑗, 𝜎𝜎𝑗𝑗𝑗𝑗] = 2𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 and 𝜎𝜎∗

𝑗𝑗 = 𝜎𝜎𝑗𝑗 for 𝑗𝑗 𝑗 ℕ (mod 3).
We also introduce the quadratic element called
Casimir (which does not belong to 𝔰𝔰𝔰𝔰𝔰𝔰𝔰) as 𝐶𝐶 𝐶
𝜎𝜎2

1 + 𝜎𝜎2
2 + 𝜎𝜎2

3; it is central, i.e. it commutes with all
the elements of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 and it is self­adjoint. For our
purpose, it will be more convenient to introduce the
basis of real operators 𝐽𝐽 0, 𝐽𝐽 + and 𝐽𝐽 − which we call
generators of the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. They are given
by

𝐽𝐽 − ∶=
𝜎𝜎1 − 𝑖𝑖𝑖𝑖2

2
, 𝐽𝐽 + ∶=

𝜎𝜎1 + 𝑖𝑖𝑖𝑖2
2

, 𝐽𝐽 0 ∶=
𝜎𝜎3
2

,

and they satisfy the following commutation and ad­
joint relations [𝐽𝐽 0, 𝐽𝐽 ±] = ±𝐽𝐽 ±, [𝐽𝐽 +, 𝐽𝐽 −] = 2𝐽𝐽 0 and
(𝐽𝐽 0)∗ = 𝐽𝐽 0, (𝐽𝐽 +)∗ = 𝐽𝐽 −. The Casimir element in this
setting is 𝒞𝒞 𝒞𝒞𝒞𝒞𝒞  0)2 + 𝐽𝐽 +𝐽𝐽 − + 𝐽𝐽 −𝐽𝐽 + . Besides the
matrices representation, an equivalent representation
is given by the action on functions 𝑓𝑓 𝑓 {0, 1} → ℝ as

⎧⎪
⎨
⎪⎩

(𝐽𝐽 −𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = (1 − 𝜂𝜂𝑥𝑥)𝑓𝑓𝑓𝑓𝑓𝑥𝑥 + 1)
(𝐽𝐽 +𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = 𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑥𝑥 − 1)
(𝐽𝐽 0𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = (𝜂𝜂𝑥𝑥 − 1/2)𝑓𝑓𝑓𝑓𝑓𝑥𝑥)

where we made the convention 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓  .
The operators above are also known as angular mo­
mentum operators. We now show how to write the
open SSEP dynamics in this context. In particular, it
is verified that the exchange generator defined in (3)
can be written as the tensor product of the Casimir
element. For sites 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥  we get

𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐽𝐽 +
𝑥𝑥 𝐽𝐽 −

𝑥𝑥𝑥𝑥 + 𝐽𝐽 −
𝑥𝑥 𝐽𝐽 +

𝑥𝑥𝑥𝑥 + 2𝐽𝐽 0
𝑥𝑥 𝐽𝐽 0

𝑥𝑥𝑥𝑥 − 1/2 , (4)

and then summing over Σ𝑛𝑛 we obtain 𝐿𝐿𝑒𝑒𝑒𝑒.
A similar description holds true for the generators

of the boundary reservoirs,

𝐿𝐿ℓ = 1
𝑛𝑛𝜃𝜃 {𝛼𝛼 [𝐽𝐽 −

1 + 𝐽𝐽 0
1 − 1

2] + 𝛾𝛾 [𝐽𝐽 +
1 − 𝐽𝐽 0

1 − 1
2]}

and similarly𝐿𝐿𝑟𝑟 is obtained replacing the algebra gen­
erators acting on site 𝑛𝑛 𝑛𝑛 . Note that above the nota­
tion 𝐽𝐽 𝑎𝑎

𝑥𝑥 for 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    means that the generator is
acting on the occupation variable at site 𝑥𝑥 𝑥 𝑥𝑛𝑛. Why
is this algebraic description useful? In the next sec­
tion we see that, whenever it is possible to describe
a Markov generator using an algebra representation
then a useful property, duality, can be derived.

3 DUALITY FOR MARKOV GENERATORS

The advantage of dealing with a stochastic evolution
lies in the possibility to use probabilistic techniques
which considerably simplify the analysis of the system.
A powerful tool to deal with Markov processes is du-
ality theory, see [13]. This theory allows several sim­
plifications: in a nutshell, one can infer information
on a given process by using a simpler one, its dual.
For our toy model, we will see how to relate the open
SSEPwith a simpler systemwhere the open boundary
is turned into an absorbing boundary. Indeed, dual­
ity in the context of IPS allows “replacing” boundary
reservoirs, modeling birth and death processes, with
absorbing reservoirs which, as time goes to infinity,
will eventually absorb all the particles in the system. It
is due to this simplification that one can study proper­
ties such as the 𝑘𝑘−point correlation function of a non­
equilibrium system using properties of a dual system
consisting of only 𝑘𝑘 dual particles. The link between
these two processes, the original, denoted by 𝜂𝜂𝑡𝑡 and
with state space Ω, and its dual, denoted by ̂𝜂𝜂𝑡𝑡 and
with state space Ω̂, is provided by a set of so­called
duality functions 𝐷𝐷 𝐷𝐷𝐷   Ω̂ → ℝ , i.e. a set of observ­
ables that are functions of both processes and whose
expectations, with respect to the two randomness, sat­
isfy the following relationship for all 𝑡𝑡 𝑡 𝑡

𝔼𝔼𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝑡𝑡, ̂𝜂𝜂𝜂𝜂𝜂  𝔼̂𝔼 ̂𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡)] . (5)

Above 𝔼𝔼𝜂𝜂 (resp. 𝔼̂𝔼 ̂𝜂𝜂) is the expectation with respect to
the law of the 𝜂𝜂𝑡𝑡 process initialized at 𝜂𝜂 (resp. the ̂𝜂𝜂𝑡𝑡
process initialized at ̂𝜂𝜂). If the generators of the pro­
cesses are explicit, denoting by ℒ the generator of ̂𝜂𝜂𝑡𝑡
and by ̂ℒ the generator of its dual, ̂𝜂𝜂𝑡𝑡, then a duality
relation with duality function 𝐷𝐷 translates in saying

4
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that

(ℒ𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷)(𝜂𝜂𝜂 𝜂( ̂ℒ𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷)(̂𝜂𝜂𝜂 𝜂 (6)

In other words, the action ofℒ on the first variable of
𝐷𝐷 is equivalent to the action of ̂ℒ on the second vari­
able of 𝐷𝐷. This is when the algebra comes in. Prov­
ing the above relation knowing just the definition of
the original process 𝜂𝜂𝑡𝑡 by its generator would be very
complicated, however with the algebraic description
of 𝜂𝜂𝑡𝑡 one can have a feeling of what to look for. The
idea is that we can decompose the Markov generator
using the algebra generators as building blocks. This
simplifies the analysis because instead of looking for a
duality function, one looks for an intertwiner function
between two representations of the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰.
Such intertwiner function between the𝐽𝐽 0, 𝐽𝐽 −, 𝐽𝐽 + rep­
resentations yields the duality function. Given the
special features of our toy model, the duality function
will turn out to be product of indicator functions, for
which the direct computation is not hard. Neverthe­
less, for more general dynamics which, for example,
allows more than a particle per site, the duality func­
tion has a more complicated form and the aforemen­
tioned decomposition brings advantages in the proof
of the duality relationship.

3.1 DUALITY FOR OPEN SSEP

In the following result we give all the ingredients to
find a duality relation for our model: it states that,
the open SSEP is dual, via a moment duality function
𝐷𝐷, to a Markov process with the same exclusion dy­
namics inΣ𝑛𝑛 but with only absorbing reservoirs at the
boundary.

THEOREM 1 (DUALITY FOR OPEN SSEP).— For the
open SSEP with generator given in 3, the duality re­
lation in (6) is verified for 𝐷𝐷 𝐷 𝐷𝑛𝑛 × Ω̂𝑛𝑛 → ℝ given
by

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷 (𝜌𝜌𝑎𝑎)
̂𝜂𝜂0

∏
𝑥𝑥𝑥𝑥𝑛𝑛

1{𝜂𝜂𝑥𝑥≥ ̂𝜂𝜂𝑥𝑥} (𝜌𝜌𝑏𝑏)
̂𝜂𝜂𝑛𝑛 (7)

where Ω̂𝑛𝑛 ∶= ℕ0 × Ω𝑛𝑛 × ℕ0 and the dual generator
𝐿̂𝐿 𝐿 𝐿̂𝐿ℓ + 𝐿̂𝐿0 + 𝐿̂𝐿𝑟𝑟 acts on functions 𝑓𝑓 𝑓 Ω̂𝑛𝑛 → ℝ as
𝐿̂𝐿𝑒𝑒𝑒𝑒𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   ∑𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓  in the bulk, where𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥
is as in (2); and

𝐿̂𝐿ℓ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   1
𝑛𝑛𝜃𝜃 (𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  [𝑓𝑓𝑓𝑓𝑓𝑓 1) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ]

and analogously for the right reservoir with 𝛼𝛼 𝛼 𝛼𝛼 re­
placed by 𝛽𝛽 𝛽 𝛽𝛽.

For the interested reader, a rigorous proof of this the­
orem (for 𝜃𝜃 𝜃𝜃 ) can be found in [5] and it is not
hard to generalize it for any value of the parameter 𝜃𝜃.

Note that the action in the bulk of the dual generator
has the same dynamics of the original one, while the
boundary generators only absorb particles from sites
1 and 𝑛𝑛 𝑛𝑛 . The plan is to describe the dual process
with another 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 and find the duality function as
intertwiner function of the algebra generators. This
is given by the following representation which act on
the same functions 𝑓𝑓 𝑓 {0,1 } → ℝ as

⎧⎪
⎪
⎨
⎪
⎪⎩

( ̂𝐽𝐽 −𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=̂𝜂𝜂  𝑥𝑥𝑓𝑓 𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)
( ̂𝐽𝐽 +𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=(1   − ̂𝜂𝜂𝑥𝑥)𝑓𝑓 𝑓𝑓𝑓𝑓 𝑥𝑥 + 1) + (2̂𝜂𝜂 𝑥𝑥 − 1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)

− ̂𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)
( ̂𝐽𝐽 0𝑓𝑓 𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=(̂𝜂𝜂   𝑥𝑥 − 1/2)𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥) − ̂𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)

where, again, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓  . One can check
that the above generators are a representation for the
Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. Moreover, since the Casimir is irre­
ducible in any representation we can describe the dual
process in the same way as in equation (4). At this
point one can see that

𝑔𝑔𝑔𝑔𝑔𝑥𝑥,̂𝜂𝜂 𝑥𝑥)=
𝜂𝜂𝑥𝑥!

(𝜂𝜂𝑥𝑥 − ̂𝜂𝜂𝑥𝑥)!
Γ(2 − ̂𝜂𝜂𝑥𝑥)1{𝜂𝜂𝑥𝑥≥ ̂𝜂𝜂𝑥𝑥}

satisfy
𝐽𝐽 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑥𝑥)(𝜂𝜂𝑥𝑥)=  ̂𝐽𝐽 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑥𝑥,⋅)(̂𝜂𝜂  𝑥𝑥)

for 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , i.e. 𝑔𝑔𝑔𝑔𝑔𝑥𝑥,̂𝜂𝜂 𝑥𝑥) intertwines two repre­
sentations of the 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 algebra. Note that since both
𝜂𝜂𝑥𝑥,̂𝜂𝜂 𝑥𝑥 ∈ {0,1 } the above function correspond to the
duality function inΩ𝑛𝑛. For the left reservoir generator
(the right is analogous) one has to check that

(𝐿𝐿ℓ𝐷𝐷 (⋅,̂𝜂𝜂 )) (𝜂𝜂𝜂 𝜂 (𝐿̂𝐿ℓ𝐷𝐷 (𝜂𝜂𝜂𝜂 )) (̂𝜂𝜂𝜂𝜂
namely that

𝛼𝛼𝛼𝛼𝛼𝛼𝛼  1)
𝑛𝑛𝜃𝜃 𝜌𝜌 ̂𝜂𝜂0

𝑎𝑎 [1{𝜂𝜂1+1≥ ̂𝜂𝜂1} − 1{𝜂𝜂1≥ ̂𝜂𝜂1}]

−
𝛾𝛾𝛾𝛾1

𝑛𝑛𝜃𝜃 𝜌𝜌 ̂𝜂𝜂0
𝑎𝑎 [1{𝜂𝜂1−1≥ ̂𝜂𝜂1} − 1{𝜂𝜂1≥ ̂𝜂𝜂1}]

=
(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 1

𝑛𝑛𝜃𝜃 [𝜌𝜌 ̂𝜂𝜂0+1
𝑎𝑎 1{𝜂𝜂1≥ ̂𝜂𝜂1−1} − 𝜌𝜌 ̂𝜂𝜂0

𝑎𝑎 1{𝜂𝜂1≥ ̂𝜂𝜂1}] ,

which is verified since both 𝜂𝜂1 and ̂𝜂𝜂1 are either 0 or 1.

4 STATIONARY PROBABILITY MEASURE
AND CORRELATIONS VIA DUALITY

The open SSEP is an irreducible continuous time
Markov process with finite state space, therefore, by
a classical theoremwe know that there exists a unique
stationary measure, that we denote by 𝜇𝜇𝑠𝑠𝑠𝑠. When
𝜌𝜌 𝜌 𝜌𝜌𝑎𝑎 = 𝜌𝜌𝑏𝑏 the stationary measure of our pro­
cess is an homogeneous product Bernoulli measure
with parameter 𝜌𝜌. Moreover, this measure is also re­
versible. Nevertheless, when the equality 𝜌𝜌 𝜌 𝜌𝜌𝑎𝑎 = 𝜌𝜌𝑏𝑏
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fails, the invariant measure is no longer of product
form. Heuristically speaking, the density/current at
the reservoirs has a different intensity with respect to
left/right reservoirs intensity and, therefore, there is
an induction of a current flow of particles in the sys­
tem. Take, for example, 𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼 and 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾, so
that particles are injected in the system from the right
reservoir and only exit through the left one. Belowwe
explain briefly how to get some information regard­
ing this measure. Without loss of generality, in order
to get information about the stationarymeasure it will
be easier to consider the special case where the reser­
voirs’ rates satisfy 𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾 and 𝛽𝛽𝛽𝛽𝛽𝛽𝛽  . From here
we assume that this is the case. Under these condi­
tions the density of the reservoirs coincide with their
injection rate.

4.1 APPLICATION OF DUALITY

The peculiarity of having a dual process where the
boundary becomes only absorbing relies on the fact
that, even if two extra sites are considered, the to­
tal mass of the dual process can only decrease during
the time evolution. As time increases, the bulk will
become empty and all the dual particles will eventu­
ally stay either on the left or the right reservoirs. In
particular, we now show how duality connects the
moments of the initial process 𝜂𝜂 with the absorption
probabilities of the dual process ̂𝜂𝜂. This is done via
the following formula

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷 𝐷

𝑘𝑘

∑
𝑚𝑚𝑚𝑚

𝜌𝜌𝑚𝑚
𝑎𝑎 𝜌𝜌𝑘𝑘𝑘𝑘𝑘

𝑏𝑏 ℙ ̂𝜂𝜂(𝑚𝑚𝑚𝑚  (7)

where 𝑘𝑘 𝑘 ∑𝑛𝑛
𝑥𝑥𝑥𝑥 ̂𝜂𝜂𝑥𝑥 is the total number of dual parti­

cles and ℙ ̂𝜂𝜂(𝑚𝑚𝑚 is the probability that 𝑚𝑚 particles are
absorbed at the left reservoir (and the remaining 𝑘𝑘𝑘𝑘𝑘
go to the right reservoir) starting from the configura­
tion ̂𝜂𝜂. The proof relies on the fact that, as 𝑡𝑡 𝑡 𝑡, all
the dual particles will be at sites 0 or 𝑛𝑛. More details
can be found in [5] and [6]. Indeed,

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷𝐷𝐷

𝑡𝑡𝑡𝑡
𝔼𝔼𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝑡𝑡, ̂𝜂𝜂𝜂𝜂𝜂

lim
𝑡𝑡𝑡𝑡

𝔼𝔼 ̂𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝑡𝑡)]=  𝔼𝔼 ̂𝜂𝜂𝜌𝜌 ̂𝜂𝜂∞(0)
𝑎𝑎 𝜌𝜌 ̂𝜂𝜂∞(𝑛𝑛𝑛

𝑏𝑏 =

𝑘𝑘

∑
𝑚𝑚𝑚𝑚

𝜌𝜌𝑚𝑚
𝑎𝑎 𝜌𝜌𝑘𝑘𝑘𝑘𝑘

𝑏𝑏 ℙ ̂𝜂𝜂( ̂𝜂𝜂∞(0)=  𝑚𝑚𝑚𝑚𝑚𝑚 ∞(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     𝑛

Suppose we start with a dual configuration ̂𝜂𝜂 𝜂𝜂𝜂 𝑥𝑥1
+

𝛿𝛿𝑥𝑥2
+… 𝛿𝛿𝑥𝑥𝑘𝑘

, namely we choose to put a dual particle in
each site 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘. In this case equation (7) reads

as

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷
𝑘𝑘

∏
𝑖𝑖𝑖𝑖

𝜂𝜂𝑥𝑥𝑖𝑖
,

which is exactly the function of our interest for the ini­
tial process 𝜂𝜂𝑡𝑡. We now show how to find the 2­point
correlation function via the absorption probabilities
of two dual exclusion particles. Note that equation
(7) specialized for 𝑘𝑘 𝑘𝑘  and ̂𝜂𝜂 𝜂𝜂𝜂 𝑥𝑥 + 𝛿𝛿𝑦𝑦 reads

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝜂𝜂𝑥𝑥𝜂𝜂𝑦𝑦]=  𝜌𝜌2

𝑏𝑏ℙ𝑥𝑥𝑥𝑥𝑥(0)+𝜌𝜌𝑎𝑎𝜌𝜌𝑏𝑏ℙ𝑥𝑥𝑥𝑥𝑥(1)+𝜌𝜌2
𝑎𝑎ℙ𝑥𝑥𝑥𝑥𝑥(2) (8)

where ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚 for 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is the probability that
𝑚𝑚 particles are absorbed on the left reservoir starting
with a particle in 𝑥𝑥 and a particle in 𝑦𝑦. Before going
to the two particles’ problem we show how to solve
the absorption probabilities for just one particle in the
same setting.

4.2 ABSORPTION PROBABILITY FOR ONE DUAL
WALKER: DRUNKARD’S WALK

This is a common exercise in probability, known as
the drunkard’s walk. Recall our dual process, imag­
ine that site 0 is the drunk man’s house and site 𝑛𝑛 is
a dangerous cliff. The man is at site 𝑥𝑥 𝑥 𝑥𝑛𝑛 and he
takes random steps to the left and to the right with
the same probability: what is his chance of escaping
the cliff? The house and the cliff are absorbing sites
in the sense that once he reaches one of them, he will
stay there forever. The jump rates are described by
the dual generator 𝐿̂𝐿SSEP. Let us call 𝑝𝑝𝑥𝑥 ∶= ℙ𝑥𝑥(1) the
probability that he reaches home starting at 𝑥𝑥. Then
obviously 𝑝𝑝0 =1  and 𝑝𝑝𝑛𝑛 =0 . For 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     𝑥
the probability of jumping right or left is the same,
1/2, while if he is in 1 (resp. 𝑛𝑛𝑛𝑛), goes to 0 (resp. 𝑛𝑛)
with probability 1/(𝑛𝑛𝜃𝜃 + 1) and to 2 (resp. 𝑛𝑛 𝑛 𝑛) with
the complement probability, 𝑛𝑛𝜃𝜃/(𝑛𝑛𝜃𝜃 + 1). Mathemati­
cally we have to solve the following system, which is
found by conditioning on the first possible jump of
the drunk man:

⎧
⎪
⎨
⎪
⎩

𝑝𝑝1 = 1
𝑛𝑛𝜃𝜃+1

+ 𝑛𝑛𝜃𝜃

𝑛𝑛𝜃𝜃+1
𝑝𝑝2

𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑥𝑥𝑥𝑥+𝑝𝑝𝑥𝑥𝑥𝑥
2

for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     𝑥
𝑝𝑝𝑛𝑛𝑛𝑛 = 𝑛𝑛𝜃𝜃

𝑛𝑛𝜃𝜃+1
𝑝𝑝𝑛𝑛𝑛𝑛 .

A simple computation shows that last identities can
be rewritten in such a way that 𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝 is the solu­
tion of (ℬ𝜃𝜃

𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  , where the operator ℬ𝜃𝜃
𝑛𝑛 acts on
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functions 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓 𝑓𝑓𝑓 𝑓 ℝ as

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1

2
Δ𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥𝑥

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2(𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑛𝑛2

𝑛𝑛𝜃𝜃 (𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛2

𝑛𝑛𝜃𝜃 (𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

From this we know that, for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥, we
are looking for an harmonic function of the one di­
mensional discrete laplacian. Therefore 𝑝𝑝𝑥𝑥 is a poly­
nomial in 𝑥𝑥, i.e. 𝑝𝑝𝑥𝑥 = 𝐴𝐴𝐴𝐴𝐴  𝐴𝐴, for 𝐴𝐴𝐴 𝐴𝐴 𝐴 ℝ for
𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥.

By using the boundary conditions, we find 𝐴𝐴 𝐴
−1/(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃) and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵      𝜃𝜃)/(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃),
so that, for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

𝑝𝑝𝑥𝑥 =−  𝑥𝑥
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃 (9)

We now turn to the absorption probabilities of two
exclusion processes.

4.3 ABSORPTION PROBABILITIES FOR TWO DUAL
WALKERS

The idea is the same as before, we condition on the
first possible jump and we obtain a difference equa­
tionwhich is close to a two dimensional laplacianwith
some boundary conditions. Recall that ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚, for
𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is the probability that 𝑚𝑚 particles are ab­
sorbed on the left boundary starting from the config­
uration with one particle in 𝑥𝑥 and one particle in 𝑦𝑦. To
simplify notation we use 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 ∶= ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚 and we ne­
glect the dependence on 𝜃𝜃, 𝑛𝑛 and 𝑚𝑚. Conditioning on
the first jump we get the following identities

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 1
4
[𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥]

for 1 ≠ 𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥  𝑥 𝑥
𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 1

2
[𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥]

for 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥
𝑝𝑝1,𝑦𝑦 = 𝑛𝑛𝜃𝜃

1+3𝑛𝑛𝜃𝜃 [𝑝𝑝2,𝑦𝑦 + 𝑝𝑝1,𝑦𝑦𝑦𝑦 + 𝑝𝑝1,𝑦𝑦𝑦𝑦]
+ 1

1+3𝑛𝑛𝜃𝜃 𝑝𝑝0,𝑦𝑦 for 2 < 𝑦𝑦𝑦𝑦𝑦𝑦𝑦   
𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑛𝑛𝜃𝜃

1+3𝑛𝑛𝜃𝜃 [𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥]
+ 1

1+3𝑛𝑛𝜃𝜃 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 for 2 < 𝑦𝑦𝑦𝑦𝑦𝑦𝑦   
𝑝𝑝1,𝑛𝑛𝑛𝑛 = 1

2+2𝑛𝑛𝜃𝜃 [𝑝𝑝0,𝑛𝑛𝑛𝑛 + 𝑝𝑝1,𝑛𝑛] 𝑛𝑛𝜃𝜃

2+2𝑛𝑛𝜃𝜃 [𝑝𝑝2,𝑛𝑛𝑛𝑛 + 𝑝𝑝1,𝑛𝑛𝑛𝑛]
𝑝𝑝1,2 = 1

1+𝑛𝑛𝜃𝜃 𝑝𝑝0,2 + 𝑛𝑛𝜃𝜃

1+𝑛𝑛𝜃𝜃 𝑝𝑝1,3

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1
1+𝑛𝑛𝜃𝜃 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑛𝑛𝜃𝜃

1+𝑛𝑛𝜃𝜃 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.
(10)

We observe that the above identities do not depend
on the choice of 𝑚𝑚, nevertheless, as we will see below,

the boundary conditions satisfied by 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 do depend
on 𝑚𝑚.

As above, by introducing the operator 𝒪𝒪𝜃𝜃
𝑛𝑛 , that

we define below, we can write the above system in
a concise form. The operator acts on functions 𝑓𝑓 𝑓
{0,⋯,𝑛𝑛𝑛    𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     ℝ in the following way: for
𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

(𝒪𝒪𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓𝑓𝑓

+𝑎𝑎 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓  𝑓
− (𝑎𝑎𝑥𝑥𝑥𝑥 + 2 −𝑎𝑎 𝑦𝑦𝑦𝑦)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓

and for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

(𝒪𝒪𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓

+𝑎𝑎 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓
− (𝑎𝑎𝑥𝑥𝑥𝑥 +𝑎𝑎 𝑥𝑥𝑥𝑥)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓

The coefficients satisfy 𝑎𝑎0 =𝑎𝑎 𝑛𝑛 = 1
𝑛𝑛𝜃𝜃 , otherwise

𝑎𝑎𝑥𝑥 = 1. We know that, conditioning on the fist jump,
𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  satisfies (𝒪𝒪𝜃𝜃

𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . The above
equation tells us that we are looking for the harmonic
function of a two dimensional laplacian which is re­
flected if 𝑥𝑥 𝑥 𝑥𝑥 and deformed by a factor that depends
on 𝜃𝜃 if we are close to the boundary. A general solu­
tion for 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is of the form 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚𝑚
𝐴𝐴𝑚𝑚𝑥𝑥𝑥𝑥𝑥  𝑚𝑚𝑦𝑦𝑦  𝑦𝑦𝑚𝑚𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑚𝑚. The twelve unknown con­
stants are found by using the boundary conditions,
the law of total probability, some geometric symme­
tries because thewalk gives symmetric jumps and also
the previous result regarding the drunkard’swalk. For
𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2) satisfies

⎧⎪
⎨
⎪⎩

𝑝𝑝0,𝑦𝑦(2)∶=  𝑝𝑝𝑦𝑦(1)=  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝0,0(2)∶=  1
𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)∶=0 

For 𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0) satisfies

⎧⎪
⎨
⎪⎩

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)∶=  𝑝𝑝𝑥𝑥(0)=  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝𝑛𝑛𝑛𝑛𝑛(0)∶=  1
𝑝𝑝0,𝑦𝑦(0)∶=0 

For 𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1) satisfies

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑝𝑝0,𝑦𝑦(1)∶=  𝑝𝑝𝑦𝑦(0)=  𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1)∶=  𝑝𝑝𝑥𝑥(1)=  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝0,𝑛𝑛(1)∶=  1
𝑝𝑝0,0(1)=  𝑝𝑝𝑛𝑛𝑛𝑛𝑛(1)∶=0 

Where the 𝑝𝑝𝑥𝑥(1) is the probability found in the previ­
ous section and 𝑝𝑝𝑥𝑥(0)=  1 − 𝑝𝑝𝑥𝑥(1), its complement.
Using the last three equations of (10) together with
the boundary conditions of each absorbed probability
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we can write for all 𝑚𝑚 𝑚 𝑚𝑚 𝑚𝑚 𝑚, the probability 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚
in terms of the 𝐶𝐶𝑚𝑚’s only. Now we consider the fol­
lowing identity given by symmetry arguments

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)=  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0)
which allows immediately to identify 𝐶𝐶 𝐶𝐶 𝐶𝐶2 = 𝐶𝐶0.
Using the law of total probability:

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)=1 
we get 𝐶𝐶1 =−2 𝐶𝐶 . And, finally, using the condition
for 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1):

2𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1)=  𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1),
we find that 𝐶𝐶 𝐶 1

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃)(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃)
. For sake of com­

pleteness we write below the explicit values of the
three absorption probabilities.

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)=  (𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)=  (𝑥𝑥 𝑥𝑥𝑥𝑥𝑥   𝜃𝜃)(𝑦𝑦𝑦𝑦𝑦𝑦𝑦    𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1)=  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥𝑥𝑥𝑥
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

+ 2(𝑛𝑛𝜃𝜃 −1) (1 + 𝑛𝑛 𝑛 𝑛𝑛𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

.

At this point one can easily find the stationary correla­
tion by plugging the above result into equation (8).
All the computations presented above are in agree­
ment with those obtained by another method, called
the matrix ansatz product [7], where the stationary
correlations are also found, for details we refer the
reader to [8]. An intuitive representation of the dy­
namics of two dual exclusion particles on {0,1,  … , 𝑛𝑛𝑛
is given in the picture below. This dynamics can al­
ways be represented by the dynamics of a single par­
ticle which is performing a symmetric random walk
but now evolving inside the two dimensional simplex.
The red points are the traps where the random walk
is absorbed forever. They represent the three possi­
ble ways that two dual exclusion particles can be ab­
sorbed in the boundary of the lattice {0,1,  … , 𝑛𝑛𝑛. If
the randomwalk reaches the vertical cathetus itmeans
the leftmost exclusion particle has been absorbed in 0,
while if it reaches the horizontal cathetus, the right­
most exclusion particle has been absorbed in 𝑛𝑛. Note
that one of these two events has to happen in order
that the randomwalk hits one of the three traps. Once
the random walk reaches one of the two cathetus it
cannot leave that cathetus, since in the dynamics of
the two exclusion one particle is already absorbed. On
the cathethus the dynamics of the two dimensional
random walk is exactly the same as the one of the one

dimensional random walk with absorbing boundary,
whose absorption probability is given by the drunk­
ard’s walk. Note that since two exclusion particles
cannot be on the same site, we removed the diagonal
𝑦𝑦𝑦𝑦𝑦  , while the upper diagonal 𝑦𝑦𝑦𝑦𝑦𝑦𝑦     represents
the sites where the two exclusion particles are neigh­
bors.

We observe that these arguments can be ex­
tended to higher point correlations functions like
𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠

[𝜂𝜂𝑥𝑥1
⋯ 𝜂𝜂𝑥𝑥𝑘𝑘

] and also to higher dimensions, but for
the purposes of this article we decide to present only
the one­dimensional case and the two­point correla­
tion function.

5 THE EVOLUTION OF DENSITY

The dynamics described above in different ways, if
not in the presence of stochastic reservoirs, would con­
serve one quantity: the number of particles. More pre­
cisely, starting from a configuration 𝜂𝜂0 with 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘 
particles, at any time 𝑡𝑡 we would see exactly the same
number of particles on 𝜂𝜂𝑡𝑡. Adding the stochastic reser­
voirs, this conservation law is destroyed and the goal
is to see the effect at the macroscopic level of adding
reservoirs to the system. We define then a random
measure 𝜋𝜋𝑛𝑛 that gives weight 1/𝑛𝑛 to each particle as

𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂  1
𝑛𝑛

𝑛𝑛𝑛𝑛

∑
𝑥𝑥𝑥𝑥

𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝑥𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑𝑑

which is a positive measure with total mass bounded
by 1. We assume that we start our process 𝜂𝜂𝑡𝑡 from
a measure 𝜇𝜇𝑛𝑛 for which the following result is true:
𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂 converges, as 𝑛𝑛 𝑛 𝑛𝑛, to the measure
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔     ℝ is a mea­
surable function. Observe that 𝜋𝜋𝑛𝑛 is a random mea­
sure while 𝜋𝜋 is deterministic. The above convergence
is in the weak sense and, by the randomness of 𝜋𝜋𝑛𝑛,
it is also in probability with respect to 𝜇𝜇𝑛𝑛, more pre­
cisely, 𝜇𝜇𝑛𝑛 is such that, for any 𝛿𝛿 𝛿 𝛿 and any function
𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  it holds

lim
𝑛𝑛

𝜇𝜇𝑛𝑛(𝜂𝜂 𝜂 |𝜋𝜋
𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂   𝜂𝜂𝜂𝜂𝜂𝜂  𝜂| >𝛿𝛿 ) =0 . (11)

Above ⟨⋅, ⋅⟩ denotes the inner product in 𝐿𝐿2[0,1 ] and
𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  denotes the integral of 𝑓𝑓 with respect to
the measure 𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂. The goal is then to show that
the same result holds true at any later time 𝑡𝑡, but the
limit measure is given by 𝜋𝜋𝑡𝑡(𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , where
the density 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  is the solution of a PDE. This result
is known in the literature as hydrodynamic limit and
the PDE is the hydrodynamic equation. In the case of
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the open SEEP we have the following result.

THEOREM 2 (HYDRODYNAMICS FOR SSEP).—
Starting from 𝜇𝜇𝑛𝑛 as described above i.e. satisfying
(11) for a certain measurable function 𝑔𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔 ℝ;
the trajectory of random measures 𝜋𝜋𝑛𝑛

𝑡𝑡 (𝜂𝜂𝑡𝑡𝑡𝑡2 , 𝑑𝑑𝑑𝑑𝑑 con­
verges, as 𝑛𝑛 𝑛 𝑛𝑛, to the trajectory of determin­
istic measures given by 𝜋𝜋𝑡𝑡(𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑, where
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  is the unique weak solution of the heat equa­
tion 𝜕𝜕𝑡𝑡𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   2

𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  starting from 𝑔𝑔 and with:

• Dirichlet boundary conditions 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝑎𝑎 and
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝑏𝑏, for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃 𝜃;

• Robin boundary conditions 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌 𝜌
𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 𝛾𝛾𝛾𝑎𝑎) and 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑏𝑏−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 ,
for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃𝜃 ;

• Neumann boundary conditions 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 
𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   , for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃𝜃 .

The proof of the previous theorem, by using the en­
tropy method developed in [11], can be seen in [1] for
the regime 𝜃𝜃 𝜃 𝜃 and in [2] for the regime 𝜃𝜃 𝜃 𝜃. We
observe that above the time scale has been re­scaled
to 𝑡𝑡𝑡𝑡2, which is the time scale for which the evolution
of the density is non­ trivial, known as diffusive time
scale. What if one takes shorter time scales of the form
𝑛𝑛𝑠𝑠 with 𝑠𝑠 𝑠𝑠 ? Then we do not see any space/time
evolution of 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜌 As a consequence of the previous
result we see that on a strong action regime of the
reservoir dynamics, the density profile is fixed at the
boundary; while on the weak action regime, the space
derivative (current) of the profile becomes fixed.

6 HYDROSTATICS AND CORRELATION
FUNCTIONS

The reader now might ask about the stationary mea­
sure. Can we obtain the previous result starting from
the measure 𝜇𝜇𝑠𝑠𝑠𝑠? This result is know in the literature
as hydrostatic limit and to recover it from last theorem
one just has to derive (11) for a certain function 𝑔𝑔. The
candidate is exactly the stationary solution of the cor­
responding PDE, which in the cases above is of the
form ̄𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    , where 𝑎𝑎 and 𝑏𝑏 are fixed by the
boundary conditions. To prove the result we need two
things:

1. Define for 𝑥𝑥 𝑥 𝑥𝑛𝑛 the discrete profile 𝜌𝜌𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥𝑥

𝔼𝔼𝜇𝜇𝑛𝑛
[𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥 and extend it to the boundary by set­

ting 𝜌𝜌𝑛𝑛
𝑡𝑡 (0)=𝜌𝜌  𝑎𝑎, 𝜌𝜌𝑛𝑛

𝑡𝑡 (𝑛𝑛𝑛𝑛𝑛𝑛  𝑏𝑏. Taking 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝑠𝑠𝑠𝑠,

we need to know that the stationary discrete pro­
file 𝜌𝜌𝑛𝑛(𝑥𝑥𝑥 is close to ̄𝜌𝜌𝜌 𝑥𝑥

𝑛𝑛
). One way to do it is

fromKolmogorov’s equation, inwhich one finds
that it solves the equation

𝜕𝜕𝑡𝑡𝜌𝜌𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥𝑥𝑥  𝑥𝜃𝜃

𝑛𝑛 𝜌𝜌𝑛𝑛
𝑡𝑡 )(𝑥𝑥𝑥𝑥  𝑥𝑥 𝑥 𝑥𝑛𝑛 , 𝑡𝑡 𝑡𝑡

where the operator ℬ𝜃𝜃
𝑛𝑛 was defined in previ­

ously.

Observe that the above equation is closed in
terms of 𝜌𝜌𝑛𝑛

𝑡𝑡 (⋅), this is a consequence of the fact
that the generator of the dynamics does not in­
crease the degree of functions. A simple compu­
tation allows to derive the stationary solution of
the previous equation and to show that it is close
to ̄𝜌𝜌𝜌𝜌𝜌. Alternatively, we could use the results we
obtained by duality which give

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  𝑏𝑏ℙ𝑥𝑥(0)+𝜌𝜌  𝑎𝑎ℙ𝑥𝑥(1). (12)

From (9) we conclude that

𝜌𝜌𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥  𝛽𝛽𝛽𝛽𝛽 

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛
𝑥𝑥𝑥 𝛽𝛽𝛽𝛽𝛽 

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛
(𝑛𝑛𝜃𝜃−1)+𝛼𝛼𝛼

(13)
from where we can easily check that

lim
𝑛𝑛𝑛𝑛𝑛

max
𝑥𝑥𝑥𝑥𝑛𝑛

|𝜌𝜌𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥

𝑛𝑛
)| =0.

2. We need to study the behavior of the two­point
correlation function defined generally by

𝜑𝜑𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  𝔼𝔼𝜇𝜇𝑛𝑛

[ ̄𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡2(𝑦𝑦𝑦𝑦𝑦
where ̄𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥  𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥  𝑛𝑛

𝑡𝑡 (𝑥𝑥𝑥 and show that,
for 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝑠𝑠𝑠𝑠, it vanishes as 𝑛𝑛 𝑛 𝑛𝑛. As for the
discrete profile, we can also apply Kolmogorov’s
equation and derive a discrete equation for the
evolution of this function and then obtain its sta­
tionary solution. Alternatively, we could use the
results we obtained by duality from where we
can get the explicit expression for the stationary
correlations. A simple, but long, computation
shows that

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  𝔼𝔼𝑛𝑛

𝜇𝜇𝑠𝑠𝑠𝑠
[ ̄𝜂𝜂𝜂𝜂𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂

− (𝛽𝛽𝛽𝛽𝛽𝛽  2(𝑥𝑥 𝑥𝑥𝑥 𝜃𝜃 −1) (𝑛𝑛 𝑛𝑛𝑛  𝑛 𝑛𝑛𝜃𝜃 −1)
(2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛𝑛 2(2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛 𝑛𝑛

from where we conclude that

max
𝑥𝑥𝑥𝑥𝑥

|𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 𝑛𝑛𝑛𝑛𝑛 0.

Even if for hydrostatics it is enough to know the order
of decay of 𝜑𝜑𝑛𝑛

𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥, thanks to the approach shown
above we were able to write the actual form of the
two point correlation function. We note that from the
previous identity we can obtain the following relation­
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ship

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥 (𝛽𝛽 𝛽 𝛽𝛽𝛽2

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛 𝑛
𝑝𝑝𝑥𝑥(0)𝑝𝑝𝑦𝑦(1)

where 𝑝𝑝𝑥𝑥(1) is given in (9). We also note that for
𝜃𝜃 𝜃𝜃  the above identity becomes

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

𝑛𝑛 𝑛𝑛
𝐺𝐺Dir

(
𝑥𝑥
𝑛𝑛

, 𝑦𝑦
𝑛𝑛)

where𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is theGreen function of the
2­dimensional laplacian on {(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢
reflected on the line 𝑢𝑢 𝑢 𝑢𝑢 and with homogeneous
Dirichlet boundary conditions, that is 𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢 is the
solution of

Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢

where for 𝑢𝑢 𝑢 𝑢𝑢,
Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢2

𝑢𝑢𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢2
𝑣𝑣𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

and for 𝑢𝑢 𝑢 𝑢𝑢,
Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑣𝑣𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

and 𝐺𝐺Dir(0,𝑣𝑣𝑣𝑣𝑣𝑣   Dir(𝑢𝑢𝑢𝑢𝑢𝑢𝑢   . We get the scaling
form

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥2𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

for the continuous correspondents 𝑥𝑥
𝑛𝑛

→ 𝑢𝑢 and 𝑦𝑦
𝑛𝑛

→𝑣𝑣 .
We now see what happens for the cases when 𝜃𝜃 𝜃𝜃 .
For 0 < 𝜃𝜃 𝜃𝜃 , a simple computation shows that the
limit above also holds. For 𝜃𝜃 𝜃𝜃  we get

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

9
𝐺𝐺Rob(𝑢𝑢𝑢 𝑢𝑢𝑢

where 𝐺𝐺Rob(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  1
3
(𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   𝑢𝑢𝑢 and corresponds

to the Green function of the 2­dimensional laplacian
defined above, but with homogeneous Robin bound­
ary conditions given by 𝜕𝜕𝑢𝑢𝐺𝐺Rob(0,𝑣𝑣𝑣𝑣𝑣𝑣   Rob(0,𝑣𝑣𝑣  and
𝜕𝜕𝑣𝑣𝐺𝐺Rob(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   Rob(𝑢𝑢𝑢𝑢𝑢 . Finally, for 𝜃𝜃 𝜃 𝜃, if we
use the same scaling as above, we see that

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥

Nevertheless, a simple computation shows that

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝜃𝜃𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

8
(𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   𝑢𝑢𝑢

for the continuous correspondents 𝑥𝑥𝑥𝑥𝑥𝜃𝜃 → 𝑢𝑢 and
𝑦𝑦𝑦𝑦𝑦𝜃𝜃 →𝑣𝑣 ; and this is the correct order to see a non­
trivial limit in the case of very slow boundary. For
higher point correlation functions, we can use exactly
the same argument as above in order to obtain the
exact rates of convergence of the corresponding sta­
tionary correlations. Moreover, we conjecture that we
can write the stationary 𝑘𝑘­th point correlation func­
tion𝜑𝜑𝑛𝑛

𝑠𝑠𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) as a product between a scaling fac­

tor and the absorption probabilities of 𝑘𝑘 independent
one­dimensional random walks. We also believe that
this argument could be extended to other models for
which duality is known but all this is left for a future
work.

Recently, it has been developed a method in [9] to
derive the hydrodynamic and the hydrostatic limits in
presence of duality for a similar model called the sym­
metric inclusion process, wheremany particles can oc­
cupy the same site and show a preference of laying
together. The macroscopic behavior for this process
is the same as the one described above, but the proof
now boils down to the sole use of duality.

We conclude by saying that there are many other
models for which one has to explore the notion of du­
ality, specially for asymmetric models where the equa­
tions for correlation functions are no longer closed.
There is a long and standing work to develop around
these problems and here we just collected some nice
and simple results for a toy model where Lie algebra
and, consequently, duality allows getting a lot of rele­
vant information about our model.
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