
travelling waveS and their SpeedS for fkpp 
equationS — an overview in the framework 
of odeS 
by Luís Sanchez*

* CMAFcIO — Faculdade de Ciências da Universidade de Lisboa
 Email: lfrodrigues@fc.ul.pt

Abstract.—We review the basics on admissible speeds of travelling waves to FKPP (Fisher-Kolmogorov-
Petrovski-Piskounov) equations, starting from the classical setting and pointing out some changes needed 
to deal with nonlinear diffusion. Most of the material is based on elementary theory of ordinary differential 
equations (ODEs).

Consider the following curious (and simple) problem
concerning a class of first order ODEs: given a func-
tion 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓𝑓 𝑓 ℝ of type A, i.e. continuous,
𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓 and 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓, find the
values of the parameter 𝑐𝑐 𝑓 𝑓 so that the problem

𝑦𝑦′ 𝑓 2𝑓𝑐𝑐√𝑦𝑦 𝑦 𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑓 𝑦𝑦𝑓𝑓𝑓 𝑓 𝑦𝑦𝑓𝑓𝑓 𝑓 𝑓 (1)

has a solution 𝑦𝑦𝑓𝑦𝑦𝑓 𝑦 𝑓, 𝑓 ≤ 𝑦𝑦 ≤ 𝑓.

More generally, we shall look also at the problem
where the equation is instead

𝑦𝑦′ 𝑓 𝑞𝑞𝑓𝑐𝑐 𝑦𝑦+
𝑓/𝑝𝑝 𝑦 𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑓 (2)

(𝑝𝑝, 𝑞𝑞 being positive conjugate, i.e. 𝑓/𝑝𝑝 + 𝑓/𝑞𝑞 𝑓 𝑓𝑝)
This problem turns out to be useful in the fields of

Applied Mathematics where the equations known as
FKPP (Fisher-Kolmogorov-Petrovski-Piskounov) equa-
tions provide relevant models. Unsurprisingly, the el-
ementary problem is interesting in itself, since it car-
ries a lot of important information and features from
its motivating source.

In 1937 R. Fisher [12] proposed a partial differen-
tial equation model for the propagation of an advan-
tageous gene in a one dimensional spatial setting. In
the same year, Kolmogorov, Petrovsky and Piskunov
[15] obtained significant properties of the PDE model.
The simplest protopype is given by the PDE

𝑦𝑦𝑡𝑡 𝑓 𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑓𝑓 𝑦 𝑦𝑦𝑓𝑝 (3)

𝑦𝑦 denoting the frequence of the gene, taking values
from 𝑓 to 𝑓.

Other problems in the applied sciences lead to
(FKPP) equations

𝑦𝑦𝑡𝑡 𝑓 𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑓𝑦𝑦𝑓 (4)

where 𝑓𝑓 is a function of type A. An example is the
Zeldovich equation, 𝑦𝑦𝑡𝑡 𝑓 𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑓𝑓 𝑦 𝑦𝑦𝑓, from the
theory of combustion, where 𝑦𝑦 means temperature
and 𝑦𝑦2𝑓𝑓 𝑦 𝑦𝑦𝑓 represents the generated heat.

Equation (4) has two equilibria 𝑦𝑦 𝑓 𝑓 e 𝑦𝑦 𝑓 𝑓.
Meaningful solutions 𝑦𝑦𝑓𝑥𝑥𝑓 𝑡𝑡𝑓 take values between 𝑓
and 𝑓. Let us look for travelling waves with speed 𝑐𝑐:
𝑦𝑦𝑓𝑥𝑥𝑓 𝑡𝑡𝑓 𝑓 𝑦𝑦𝑓𝑢𝑢𝑓, 𝑢𝑢 𝑓 𝑥𝑥+𝑐𝑐𝑡𝑡, whose profile 𝑦𝑦 is increasing
and connects the equilibria: 𝑦𝑦𝑓𝑦𝑢𝑓 𝑓 𝑓, 𝑦𝑦𝑓𝑢𝑓 𝑓 𝑓.
Substitution in 𝑦𝑦𝑡𝑡 𝑓 𝑦𝑦𝑥𝑥𝑥𝑥 + 𝑓𝑓𝑓𝑦𝑦𝑓 leads to

𝑦𝑦″𝑓𝑢𝑢𝑓 𝑦 𝑐𝑐𝑦𝑦′𝑓𝑢𝑢𝑓 + 𝑓𝑓𝑓𝑦𝑦𝑓𝑢𝑢𝑓𝑓 𝑓 𝑓𝑓 𝑢𝑢 𝑓 ℝ𝑝 (5)

Therefore we look for increasing solutions of (5) such
that

𝑦𝑦𝑓𝑦𝑢𝑓 𝑓 𝑓𝑓 𝑦𝑦𝑓+𝑢𝑓 𝑓 𝑓𝑝 (6)

The study of the FKPP equations has generated a rich
literature. The reader is referred to the (somewhat ar-
bitrary) short selection [12, 15, 3, 13, 16, 5] and to their
references for an account of the mathematical devel-
opment of the subject.

Travelling wave solutions 𝑦𝑦𝑓𝑥𝑥 + 𝑐𝑐𝑡𝑡𝑓 and their
speeds are of great interest, because under certain
conditions they shape the behaviour of solutions
𝑦𝑦𝑓𝑥𝑥𝑓 𝑡𝑡𝑓 as 𝑡𝑡 𝑓 +𝑢. As we shall recall in a moment, the
admissible speeds form a half-line 𝑐𝑐 𝑦 𝑐𝑐∗, where the
minimum 𝑐𝑐∗ 𝑓 𝑓 (called critical speed) has a special
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role. For example, as we show below, 𝑐𝑐∗ = 2 for the
simple model where 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝛼𝛼 , 𝛼𝛼 𝛼 𝑓; and (see
[15]) if 𝑓𝑓𝑓𝑢𝑢𝑢 𝑢𝑢𝑓 denotes the solution such that 𝑓𝑓𝑓𝑢𝑢𝑢 𝑢𝑓 is
the Heaviside function, then 𝑓𝑓𝑓𝑢𝑢 𝑢 𝑢𝑢𝑓𝑢𝑢𝑓𝑢 𝑢𝑢𝑓 𝑢 𝑓𝑓𝑓𝑢𝑢𝑓 for
every 𝑢𝑢, as 𝑢𝑢 𝑢 𝑢𝑡, where 𝑢𝑢𝑓𝑢𝑢𝑓 = 2𝑢𝑢 𝑢 𝑎𝑎𝑓𝑢𝑢𝑓 at 𝑡 and
𝑓𝑓𝑓𝑢𝑢𝑓 is the profile of the travelling wave with speed 2.

This article reviews, in an elementary setting and
in as a self-contained manner as possible, the basics
about some classic and more recent results on travel-
ling waves for FKPP. In the final sections we sketch
the corresponding results for the analogous model
with nonlinear diffusion.

In what follows, we consider equation (5) where
𝑓𝑓 is continuous, of type A in [𝑢𝑢 𝑓], and in addition

𝑓𝐻𝐻𝑓 𝐻𝐻𝐻 𝐻 𝑢 𝐻 𝑓𝑓𝑓𝑓𝑓𝑓 𝐻 𝐻𝐻𝐻𝑓𝐻𝐻𝑓𝑓𝑢 𝐻𝐻𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑢

for every 𝑓𝑓 𝑢 [𝑢𝑢 𝑓].
A number 𝑐𝑐 𝑢 ℝ is called an admissible speed to

(5), or with respect to 𝑓𝑓 , if there exists an increasing
solution of (5)-(6), that is, a monotone heteroclinic
connecting the equilibria 𝑢 and 𝑓.

Remark 1.— When 𝑓𝑓 is differentiable, linearization
about the equilibrium at the origin yields immedi-
ately that increasing travelling waves can exist only if
𝑐𝑐 𝛼 2√𝑓𝑓 ′𝑓𝑢𝑓.

1 Reduction to a first order problem.

Let 𝑓𝑓 = 𝑓𝑓𝑓𝑢𝑢𝑓 be an increasing solution of

𝑓𝑓″𝑓𝑢𝑢𝑓 𝑓 𝑐𝑐𝑓𝑓′𝑓𝑢𝑢𝑓 𝑢 𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑓𝑓 = 𝑢
in ℝ. Then 𝑓𝑓′𝑓𝑢𝑢𝑓 𝐻 𝑢𝑢 𝑢𝑢 𝑢 ℝ, there exists 𝑢𝑢𝑓𝑓𝑓𝑓,
the inverse function of 𝑓𝑓 = 𝑓𝑓𝑓𝑢𝑢𝑓, and 𝑓𝑓′ may be
given as a function of 𝑓𝑓: 𝜙𝜙𝑓𝑓𝑓𝑓 = 𝑓𝑓′𝑓𝑢𝑢𝑓𝑓𝑓𝑓𝑓. There-
fore 𝜙𝜙 𝐻]𝑢𝑢 𝑓[𝑢 ℝ𝑢 is 𝐶𝐶𝑓, and may be extended
to [𝑢𝑢 𝑓] with 𝜙𝜙𝑓𝑢𝑓 = 𝜙𝜙𝑓𝑓𝑓 = 𝑢. 𝜙𝜙 is a solution
of 𝜙𝜙𝑓𝑓𝑓𝑓𝜙𝜙′𝑓𝑓𝑓𝑓 𝑓 𝑐𝑐𝜙𝜙𝑓𝑓𝑓𝑓 𝑢 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑢𝑢 Hence, setting
𝜓𝜓𝑓𝑓𝑓𝑓 𝐻= 𝜙𝜙𝑓𝑓𝑓𝑓2, 𝜓𝜓 solves the problem (1) (the bound-
ary conditions come from the fact that 𝑓𝑓′𝑓±𝑡𝑓 = 𝑢).

Conversely, if 𝜓𝜓 solves (1) and we consider the
Cauchy problem 𝑓𝑓′ = √𝜓𝜓𝑓𝑓𝑓𝑓𝑢 𝑓𝑓𝑓𝑢𝑓 = 𝑓𝜓2, it can
be shown that its solution is defined in the whole real
line 𝑓𝑓𝑡𝑢 𝑡𝑓 (using assumption 𝑓𝐻𝐻𝑓). That solution
𝑓𝑓𝑓𝑢𝑢𝑓 satisfies (5–6) and 𝑓𝑓′𝑓𝑢𝑢𝑓 𝐻 𝑢, for every 𝑢𝑢.

In summary, 𝑓𝑓 = 𝑓𝑓𝑓𝑢𝑢𝑓 is an increasing solution
connecting the two equilibria if and only if 𝜙𝜙𝑓𝑓𝑓𝑓2

solves (1). Hence, the square root of a solution of (1)
gives the profile in the phase plane of the trajectory of a

travelling wave. And the following simple facts may
be proved.

1.A.—If 𝑓𝑓 ′𝑓𝑢𝑓 exists and equation 𝑦𝑦′𝑓𝑓𝑓𝑓 = 2𝑐𝑐√𝑦𝑦𝑓𝑓𝑓𝑓 𝑓
2𝑓𝑓𝑓𝑓𝑓𝑓 has a solution 𝑦𝑦𝑓𝑓𝑓𝑓 such that 𝑦𝑦𝑓𝑢𝑓 = 𝑢 and
𝑦𝑦𝑓𝑓𝑓𝑓 𝐻 𝑢 in some interval 𝑓𝑢𝑢 𝜂𝜂𝑓, then 𝑐𝑐2 𝛼 4𝑓𝑓 ′𝑓𝑢𝑓.

1.B. [Lower solution criterion].—If there exists a 𝐶𝐶𝑓

function 𝑠𝑠 𝐻 [𝑢𝑢 𝑓] 𝑢 ℝ such that 𝑠𝑠𝑓𝑢𝑓 = 𝑢𝑢 𝑠𝑠𝑓𝑓𝑓𝑓 𝐻 𝑢 if
𝑓𝑓 𝑢 𝑓𝑢𝑢 𝑓𝑓 and ∀ 𝑓𝑓 𝑢 [𝑢𝑢 𝑓],

𝑠𝑠′𝑓𝑓𝑓𝑓 𝐻 2𝑐𝑐√𝑠𝑠𝑓𝑓𝑓𝑓 𝑓 2𝑓𝑓𝑓𝑓𝑓𝑓𝑢 (7)

then the first order problem 𝜓𝜓′𝑓𝑓𝑓𝑓 = 2𝑐𝑐√𝜓𝜓𝑓𝑓𝑓𝑓 𝑓
2𝑓𝑓𝑓𝑓𝑓𝑓𝑢 𝜓𝜓𝑓𝑢𝑓 = 𝜓𝜓𝑓𝑓𝑓 = 𝑢 has a (unique) solution.

1.C.—The set of admissible speeds for 𝑓𝑓 is the set of num-
bers 𝑐𝑐 such that (1) has solutions. It is an unbounded
closed interval [𝑐𝑐∗𝑢 𝑢𝑡𝑓 with 𝑐𝑐∗ 𝐻 𝑢.

We sketch the proof of 1.B–C (for more general asser-
tions and proofs see e.g. [11]). Let

𝑀𝑀 = 𝑀𝑀𝑀
𝑢<𝑓𝑓<𝑓

𝑓𝑓𝑓𝑓𝑓𝑓
𝑓𝑓

(which exists by property 𝑓𝐻𝐻𝑓). If 𝑐𝑐2
𝑢 𝛼 4𝑀𝑀 and

𝑐𝑐 𝛼 𝑐𝑐𝑢, the equation 𝑠𝑠′𝑓𝑓𝑓𝑓 = 2𝑐𝑐𝑢√𝑠𝑠𝑓𝑓𝑓𝑓 𝑓 2𝑀𝑀𝑓𝑓 has
a solution such that 𝑠𝑠𝑓𝑢𝑓 = 𝑢 and 𝑠𝑠𝑓𝑓𝑓𝑓 𝐻 𝑢, for all
𝑢 < 𝑓𝑓 𝐻 𝑓: take 𝑠𝑠𝑓𝑓𝑓𝑓 = 𝑓𝑠𝑠𝑓𝑓𝑓2 with

𝑠𝑠 =
𝑐𝑐𝑢 ± √𝑐𝑐2

𝑢 𝑓 4𝑀𝑀

2
𝑢

Hence 𝑠𝑠𝑓𝑓𝑓𝑓 is a lower solution of 𝑦𝑦′𝑓𝑓𝑓𝑓 = 2𝑐𝑐𝑢√𝑦𝑦𝑓𝑓𝑓𝑓 𝑓
2𝑓𝑓𝑓𝑓𝑓𝑓, 𝑦𝑦𝑓𝑢𝑓 = 𝑢. Therefore a positive solution ̄𝑦𝑦 of
this equation, with ̄𝑦𝑦𝑓𝑢𝑓 = 𝑢, exists. The (unique) so-
lution ̃𝑓𝑓 of the same equation such that ̃𝑓𝑓𝑓𝑓𝑓 = 𝑢 is
the desired solution: its graph cannot meet either the
graph of ̄𝑦𝑦 (by uniqueness) or the 𝑓𝑓𝑓axis (because of
the sign of the slope) for 𝑢 < 𝑓𝑓 < 𝑓. Hence the set
of admissible 𝑐𝑐 is a nonempty interval; by the equiva-
lence between (1) and (5)–(6) any number 𝑐𝑐𝑢 such that
𝑐𝑐𝑢 𝛼 2√𝑀𝑀 is an admissible speed; it has a minimum
element by an elementary compactness argument.

To each function 𝑓𝑓 satisfying our assumptions we
thus associate a number 𝑐𝑐∗ 𝐻 𝑢 which is the mini-
mum admissible speed of 𝑓𝑓 . We write 𝑐𝑐∗ = 𝑐𝑐∗𝑓𝑓𝑓𝑓.
We call it also the critical speed of 𝑓𝑓 .

Remark 2.— Easy consequences are:

𝑓𝑓 𝛼 𝑓𝑓 𝑓 𝑐𝑐∗𝑓𝑓𝑓𝑓 𝛼 𝑐𝑐∗𝑓𝑓𝑓𝑓; and
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if 𝑓𝑓 ′(0) exists,

2√𝑓𝑓 ′(0) ≤ 𝑐𝑐∗(𝑓𝑓) ≤ 2
√

sup
0<𝑢𝑢<𝑢

𝑓𝑓(𝑢𝑢)
𝑢𝑢

. (8)

In particular, if 𝑓𝑓 ′(0) exists and 𝑓𝑓(𝑢𝑢) ≤ 𝑓𝑓 ′(0)𝑢𝑢
for every 𝑢𝑢 𝑢 (0𝑢 𝑢), then 𝑐𝑐∗ = 2√𝑓𝑓 ′(0).

2 Asymptotic behaviour at infinity

Let us look at the behaviour of solutions of (1) at the
endpoints of [0𝑢 𝑢]: We assume that 𝑓𝑓 ′(0) and 𝑓𝑓 ′(𝑢)
exist. The objective is to compute the limits

lim
𝜉𝜉𝜉𝜉𝜉𝜉

𝑢𝑢′(𝜉𝜉)
𝑢𝑢(𝜉𝜉)

.

2.A.—Suppose that 𝑓𝑓 ′(0) exists. If 𝜓𝜓(𝑢𝑢) solves 𝜓𝜓′(𝑢𝑢) =
2𝑐𝑐√𝜓𝜓(𝑢𝑢)𝜉2𝑓𝑓(𝑢𝑢)𝑢 𝜓𝜓(0) = 0, with 𝜓𝜓(𝑢𝑢) 𝜓 0 in some
interval (0𝑢 𝜂𝜂), then the derivative (√𝜓𝜓)′(0) exists and
is a root of 𝑥𝑥2 𝜉 𝑐𝑐𝑥𝑥 𝑐 𝑓𝑓 ′(0) = 0.
Denote 𝜆𝜆𝜉(𝑐𝑐) ≤ 𝜆𝜆𝑐(𝑐𝑐) the roots of 𝑥𝑥2𝜉𝑐𝑐𝑥𝑥𝑐𝑓𝑓 ′(0) = 0
when they exist.

2.B.—Let 𝑐𝑐 be an admissible speed of 𝑢𝑢″𝜉𝑐𝑐𝑢𝑢′𝑐𝑓𝑓(𝑢𝑢) = 0.

– If 𝑐𝑐 = 𝑐𝑐∗, (√𝜓𝜓)′(0) = 𝜆𝜆𝑐(𝑐𝑐).

– If 𝑐𝑐 𝜓 𝑐𝑐∗, (√𝜓𝜓)′(0) = 𝜆𝜆𝜉(𝑐𝑐).

Let us point out the steps needed in the proof of 2.B.:
Step 1. Let 𝜂𝜂 𝜓 0, 0 < 𝐴𝐴 < 𝐴𝐴, 0 ≤ 𝑎𝑎 < 𝑎𝑎,
0 < 𝑐𝑐𝑢 < 𝑐𝑐2 < 2𝐴𝐴 be constants such that

𝑎𝑎 ≤ 𝑓𝑓(𝑢𝑢)𝑎𝑢𝑢 ≤ 𝑎𝑎𝑢 0 < 𝑢𝑢 ≤ 𝜂𝜂;

𝐴𝐴2 𝜉 𝑐𝑐𝐴𝐴 𝑐 𝑎𝑎 < 0 < 𝐴𝐴2 𝜉 𝑐𝑐𝐴𝐴 𝑐 𝑎𝑎, for every
𝑐𝑐 𝑢 [𝑐𝑐𝑢𝑢 𝑐𝑐2].

Then for 𝑐𝑐 𝑢 [𝑐𝑐𝑢𝑢 𝑐𝑐2] the initial value problem

𝜓𝜓′(𝑢𝑢) = 2𝑐𝑐√𝜓𝜓(𝑢𝑢) 𝜉 2𝑓𝑓(𝑢𝑢)𝑢 𝜓𝜓(0) = 0
has a unique solution such that 𝐴𝐴2𝑢𝑢2 ≤ 𝜓𝜓(𝑢𝑢) ≤ 𝐴𝐴2𝑢𝑢2

for 0 ≤ 𝑢𝑢 ≤ 𝜂𝜂. Moreover the solution depends con-
tinuously on 𝑐𝑐.

(The proof uses the contraction operator

𝑇𝑇 𝑇𝑇(𝑢𝑢) = 2𝑐𝑐 ∫

𝑢𝑢

0
√𝑇𝑇(𝑣𝑣)𝑣𝑣𝑣𝑣 𝜉 2 ∫

𝑢𝑢

0
𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑢

for 𝑢𝑢 𝑢 [0𝑢 𝜂𝜂], in the space 𝑋𝑋 of continuous functions
𝑇𝑇 such that 𝐴𝐴2𝑢𝑢2 ≤ 𝑇𝑇(𝑢𝑢) ≤ 𝐴𝐴2𝑢𝑢2, for every 𝑇𝑇 𝑢 [0𝑢 𝜂𝜂].)
Step 2. Let ̄𝑐𝑐 𝜓 2√𝑓𝑓 ′(0). Choose 𝐴𝐴𝑢 𝐴𝐴 such that:

̄𝑐𝑐
2

< 𝐴𝐴 < 𝜆𝜆𝑐( ̄𝑐𝑐) < 𝐴𝐴.

Then there are numbers 0 ≤ 𝑎𝑎 ≤ 𝑓𝑓 ′(0) < 𝑎𝑎, 𝜂𝜂 𝜓 0
and an interval [𝑐𝑐𝑢𝑢 𝑐𝑐2] containing ̄𝑐𝑐 such that all con-
ditions of the precedent claim are satisfied.

Step 3. Given 𝑐𝑐 𝜓 2√𝑓𝑓 ′(0), there exists 𝜂𝜂 𝜓 0 such
that 𝜓𝜓′(𝑢𝑢) = 2𝑐𝑐√𝜓𝜓(𝑢𝑢) 𝜉 2𝑓𝑓(𝑢𝑢), 𝜓𝜓(0) = 0, has a
unique solution 𝜓𝜓 in [0𝑢 𝜂𝜂] such that (√𝜓𝜓)′(0) =
𝜆𝜆𝑐(𝑐𝑐).
Step 4. Let 𝑐𝑐0 𝜓 2√𝑓𝑓 ′(0), 𝑐𝑐0 ≥ 𝑐𝑐∗(𝑓𝑓) and 𝜓𝜓 be
the solution of 𝜓𝜓′(𝑢𝑢) = 2𝑐𝑐0√𝜓𝜓(𝑢𝑢) 𝜉 2𝑓𝑓(𝑢𝑢), 𝜓𝜓(0) =
0𝑢 𝜓𝜓(𝑢) = 0, √𝜓𝜓)′(0) = 𝜆𝜆𝜉(𝑐𝑐). Then 𝑐𝑐0 𝜓 𝑐𝑐∗(𝑓𝑓 ).

In terms of solutions of the second order equation
this reads:

2.C Let 𝑐𝑐 be an admissible speed of 𝑓𝑓 and 𝑢𝑢(𝑣𝑣) a corre-
sponding monotone heteroclinic solution.

– If 𝑐𝑐 = 𝑐𝑐∗,

lim
𝑣𝑣𝜉𝜉𝜉

𝑢𝑢′(𝑣𝑣)
𝑢𝑢(𝑣𝑣)

= 𝜆𝜆𝑐(𝑐𝑐).

– If 𝑐𝑐 𝜓 𝑐𝑐∗,

lim
𝑣𝑣𝜉𝜉𝜉

𝑢𝑢′(𝑣𝑣)
𝑢𝑢(𝑣𝑣)

= 𝜆𝜆𝜉(𝑐𝑐).

Asymptotic description of solutions near 𝑐𝜉 can
also be given. That discussion is simpler.

3 Finding some exact solutions

The form of (1) allows to obtain easily some exact het-
eroclinics.

Given a reaction term 𝑓𝑓(𝑢𝑢) = 𝑢𝑢𝑚𝑚 𝜉 𝑢𝑢𝑛𝑛, 0 ≤ 𝑢𝑢 ≤ 𝑢,
where 𝑢 ≤ 𝑚𝑚 < 𝑛𝑛, let us look for a solution of (1) of
the form

𝑦𝑦(𝑢𝑢) = 𝜆𝜆(𝑢𝑢𝛼𝛼 𝜉 𝑢𝑢𝛽𝛽)2.
An easy computation shows:

– If 𝑚𝑚 = 𝑢 and 𝑛𝑛 = 2, that is, for the simplest pro-
totype, we obtain a solution with 𝛼𝛼 = 𝑢, 𝛽𝛽 = 𝛽𝑎2,
𝜆𝜆 = 2𝑎𝛽 and 𝑐𝑐 = 𝑐𝑎√6. The profile obtained is

𝑦𝑦(𝑢𝑢) = 2
𝛽

𝑢𝑢2(𝑢 𝜉 √𝑢𝑢)2𝑢 with 𝑐𝑐 = 𝑐
√6

associated to a non-critical speed. From the
equation 𝑢𝑢′ = √𝑦𝑦(𝑢𝑢) we obtain the expression
of the heteroclinic.

𝑢𝑢(𝑣𝑣) = 𝑢

((√2 𝜉 𝑢)𝑒𝑒𝜉 𝑣𝑣
√6 𝑐 𝑢)2

This solution was given by Ablowitz and Zep-
petella [1].

3
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– This example generalizes to: if 𝑚𝑚 𝑚 𝑚 and 𝑛𝑛 𝑛 𝑚,
we find 𝛼𝛼 𝑚 𝑚, 𝛽𝛽 𝑚 𝛽𝑛𝑛 𝛽 𝑚𝛽𝛽𝛽, 𝜆𝜆 𝑚 𝛽𝛽𝛽𝑛𝑛 𝛽 𝑚𝛽 and
𝑐𝑐 𝑚 𝛽𝑛𝑛 𝛽 𝑐𝛽𝛽√𝛽𝛽𝑛𝑛 𝛽 𝑚𝛽. The profile is

𝜓𝜓𝛽𝜓𝜓𝛽 𝑚 𝛽
𝑛𝑛 𝛽 𝑚

𝜓𝜓𝛽
(𝑚 − 𝜓𝜓

𝑛𝑛−𝑚
𝛽 )

𝛽

and the corresponding heteroclinic is

𝜓𝜓𝛽𝑢𝑢𝛽 𝑚 𝑚

(𝛽𝛽
𝑛𝑛−𝑚

𝛽 − 𝑚𝛽𝑒𝑒− 𝛽𝑛𝑛−𝑚𝛽𝑢𝑢
√𝛽𝛽𝑛𝑛𝛽𝑚𝛽 𝛽 𝑚)

𝛽
𝑛𝑛−𝑚

.

The critical speed is 𝛽, for all 𝑛𝑛, and

𝑐𝑐 𝑚 𝑐𝑐𝑛𝑛 𝑚 𝑛𝑛 𝛽 𝑐
√𝛽𝛽𝑛𝑛 𝛽 𝑚𝛽

→ 𝛽

as 𝑛𝑛 → 𝑚.

– If 𝑚𝑚 𝑚 𝛽 and 𝑛𝑛 𝑚 𝑐, (Zeldovich’s equation), the
calculation shows that we can take 𝛼𝛼 𝑚 𝑚, 𝛽𝛽 𝑚 𝛽,
𝜆𝜆 𝑚 𝑚𝛽𝛽 and 𝑐𝑐 𝑚 𝑚𝛽√𝛽.

The profile thus obtained is

𝑦𝑦𝛽𝜓𝜓𝛽 𝑚 𝑚
𝛽

𝜓𝜓𝛽𝛽𝑚 − 𝜓𝜓𝛽𝛽, with 𝑐𝑐 𝑚 𝑚
√𝛽

.

In this case 𝑓𝑓 ′𝛽0𝛽 𝑚 0 and

lim
𝜓𝜓→0

𝑦𝑦𝛽𝜓𝜓𝛽
𝜓𝜓𝛽 𝑚 𝑚

𝛽
.

By 2.B. we conclude that 𝑚𝛽√𝛽 is the critical
speed for Zeldovich. Solving 𝜓𝜓′ 𝑚 𝑦𝑦𝛽𝜓𝜓𝛽 we ob-
tain the corresponding heteroclinic

𝜓𝜓𝛽𝑢𝑢𝛽 𝑚 𝑚

𝑚 𝛽 𝑒𝑒− 𝑢𝑢
√𝛽

.

– More generally, if 𝑚𝑚 𝑚 𝛽𝑛𝑛 𝛽 𝑚𝛽𝛽𝛽 and 𝑛𝑛 𝑛 𝑚 we
obtain: 𝛼𝛼 𝑚 𝑚, 𝛽𝛽 𝑚 𝑚𝑚, 𝜆𝜆 𝑚 𝑚𝛽𝑚𝑚 and 𝑐𝑐 𝑚 𝑚𝛽√𝑚𝑚.

The profile is

𝑦𝑦𝛽𝜓𝜓𝛽 𝑚 𝑚
𝑚𝑚

𝜓𝜓𝛽
(𝑚 − 𝜓𝜓

𝑛𝑛−𝑚
𝛽 )

𝛽
, with 𝑐𝑐 𝑚 𝑚

√𝑚𝑚
and the speed is critical. (See [9].)

4 Sharp solutions

The more general equation with density dependent
diffusion

𝜓𝜓𝑢𝑢 𝑚 𝛽𝐷𝐷𝛽𝜓𝜓𝛽𝜓𝜓𝑥𝑥𝛽𝑥𝑥 𝛽 𝑔𝑔𝛽𝜓𝜓𝛽

with 𝐷𝐷 𝑛 0 in 𝛽0, 𝑚𝛽 has a corresponding ODE for
travelling waves

𝛽𝐷𝐷𝛽𝜓𝜓𝛽𝜓𝜓′𝛽′ − 𝑐𝑐𝜓𝜓′ 𝛽 𝑔𝑔𝛽𝜓𝜓𝛽 𝑚 0. 𝛽𝑑𝑑𝛽

The substitution 𝜑𝜑𝛽𝜓𝜓𝛽 𝜑 𝐷𝐷𝛽𝜓𝜓𝛽𝜓𝜓′ leads to the first or-
der problem

𝜓𝜓′𝛽𝜓𝜓𝛽 𝑚 𝛽𝑐𝑐√𝜓𝜓𝛽𝜓𝜓𝛽 − 𝛽𝑓𝑓𝛽𝜓𝜓𝛽, 𝜓𝜓𝛽0𝛽 𝑚 𝜓𝜓𝛽𝑚𝛽 𝑚 0
where

𝜓𝜓𝛽𝜓𝜓𝛽 𝜓𝑚 𝜑𝜑𝛽𝜓𝜓𝛽𝛽, 𝑓𝑓 𝛽𝜓𝜓𝛽 𝑚 𝐷𝐷𝛽𝜓𝜓𝛽𝑔𝑔𝛽𝜓𝜓𝛽
and the heteroclinic is found via

𝜓𝜓′ 𝑚
√𝜓𝜓𝛽𝜓𝜓𝛽
𝐷𝐷𝛽𝜓𝜓𝛽

, 𝜓𝜓𝛽0𝛽 𝑚 𝑚𝛽𝛽.

Then from the results in section 3 we find sharp solu-
tions.

4.A.—Assume that: 𝐷𝐷 𝐷 𝐷𝐷𝑚[0, 𝑚], 𝐷𝐷 𝑛 0 in 𝛽0, 𝑚],
𝐷𝐷𝛽0𝛽 𝑚 0 and 𝐷𝐷′𝛽0𝛽 𝑛 0. Then, for a function 𝑔𝑔 of
type A:

(i) There exists a stricly increasing solution of (d) with
𝜓𝜓𝛽−𝑢𝛽 𝑚 0, 𝜓𝜓𝛽𝛽𝑢𝛽 𝑚 𝑚, if and only if 𝑐𝑐 𝑛 𝑐𝑐∗;

(ii) If 𝑐𝑐 𝑚 𝑐𝑐∗, (d) has an increasing solution defined
in [0, 𝑢[ with 𝜓𝜓𝛽0𝛽 𝑚 0, 𝜓𝜓𝛽𝑢𝛽 𝑚 𝑚 and 𝜓𝜓′𝛽0𝛽 𝑚
𝑐𝑐∗𝛽𝐷𝐷′𝛽0𝛽.

Those solutions are unique up to translation;

(iii) If 𝑐𝑐 𝑐 𝑐𝑐∗, the equation (d) has no increasing solu-
tion in any interval 𝛽𝑏𝑏, 𝑢𝛽 with

lim
𝑢𝑢→𝑏𝑏−

𝜓𝜓𝛽𝑢𝑢𝛽 𝑚 0, lim
𝑢𝑢→−𝑢

𝜓𝜓𝛽𝑢𝑢𝛽 𝑚 𝑚.

See [19, 17].

5 Further characterizations of the
critical speed

We have been considering functions 𝑓𝑓 of type A in
[0, 𝑚]. And, if there exists 𝜃𝜃 𝐷 𝛽0, 𝑚𝛽 such that 𝑓𝑓 𝑓 0
in [0, 𝜃𝜃] and 𝑓𝑓 is of type A in [𝜃𝜃, 𝑚], then we say that
𝑓𝑓 is of type B in [0, 𝑚].

In such cases there exists a unique “admissible
speed” (see e.g. [7]):

5.A.—Let 𝑓𝑓 be of type B in [0, 𝑚]. Then there exists a
number 𝑐𝑐∗ 𝑛 0 so that problem (1st order with zero
boundary conditions) admits a positive solution in 𝛽0, 𝑚𝛽
if and only if 𝑐𝑐 𝑚 𝑐𝑐∗.

Now the symbol 𝑐𝑐∗𝛽𝑓𝑓 𝛽 is meaningful if 𝑓𝑓 is of type
A or B, and the construction of 𝑐𝑐∗ preserves mono-
tonicity with respect to 𝑓𝑓 .

5.B.—Let 𝑓𝑓 be of type A in [0, 𝑚]. Let 𝑓𝑓𝑚 ≤ 𝑓𝑓𝛽 ≤ ⋯
be a sequence of functions of type B in [0, 𝑚] such that

4
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lim𝑛𝑛𝑛𝑛 𝑓𝑓𝑛𝑛(𝑥𝑥𝑥 𝑥 𝑓𝑓(𝑥𝑥𝑥 for every 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥. Then
𝑐𝑐∗(𝑓𝑓𝑛𝑛𝑥↑𝑐𝑐∗(𝑓𝑓 𝑥.

Variational characterizations of the critical speed are
also possible. In addition to the one given by Ben-
guria and Depassier [6], the following was given (in a
slightly different form) in [2].

5.C.—Let 𝐹𝐹 (𝐹𝐹𝑥 𝑥 ∫𝐹𝐹
𝑥 𝑓𝑓(𝑓𝑓𝑥 𝑓𝑓𝑓𝑓 (where 𝑓𝑓 is defined out-

side 𝑥𝑥𝑥 𝑥𝑥 with value 𝑥) and set

𝑋𝑋 𝑥 {𝑣𝑣 𝑥 𝑣𝑣(ℝ+𝑥 | 𝑣𝑣(𝑥𝑥 𝑥 𝑥 and ∫

𝑛

𝑥
𝑣𝑣′2 < 𝑛}.

Then

𝑐𝑐∗ 𝑥 √
𝑥
𝜆𝜆

𝑥 𝜆𝜆 𝑥 i𝜆𝜆
𝑣𝑣𝑥𝑋𝑋𝑥 ∫𝑛

𝑥
𝐹𝐹 (𝑣𝑣(𝑓𝑓𝑥𝑥

𝑓𝑓2 𝑓𝑓𝑓𝑓𝑥𝑥 ∫

𝑛

𝑥

𝑣𝑣′(𝑓𝑓𝑥2

2
𝑓𝑓𝑓𝑓

and the i𝜆𝜆 is attained if 𝑐𝑐∗ > 2√𝑓𝑓 ′(𝑥𝑥.

Outline of proof in the simple case where 𝑓𝑓 ′(𝑥𝑥 𝑥 𝑥:
Consider a minimizing sequence 𝑣𝑣𝑛𝑛, that is

lim
𝑛𝑛𝑛𝑛 ∫

𝑛

𝑥

𝑣𝑣′
𝑛𝑛(𝑓𝑓𝑥2

2
𝑓𝑓𝑓𝑓 𝑥 𝜆𝜆𝑥 ∫

𝑛

𝑥

𝐹𝐹 (𝑣𝑣𝑛𝑛(𝑓𝑓𝑥𝑥
𝑓𝑓2 𝑓𝑓𝑓𝑓 𝑥 𝑥.

By Hardy’s inequality there is 𝑣𝑣 𝑥 ℝ so that

∫

𝑛

𝑥

(𝑣𝑣𝑛𝑛(𝑓𝑓𝑥𝑥2

𝑓𝑓2 𝑓𝑓𝑓𝑓 < 𝑣𝑣.

It is clear that one may suppose 𝑥 ≤ 𝑣𝑣𝑛𝑛 ≤ 𝑥. Since
𝑓𝑓 ′(𝑥𝑥 𝑥 𝑥, given 𝜀𝜀 > 𝑥, exists 𝛿𝛿 > 𝑥 such that
𝐹𝐹 (𝐹𝐹𝑥 ≤ 𝜀𝜀𝐹𝐹2 if 𝑥 ≤ 𝐹𝐹 ≤ 𝛿𝛿. Also, there exists 𝜂𝜂 > 𝑥
such that 𝑥 ≤ 𝑡𝑡 ≤ 𝜂𝜂 𝑡 𝑣𝑣𝑛𝑛(𝑡𝑡𝑥 ≤ 𝑣𝑣𝑥√𝜂𝜂 𝑥 𝛿𝛿 for every 𝑛𝑛.
Hence, for large 𝑛𝑛,

∫

𝜂𝜂

𝑥

𝐹𝐹 (𝑣𝑣𝑛𝑛(𝑓𝑓𝑥𝑥
𝑓𝑓2 𝑓𝑓𝑓𝑓 ≤ 𝜀𝜀𝑣𝑣.

The tail

∫

𝑛

𝐴𝐴

𝐹𝐹 (𝑣𝑣𝑛𝑛(𝑓𝑓𝑥𝑥
𝑓𝑓2 𝑓𝑓𝑓𝑓

for large 𝐴𝐴 is clearly uniformly small. From 𝑣𝑣𝑛𝑛 𝑛 𝑣𝑣
uniformly in compact intervals, 𝑣𝑣′

𝑛𝑛 𝑛 𝑣𝑣′ weakly in
𝐿𝐿2(𝑥𝑥 𝑛𝑥 we obtain by a standard argument that 𝑣𝑣 is
a minimizer. Moreover, exploiting the homogenity
of the constrained problem (induced by changes of
variable 𝑓𝑓 𝑥 𝑠𝑠𝑡𝑡, 𝑠𝑠 > 𝑥), we see that 𝑣𝑣 minimizes the
map

𝑤𝑤 𝑤 ∫

𝑛

𝑥

(𝑤𝑤′(𝑓𝑓𝑥𝑥2

2
𝑓𝑓𝑓𝑓 𝑑 𝜆𝜆 ∫

𝑛

𝑥

𝐹𝐹 (𝑤𝑤(𝑓𝑓𝑥𝑥
𝑓𝑓2 𝑓𝑓𝑓𝑓.

The minimizer solves

𝑣𝑣″(𝑓𝑓𝑥 + 𝜆𝜆𝑓𝑓(𝑣𝑣(𝑓𝑓𝑥𝑥
𝑓𝑓2 𝑥 𝑥𝑥 𝑓𝑓 > 𝑥.

The change of variable 𝑓𝑓 𝑥 𝑠𝑠𝑡𝑡 yields

𝐹𝐹″(𝑡𝑡𝑥 𝑑 𝐹𝐹′(𝑡𝑡𝑥 + 𝜆𝜆𝑓𝑓(𝐹𝐹(𝑡𝑡𝑥𝑥 𝑥 𝑥𝑥 𝑑𝑛 < 𝑡𝑡 < +𝑛

and considering the behaviour (and integrability
property) of the solution as it approaches 𝑥, we con-
clude that 𝜆𝜆 𝑥 𝑥𝜆𝑐𝑐∗(𝑓𝑓 𝑥2.

6 The case of nonlinear diffusion: basic
properties

Consider the partial differential equation

𝜕𝜕𝐹𝐹
𝜕𝜕𝑡𝑡

𝑥 𝜕𝜕
𝜕𝜕𝑥𝑥 [𝐷𝐷(𝐹𝐹𝑥 |

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥|

𝑝𝑝𝑑2 𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥] + 𝑔𝑔(𝐹𝐹𝑥𝑥 (9)

where 𝑝𝑝 > 𝑥, 𝑔𝑔 is of type A, 𝐹𝐹 𝑥 𝑥 and 𝐹𝐹 𝑥 𝑥 being
equilibrium solutions. We look for travelling wave
solutions 𝐹𝐹(𝑡𝑡𝑥 𝑥𝑥𝑥 𝑥 𝑢𝑢(𝑥𝑥 𝑑 𝑐𝑐𝑡𝑡𝑥 for some 𝑐𝑐 > 𝑥 where
𝑢𝑢 is monotone and connects the equilibria. To facil-
itate the checking of details to the interested reader
we now assume, as in [11], that 𝑢𝑢 is decreasing and
𝑢𝑢(𝑑𝑛𝑥 𝑥 𝑥, 𝑢𝑢(+𝑛𝑥 𝑥 𝑥 (of course, a sign change
allows to reduce to the case where 𝑢𝑢 is increasing as
previously). The problem is therefore

(𝐷𝐷(𝐹𝐹𝑥𝐷𝐹𝐹′𝐷𝑝𝑝𝑑2𝐹𝐹′𝑥′ + 𝑐𝑐𝐹𝐹′ + 𝑔𝑔(𝐹𝐹𝑥 𝑥 𝑥 (10)

with limit conditions

𝐹𝐹(𝑑𝑛𝑥 𝑥 𝑥𝑥 𝐹𝐹(+𝑛𝑥 𝑥 𝑥. (11)

Looking for solutions with 𝐹𝐹′ < 𝑥 in their whole
domain, we set

𝑑𝑣𝑣 𝑣𝑥 𝐷𝐷(𝐹𝐹𝑥𝐷𝐹𝐹′𝐷𝑝𝑝𝑑2𝐹𝐹′𝑥
for such solutions, then 𝑣𝑣 may be seen as a function
of 𝐹𝐹. If we define

𝑦𝑦(𝐹𝐹𝑥 𝑥 𝑣𝑣(𝐹𝐹𝑥𝑞𝑞

the function 𝑦𝑦 will solve (2) with (𝑥𝜆𝑝𝑝𝑥+(𝑥𝜆𝑞𝑞𝑥 𝑥 𝑥 and
𝑦𝑦(𝑥𝑥 𝑥 𝑥 𝑥 𝑦𝑦(𝑥𝑥, provided that we set

𝑓𝑓(𝐹𝐹𝑥 𝑥 𝐷𝐷(𝐹𝐹𝑥𝑞𝑞𝑑𝑥𝑔𝑔(𝐹𝐹𝑥.
Then, as in the case 𝑝𝑝 𝑥 2, we obtain results on the
admissible speeds and critical speed.

6.A.—Assume that 𝑓𝑓 is a function of type A in 𝑥𝑥𝑥 𝑥𝑥
satisfying

sup
𝐹𝐹𝑥(𝑥𝑥𝑥𝑥

𝑓𝑓 (𝐹𝐹𝑥
𝐹𝐹𝑞𝑞𝑑𝑥 𝑥 𝜇𝜇 < +𝑛𝑥

or the stronger property

lim
𝐹𝐹𝑛𝑥+

𝑓𝑓(𝐹𝐹𝑥
𝐹𝐹𝑞𝑞𝑑𝑥 𝑥 𝜆𝜆 < +𝑛.

Then there exists a constant 𝑐𝑐∗ > 𝑥 (depending on 𝑓𝑓
and 𝑝𝑝) such that

𝑦𝑦′(𝐹𝐹𝑥 𝑥 𝑞𝑞(𝑐𝑐 𝑦𝑦+(𝐹𝐹𝑥
𝑥
𝑝𝑝 𝑑 𝑓𝑓(𝐹𝐹𝑥𝑥𝑥 𝑦𝑦(𝑥𝑥 𝑥 𝑦𝑦(𝑥𝑥 𝑥 𝑥
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for 0 ≤ 𝑢𝑢 ≤ 𝑢, admits a unique positive solution if
and only if 𝑐𝑐 𝑐 𝑐𝑐∗. Moreover we have the estimate
(𝜆𝜆𝜆𝜆𝜆𝑢/𝜆𝜆𝑝𝑝𝑢/𝑝𝑝 ≤ 𝑐𝑐∗ ≤ 𝜆𝜆𝑢/𝜆𝜆𝑝𝑝𝑢/𝑝𝑝𝜇𝜇𝑢/𝜆𝜆 .

If in addition 𝜇𝜇 𝜇 𝜆𝜆, then 𝑐𝑐∗ 𝜇 𝜆𝜆𝑢/𝜆𝜆𝑝𝑝𝑢/𝑝𝑝𝜆𝜆𝑢/𝜆𝜆 .

As in the case 𝑝𝑝 𝜇 𝑝, the behaviour of solutions at the
origin is related to the corresponding value of 𝑐𝑐:

6.B.—If 𝑐𝑐 𝑐 𝑐𝑐∗, then 𝑦𝑦 satisfies

lim
𝑢𝑢𝑢0

𝑦𝑦(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆 𝜇 𝜔𝜔−

𝑐𝑐 (𝜆𝜆𝜆𝜆

And, if 𝑐𝑐 𝜇 𝑐𝑐∗, then 𝑦𝑦 satisfies

lim
𝑢𝑢𝑢0

𝑦𝑦(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆 𝜇 𝜔𝜔+

𝑐𝑐 (𝜆𝜆𝜆𝜆

Here 𝜔𝜔−
𝑐𝑐 (𝜆𝜆𝜆 ≤ 𝜔𝜔+

𝑐𝑐 (𝜆𝜆𝜆 stand for the positive roots of
the function 𝑥𝑥 𝑥 𝑥𝑥 − 𝑐𝑐𝑥𝑥𝑢/𝑝𝑝 + 𝜆𝜆.

Going back to the 2nd order problem, we can
state:

6.C.—

(A) Let 𝑢 < 𝑝𝑝 ≤ 𝑝. If 𝑔𝑔 is a function of type A and
𝐷𝐷 𝐷 𝐷𝐷𝑢[0, 𝑢] with 𝐷𝐷 𝑐 0 in [0, 𝑢], and

sup
𝑢𝑢𝐷(0,𝑢𝜆

𝑔𝑔(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆−𝑢 < +∞, sup

𝑢𝑢𝐷(0,𝑢𝜆

𝑔𝑔(𝑢𝑢𝜆
(𝑢 − 𝑢𝑢𝜆𝑝𝑝−𝑢 < +∞,

then there exists 𝑐𝑐∗ such that
(𝐷𝐷(𝑢𝑢𝜆𝐷𝑢𝑢′𝐷𝑝𝑝−𝑝𝑢𝑢′𝜆′ + 𝑐𝑐𝑢𝑢′ + 𝑔𝑔(𝑢𝑢𝜆 𝜇 0,
𝑢𝑢(−∞𝜆 𝜇 𝑢,
𝑢𝑢(+∞𝜆 𝜇 0

has a decreasing solution 𝑢𝑢(𝑢𝑢𝜆 taking values in
(0, 𝑢𝜆 if and only if 𝑐𝑐 𝑐 𝑐𝑐∗. That solution is unique
up to translation.

Here the number 𝑐𝑐∗ is associated to 𝑓𝑓 𝜇 𝐷𝐷𝜆𝜆−𝑢𝑔𝑔 ac-
cording to the theory for the first order equation.

(B) If, further, 𝑔𝑔∗(0𝜆 ≡ lim𝑢𝑢𝑢0+ 𝑔𝑔(𝑢𝑢𝜆/𝑢𝑢𝜆𝜆−𝑢 exists, then

lim
𝑢𝑢𝑢+∞

𝑢𝑢′(𝑢𝑢𝜆
𝑢𝑢(𝑢𝑢𝜆𝜆𝜆−𝑢 𝜇

⎧⎪
⎨
⎪⎩

−𝜔𝜔−
𝑐𝑐 (𝐷𝐷(0𝜆𝜆𝜆−𝑢𝑔𝑔∗(0𝜆𝜆𝑢/𝑝𝑝

𝐷𝐷(0𝜆𝜆𝜆−𝑢 , 𝑐𝑐 𝑐 𝑐𝑐∗

−𝜔𝜔+
𝑐𝑐∗ (𝐷𝐷(0𝜆𝜆𝜆−𝑢𝑔𝑔∗(0𝜆𝜆𝑢/𝑝𝑝

𝐷𝐷(0𝜆𝜆𝜆−𝑢 , 𝑐𝑐 𝜇 𝑐𝑐∗𝜆

Sharp solutions can also be found in this case, cf. [11].
Also, a variational definition of 𝑐𝑐∗ is possible in

the nonlinear diffusion setting. Consider the critical
speed 𝑐𝑐∗ for

𝜕𝜕𝑢𝑢
𝜕𝜕𝑢𝑢

𝜇 𝜕𝜕
𝜕𝜕𝑥𝑥 [|

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥|

𝑝𝑝−𝑝 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥] + 𝑓𝑓(𝑢𝑢𝜆𝜆

where 𝑝𝑝 𝑐 𝑢 and 𝑓𝑓 is type A. Then we have (see [14]).

6.D.—Let 𝐹𝐹 be the primitive of 𝑓𝑓 with 𝐹𝐹 (0𝜆 𝜇 0;
ℱ 𝜇 {𝑣𝑣 𝐷 𝑣𝑣 is defined in [0, ∞[, 𝑣𝑣(0𝜆 𝜇 0𝑣 so that

we can define

𝛾𝛾 𝜇 i𝛾𝛾
𝑣𝑣𝐷ℱ 𝑣0

𝑢
𝜆𝜆 ∫+∞

0 𝐷𝑣𝑣′(𝑠𝑠𝜆𝐷𝜆𝜆 𝑑𝑑𝑠𝑠

∫+∞
0

𝐹𝐹 (𝑣𝑣(𝑠𝑠𝜆𝜆
𝑠𝑠𝜆𝜆 𝑑𝑑𝑠𝑠

𝜆

Then the number 𝑐𝑐∗ is given by

𝛾𝛾 𝜇 𝜆𝜆
𝑝𝑝𝑐𝑐∗𝜆𝜆 𝜆

Moreover 𝛾𝛾 is attained if 𝜇𝜇𝑝𝑝𝜆𝜆𝛾𝛾 < 𝑢 where

𝜇𝜇 𝜇𝜇 lim
𝑢𝑢𝑢0+

𝑓𝑓(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆−𝑢𝜆

7 Examples: computation of 𝑐𝑐∗

As a first example consider again the ODE for the 𝑝𝑝-
Laplacian led diffusion

(𝐷𝑢𝑢′𝐷𝑝𝑝−𝑝𝑢𝑢′𝜆′ + 𝑐𝑐𝑢𝑢′ + 𝑓𝑓(𝑢𝑢𝜆 𝜇 0
where 𝑓𝑓(𝑢𝑢𝜆 𝜇 𝑢𝑢𝜆𝜆(𝑢 − 𝑢𝑢𝜆𝜆𝜆−𝑢 (that is, the analogue of
Zeldovich’s equation).

We compute an exact solution, for the correspond-
ing 1st order equation, of the form

𝑦𝑦 𝜇 𝑦𝑦𝑢𝑢𝜆𝜆(𝑢 − 𝑢𝑢𝜆𝜆𝜆,
with 𝑦𝑦 𝜇 𝑢/𝑝 and 𝑐𝑐 𝜇 𝑝−𝑢/𝜆𝜆 .

Since lim𝑢𝑢𝑢0
𝑓𝑓(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆−𝑢 𝜇 0 and lim𝑢𝑢𝑢0

𝑦𝑦(𝑢𝑢𝜆
𝑢𝑢𝜆𝜆 𝜇 𝑢

𝑝
, we con-

clude from previous information on asymptotics that
in fact 𝑐𝑐∗ 𝜇 𝑝−𝑢/𝜆𝜆𝜆

Next, we give a second example in the presence
of advection: consider

𝜕𝜕𝑢𝑢
𝜕𝜕𝑢𝑢

+ 𝑘𝑘𝑢𝑢 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝜇 𝜕𝜕
𝜕𝜕𝑥𝑥 [|

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥|

𝑝𝑝−𝑝 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥] + 𝑓𝑓(𝑢𝑢𝜆

where 𝑘𝑘 𝑐 0.
The 2nd order ODE for travelling waves now is

(𝐷𝑢𝑢′𝐷𝑝𝑝−𝑝𝑢𝑢′𝜆′ + (𝑐𝑐 − 𝑘𝑘𝑢𝑢𝜆𝑢𝑢′ + 𝑓𝑓(𝑢𝑢𝜆 𝜇 0
and it may be studied by reduction to the first order
equation (the boundary conditions are as before)

𝑦𝑦′ 𝜇 𝜆𝜆((𝑐𝑐 − 𝑘𝑘𝑢𝑢𝜆 𝑦𝑦𝑢/𝑝𝑝 − 𝑓𝑓(𝑢𝑢𝜆𝜆𝜆
Similar arguments enable us to see that there exists a
critical speed 𝑐𝑐∗ and the corresponding solution may
be identified by its behaviour near the origin. Let

𝑓𝑓(𝑢𝑢𝜆 𝜇 𝑢𝑢𝜆𝜆−𝑢(𝑢 − 𝑢𝑢𝜆𝜆𝜆−𝑢

(see [18] for 𝑝𝑝 𝜇 𝑝). The 1st order equation has a solu-
tion of the form 𝑦𝑦 𝜇 𝑦𝑦𝑢𝑢𝜆𝜆(𝑢−𝑢𝑢𝜆𝜆𝜆: substitution into the
equation shows that in fact this is the case, provided
that

𝑦𝑦 𝜇 (
𝑘𝑘
𝑝)

𝜆𝜆
and 𝑐𝑐 𝜇 𝑘𝑘

𝑝
+ (

𝑝
𝑘𝑘)

𝜆𝜆−𝑢
𝜆
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Minimizing 𝑐𝑐 we obtain

𝑘𝑘0 = 2(𝑞𝑞 𝑞 𝑞𝑞𝑞/𝑞𝑞 and 𝑐𝑐0 = 𝑞𝑞𝑞/𝑞𝑞𝑝𝑝𝑞/𝑝𝑝.
Computing 𝑦𝑦(𝑦𝑦𝑞/𝑦𝑦𝑞𝑞 , 𝑓𝑓(𝑦𝑦𝑞/𝑦𝑦𝑞𝑞𝑞𝑞 at 𝑦𝑦 = 0 and compar-
ing with 𝑤𝑤+, that turns out to be 𝑤𝑤+ = (𝑘𝑘/2𝑞𝑞𝑞 , we
conclude that if 𝑘𝑘 𝑘 𝑘𝑘0 then the critical speed is
𝑐𝑐∗ = 𝑘𝑘/2 + (2/𝑘𝑘𝑞𝑞𝑞𝑞𝑞.

A different argument, based on the monotonicity
of 𝑐𝑐 with respect to 𝑘𝑘 and the known result corre-
sponding to 𝑘𝑘 = 0 leads to (see [8])

𝑐𝑐∗ = 𝑞𝑞𝑞/𝑞𝑞𝑝𝑝𝑞/𝑝𝑝 for 0 ≤ 𝑘𝑘 ≤ 𝑘𝑘0.

8 Final note

Recently, Audrito and Vázquez [4] have considered
the model with doubly nonlinear diffusion

𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕 [|

𝜕𝜕𝑦𝑦𝑚𝑚

𝜕𝜕𝜕𝜕 |

𝑝𝑝𝑞2 𝜕𝜕𝑦𝑦𝑚𝑚

𝜕𝜕𝜕𝜕 ]
+ 𝑔𝑔(𝑦𝑦𝑞

and its 𝑁𝑁-dimensional analogue. Among other re-
sults, they found that there is a critical speed 𝑐𝑐∗ > 0
so that:

If 𝑚𝑚 > 0, 𝑝𝑝 > 𝑞 and 𝑚𝑚(𝑝𝑝 𝑞 𝑞𝑞 > 𝑞 then there are
travelling waves for speeds 𝑐𝑐 𝑘 𝑐𝑐∗, the profiles of the
waves being positive everywhere if 𝑐𝑐 > 𝑐𝑐∗ and finite if
𝑐𝑐 = 𝑐𝑐∗. Here finite means that the profile vanishes in
a half-line.

The critical speed 𝑐𝑐∗ has a threshold role with re-
spect to propagation of disturbances with bounded
support, as in the case of linear diffusion.

Further new interesting results are also found in
Drábek and Takáč [10] who consider degeneracy and
singular diffusion coefficients.
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