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Abstract.—The purpose of this short note is to present some results regarding the study 
of Diophantine equations, ranging from very old problems (well known results to most 
mathematicians) to some quite new results in the area. Most of the times, the techniques 
developed to solve particular problems are more interesting than the results themselves. The 
last section contains our humble contribution.

1 Introduction

The term Diophantine equations comes from the pi-
oneer work of Diophantus of Alexandria, a Greek
mathematician that lived sometime around 200 AD.
In a series of books called Arithmetica, Diophantus
studied solutions (over the positive rational numbers)
to different systems of equations. In this short article
we will mostly focuses on studying (integral or ratio-
nal) solutions of a single equation of the form

𝐹𝐹 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹 𝐹𝐹
for some polynomial 𝐹𝐹 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 with integral coeffi-
cients.

2 Linear Diophantine Equations

Let 𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎𝑎 be three rational integers, with the condi-
tion that the pair 𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 is not 𝐹𝐹𝐹 𝐹𝐹. Consider the
equation

𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝐹 𝑎𝑎𝑎 (1)

The set of solutions to (1) form a line, and it is well
known that it has infinitely many rational points.
However, it is not so clear what happens with its set
of integral points. For example, the line

2𝑎𝑎 𝑎 2𝑎𝑎 𝐹 𝑋𝐹

does not have any integral point (the reason being
that the left hand side is always even, while 𝑋 is odd).
Similarly, for (1) to have an integral solution, it must
be the case that any number dividing 𝑎𝑎 and 𝑎𝑎 must
also divide 𝑎𝑎. It is not hard to prove that this condi-
tion is enough for the existence of solutions.

Theorem 1.— The equation (1) has an integral solu-
tion if and only if gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎 𝑎𝑎. Furthermore, if it
has one, it has infinitely many.

Proof.— See §5 of the very nice book [11]. ∎

Actually the proof is constructive: suppose that
gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎 𝑎𝑎. Using the Euclidean algorithm, one can
construct integers 𝑟𝑟𝐹 𝑟𝑟 such that

gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝐹 𝑎𝑎 𝑎 𝑟𝑟 𝑎 𝑎𝑎 𝑎 𝑟𝑟𝑎
Multiplying both sides by 𝑎𝑎

gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹
gives a non-trivial

solution 𝐹𝐹𝐹 𝐹 𝑟𝑟𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

, 𝐹𝐹𝐹 𝐹 𝑟𝑟𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

. Then all solutions
are of the form

{
𝐹𝐹 𝐹 𝐹𝐹𝐹 𝑎 𝜅𝜅 𝑎𝑎

gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹
𝐹

𝐹𝐹 𝐹 𝐹𝐹𝐹 − 𝜅𝜅 𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

𝑎

for 𝜅𝜅 𝜅 ℤ. It is important to remark that comput-
ing integral solutions is much harder than finding the
rational ones.

1
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3 Conics

Consider now the case of a degree two polynomial in
the variables 𝑥𝑥𝑥 𝑥𝑥, namely a polynomial of the form

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 2 + 𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑏𝑏 + 𝑑𝑑 𝑑 𝑑𝑥 (2)

where we can assume that 𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏𝑥 𝑑𝑑𝑥 𝑑𝑑𝑥 𝑑𝑑 are all in-
tegers (otherwise we can multiply by the minimum
common multiple of their denominators). We will
also assume that the degree two polynomial is irre-
ducible (i.e. is not the product of two degree 1 ones),
as otherwise the study of its rational/integral points
reduces to the study of points on the factors.

We start studying rational solutions, say of the
form (𝑎𝑎𝑋𝑋𝑋𝑥 𝑏𝑏 𝑋𝑋𝑋) where 𝑎𝑎𝑥 𝑏𝑏 𝑥 𝑋𝑋 are integers. Sub-
stituting in (2) and multiplying by 𝑋𝑋2, we obtain an
integral point on the projective conic

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 2 + 𝑑𝑑𝑎𝑎𝑋𝑋 + 𝑑𝑑𝑏𝑏 𝑋𝑋 + 𝑑𝑑𝑋𝑋2 𝑑 𝑑𝑥 (3)

where 𝑋𝑋 𝑍 𝑑 (it is customary to consider solutions
where at least one of the coordinates is non-zero, as
they correspond to points in the projective plane).

A general conic like (3) might not have integer so-
lutions for easy reasons, for example there are no so-
lutions to the equation 𝑎𝑎2 + 𝑏𝑏 2 + 𝑋𝑋2 other than
(𝑑𝑥 𝑑𝑥 𝑑) (which we do not consider). In this case,
the failure for a solution to exist comes from the fact
that there are no real solutions to it (this is called an
Archimedean failure). There might be other failures.

Example 1.— The conic 𝑎𝑎2 + 𝑏𝑏 2 𝑑 3𝑋𝑋2 has no non-
trivial solution.

Suppose it does have a non-trivial solution (𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏)
and assume that gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) 𝑑 1 (otherwise, we can
divide each 𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏 by gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) obtaining a new so-
lution with this property). Note that if we divide any
square by 4, the remainder is either 𝑑 or 1 (or in terms
of congruences, 𝑥𝑥2 ≡ 𝑑𝑥 1 (mod 4)). Then 𝑎𝑎2 + 𝑏𝑏2

while divided by 4 has reminder 𝑑𝑥 1 or 2. Note that
it is zero precisely when 2 ∣ 𝑎𝑎 and 2 ∣ 𝑏𝑏. Similarly, the
reminder of 3𝑏𝑏2 while divided by 4 is 𝑑 or 3. Then
the equality 𝑎𝑎2 + 𝑏𝑏2 𝑑 3𝑏𝑏3 implies that both sides are
divisible by 4, so 2 ∣ 𝑏𝑏 as well, contradicting the as-
sumption that gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) 𝑑 1.

Contrary to the previous example, now the failure
has to do with the prime 2, it is what is called a 2-adic
failure (related to non-existence of solutions over the
field ℚ2 of 2-adic numbers). A similar obstruction ap-
pears for the prime 𝑝𝑝 𝑑 3 (we leave the details to the
reader).

It is natural to wonder whether the non-existence of
solutions is always due to a local (i.e. attached to a

congruence modulo 𝑁𝑁 for some integer 𝑁𝑁) or an
Archimedean reason. Indeed this is the case.

Theorem 2 (Hasse-Minkowski).— An equation like
(3) has a non-zero rational solution if and only if it
has a real solution, and a solution modulo 𝑁𝑁 for all
positive integers 𝑁𝑁 .

Proof.— See for example Theorem 8 in [15]. ∎

The proof presented by Serre is different from our
statement, so let us add a few comments. By the Chi-
nese remainder Theorem (see §2.3 of [11]), searching
for solutions modulo a general integer 𝑁𝑁 is equiv-
alent to search for solutions modulo prime powers.
Once the prime 𝑝𝑝 is fixed, the existence of a solu-
tion modulo 𝑝𝑝𝑛𝑛 for all positive integers 𝑛𝑛 is equivalent
to the existence of a solution over the field of 𝑝𝑝-adic
numbers. This is what Serre proves in [15].

Remark 1.— The result of Hasse-Minkowski works
for homogeneous polynomials of degree 2 in any
number of variables (not just 3).

Remark 2.— As stated Theorem 2 seems only of a
theoretical nature (as it implies verifying infinitely
many conditions). However, it is easy to transform
it into a finite computation (it is enough to verify the
statement at primes dividing the discriminant of the
quadratic form together with the case 𝑝𝑝 𝑑 2). See for
example §5.4 of [4].

Once that we have an algorithm to determine whether
a conic has a rational point or not, it is natural to ask
how many rational points it might have. The answer
is infinitely many, as a conic with a point is isomor-
phic to a line, as proved in the following example.

Example 2.— Let us study the case of the unit circle
centered at 𝐴𝐴 𝑑 (𝑑𝑥 𝑑) with equation

𝒞𝒞 𝒞 𝑎𝑎2 + 𝑏𝑏 2 𝑑 1. (4)

Take the point 𝐵𝐵 𝑑 (1𝑥 𝑑) (which belongs to the cir-
cle). Take the tangent line at 𝐵𝐵 and translate it by
some non-zero rational number (for example one to
the right as in Figure 1).

Call the line 𝐿𝐿. Then we get a bijective map from
rational points on 𝒞𝒞 (removing the point 𝐵𝐵) to ratio-
nal points on 𝐿𝐿 as follows: given a rational point 𝐶𝐶
in 𝐿𝐿, consider the line going through 𝐶𝐶 and 𝐵𝐵. It
must intersect the circle 𝒞𝒞 in a rational point (why?).
Explicitly, if 𝐶𝐶 𝑑 (2𝑥 𝑥𝑥) then the second intersection
point has coordinates

(
𝑥𝑥2 − 1
𝑥𝑥2 + 1

𝑥 −2𝑥𝑥
𝑥𝑥2 + 1) . (5)
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The inverse sends a point (𝑥𝑥𝑥 𝑥𝑥𝑥 in 𝒞𝒞 to the point
(2𝑥 𝑥𝑥𝑦(𝑥𝑥 𝑦 𝑦𝑥𝑥. The reason we need to remove the
point 𝐵𝐵 is that the affine line is not compact, if we
add its point at infinity, then we really get a bijection
between the two sets.

As done with the general equation (2), the set of ra-
tional points on the unit circle is the same as the set of
integral points on the projective curve 𝑋𝑋2 + 𝑌𝑌 2 = 𝑍𝑍2

(the so called Pitagorean triples). Writing the ratio-
nal point 𝑥𝑥 of the line 𝐿𝐿 in the form 𝑥𝑥 = 𝑚𝑚

𝑛𝑛
(for

𝑚𝑚𝑥 𝑛𝑛 𝑚 ℤ) we recover the classical parametrization
of the Pitagorean triples

(𝑚𝑚2 𝑦 𝑛𝑛2𝑥 𝑦2𝑚𝑚𝑛𝑛𝑥 𝑚𝑚2 + 𝑛𝑛2𝑥. (6)

Remark 3.— The same construction/strategy works
for a general conic as in (3) with one rational point.

Remark 4.— Over an algebraically closed field, equa-
tion (2) always has a point, hence it is isomorphic to
a line. From a topological point of view, a line and a
conic are the same, they both are genus 0 curves (or
equivalently Riemann surfaces with no holes).

The problem of determining the set of integral points
on a conic is much harder. There might be no points
at all (as in Example 1), there might be finitely many
(for example it is easy to verify that the circle (4)
only has the four integral points {(±𝑦𝑥 0𝑥, (0𝑥 ±𝑦𝑥})
or there might be infinitely many. For example, let 𝑑𝑑
be a square-free positive integer, and consider Pell’s
equation

𝑋𝑋2 𝑦 𝑑𝑑𝑌𝑌 2 = 𝑦. (7)
The equation has infinitely many integral solutions,
and all of them (up to a sign) can be obtained as
powers of a particular one (see for example §7.8 of
[11]). This equation appears while studying the inte-
gers whose inverses are also integers in the quadratic
field ℚ(√𝑑𝑑𝑥.

4 Cubics

As mentioned before, we are mostly interested in
studying hypersurfaces, i.e. solutions of a single equa-
tion 𝐹𝐹 (𝑥𝑥𝑦𝑥 … 𝑥 𝑥𝑥𝑛𝑛𝑥 = 0 (furthermore, most of the time
we restrict to 𝑛𝑛 = 2). The hypersurface

𝒞𝒞 𝒞 𝐹𝐹 (𝑥𝑥𝑦𝑥 … 𝑥 𝑥𝑥𝑛𝑛𝑥 = 0
is non-singular (or smooth) is there are no points 𝑃𝑃
in 𝒞𝒞 satisfying that 𝜕𝜕𝐹𝐹

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑃𝑃 𝑥 = 0 for all 𝑖𝑖 = 𝑦𝑥 … 𝑥 𝑛𝑛. All

lines are smooth, and conics given by an irreducible
polynomial are smooth as well.

Suppose that 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 is a cubic (i.e. it has degree
3), and that the curve

𝒞𝒞 𝒞 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 = 0
is non-singular. How can we determine whether it
has a rational point or not?

As happened before, it is better to work with an
homogeneous polynomial 𝐹𝐹 (𝑋𝑋𝑥 𝑌𝑌 𝑥 𝑍𝑍𝑥 in 3 variables.
Its set of solutions corresponds to a cubic in the pro-
jective plane, and we are trying to determine whether
it has an integral point different from (0𝑥 0𝑥 0𝑥.

The first approach would be to use Hasse’s crite-
rion, i.e. try to search for points modulo 𝑁𝑁 for dif-
ferent values of 𝑁𝑁 . If no such a point exists, then we
have proved that the curve 𝒞𝒞 has no rational points.

Theorem 3 (Selmer).— The cubic equation

3𝑋𝑋3 + 4𝑌𝑌 3 + 5𝑍𝑍3 = 0
has the only solution (0𝑥 0𝑥 0𝑥 over ℚ, but it has a
nonzero solution over ℝ and modulo 𝑁𝑁 for all 𝑁𝑁 .

Proof.— See [14]. ∎

3

Figure 1.—Rational points circle
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Selmer’s example shows that Hasse-Minkowski result
does not hold for degrees larger than 2. Let us state
some very interesting density results.

Theorem 4.— The probability that a random plane
cubic curve over ℚ has a point modulo 𝑁𝑁 for all pos-
itive values of 𝑁𝑁 is approximately 97.256%

Proof.— See Theorem 2 of [2]. ∎

Remark 5.— Unlike conics, a cubic polynomial al-
ways has a real root, so the only failures can be local
ones.

Furthermore, it was proved by Bhargava (see
https://arxiv.org/pdf/1402.1131.pdf) that a positive
proportion of cubics (at least 28%) fail the Hasse prin-
ciple, so another approach is needed.

Assuming a deep open conjecture (namely finite-
ness of the Tate-Shafarevich group), there does exist
an algorithm to determine if a cubic has a rational
point or not. In practice, running the algorithm in
some particular bad behaved cases might be very chal-
lenging.

Definition 5.— An elliptic curve is a non-singular cu-
bic with a rational point.

The usual definition of an elliptic curve is that of a
non-singular genus 1 curve with a rational point. It is
not hard to prove (see for example §III.3 of [17]) that
any rational elliptic curve can be given by a Weier-
strass equation

𝐸𝐸 𝐸 𝐸𝐸 2 = 𝑋𝑋3 + 𝐴𝐴𝑋𝑋 + 𝐴𝐴𝐴 (8)

for 𝐴𝐴𝐴 𝐴𝐴 𝐴 ℚ with 4𝐴𝐴3 + 27𝐴𝐴2 ≠ 0 (so the curve is
smooth). The marked rational point corresponds to
the solution 𝑂𝑂 = 𝑂0 𝐸 1 𝐸 0𝑂 of the homogeneous
polynomial

𝑍𝑍𝐸𝐸 2 = 𝑋𝑋3 + 𝐴𝐴𝑋𝑋𝑍𝑍2 + 𝐴𝐴𝑍𝑍3.
The point 𝑂𝑂 is the unique point at the infinity line
which we do not see while working on the affine
plane.

Elliptic curves are very interesting objects. If 𝐾𝐾 is
any field (like ℚ or ℂ), the set 𝐸𝐸𝑂𝐾𝐾𝑂 of points on 𝐸𝐸
defined over 𝐾𝐾 has an addition law (see §III.2 of [17]),
making 𝑂𝐸𝐸𝑂𝐾𝐾𝑂𝐴 +𝑂 an abelian group (whose identity
element is the point 𝑂𝑂).

Theorem 6 (Mordell).— The group 𝐸𝐸𝑂ℚ𝑂 is finitely
generated.

A proof is given in §VIII of [17]. In particular, the
fundamental theorem of finitely generated abelian

groups implies that there exists a non-negative inte-
ger 𝑟𝑟 such that

𝐸𝐸𝑂ℚ𝑂 ≃ 𝑇𝑇 𝑇 ℤ𝑟𝑟𝐴
where 𝑇𝑇 is a finite group. The number 𝑟𝑟 is called the
rank of the elliptic curve. There are very effective al-
gorithms to compute 𝑇𝑇 . Furthermore, a conjecture
of Beppo Levi proven by Mazur states that there are
only 15 possible groups for 𝑇𝑇 (see Theorem 7.5 of
[17]). Computing 𝑟𝑟 (and generators for the free part)
is a deep problem. Once again, assuming finiteness of
the Tate-Shafarevich group, there exists a theoretical
algorithm to do it.

Remark 6.— It is not known whether the value of 𝑟𝑟
is bounded or not. The current largest value for it is
28, found by Elkies in 2006.

Regarding integral points, there is a very general re-
sult due to Siegel ([16]), which states the following.

Theorem 7.— If 𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 is a polynomial of degree
larger than 2 and the curve 𝒞𝒞 𝐸 𝒞𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 = 0𝒞 is non-
singular, then 𝒞𝒞 has finitely many integral points.

The result is not effective (i.e. it does not give infor-
mation on the number of integral points of 𝒞𝒞 nor
how to compute them). In the case of elliptic curves,
the elements of 𝑇𝑇 have integral coordinates. If a set
of generators for 𝐸𝐸𝑂ℚ𝑂 is known then a priori one can
determine all the integral points on 𝐸𝐸.

5 Larger degrees

If the polynomial 𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 has degree larger than 3,
the (non-singular) curve 𝒞𝒞 has genus larger than 1.
The following result is a deep conjecture of Mordell
proven by Falting ([9]).

Theorem 8 (Faltings).— If 𝒞𝒞 is a rational non-
singular curve of genus larger than 1 then 𝒞𝒞 𝑂ℚ𝑂 is
finite.

As Siegel’s theorem, the proof is not effective. In a
remarkable article, Chabauty ([3]) gave a method to
bound the number of rational points when the rank
of the Jacobian of 𝒞𝒞 is smaller than its genus. An ef-
fective version of the method was obtained by Cole-
man in ([6]). Since then, many improvements have
been obtained, making the Chabauty method a very
active research area.
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6 Fermat’s last theorem

Without getting into details of the history behind Fer-
mat’s last theorem, in a margin of his copy of Dio-
phantus’ Arithmetica, Fermat wrote that a cube can-
not be written as the sum of two cubes, a fourth
power as a sum as two fourth powers, etc. In other
words, his claim can be stated as:

Theorem 9 (Fermat’s last theorem).— The equation

𝑋𝑋𝑛𝑛 + 𝑌𝑌 𝑛𝑛 = 𝑍𝑍𝑛𝑛 (9)

has no rational solutions other than the trivial ones
(i.e. when one of the variables equals zero).

After the contributions of many mathematicians, Fer-
mat’s last theorem was finally proved in 1995 by Wiles
(see [19]). The book [8] contains details of the history
behind the problem as well as different strategies used
to solve particular cases before the Frey-Hellegouarch
approach used in Wiles’ proof.

Historically, a major breakthrough for understand-
ing Fermat’s last theorem was Faltings’ result, which
implies the existence of finitely many solutions for
each 𝑛𝑛 𝑛 𝑛.

The case 𝑛𝑛 = 𝑛 is of particular interest, as it is
a cubic curve, with a rational point (actually with 𝑛
different ones up to multiplication by −1). Substitut-
ing (𝑋𝑋𝑋 𝑌𝑌 𝑋 𝑍𝑍𝑋 by (𝑦𝑦𝑦𝑦𝑋 𝑦𝑦𝑦𝑛𝑋 𝑦𝑦𝑦𝑦𝑦𝑦𝑋 in (9) (when 𝑛𝑛 = 𝑛)
and multiplying the equation by 27 gives the curve in
Weirestrass form

𝑦𝑦2𝑦𝑦 + 𝑦𝑦𝑦𝑦𝑦2 = 𝑦𝑦𝑛 − 27𝑦𝑦𝑛.
Any modern number theory software (like [18]) ver-
ifies that this curve has only three rational points,
namely (𝑛 ∶ 0 ∶ 1𝑋, (𝑛 ∶ −𝑦 ∶ 1𝑋 and (0 ∶ 1 ∶ 0𝑋
(mapping to the points (0 ∶ 1 ∶ 1𝑋, (−1 ∶ 1 ∶ 0𝑋
and (1 ∶ 0 ∶ 1𝑋 respectively), proving Fermat’s last
theorem when 𝑛𝑛 = 𝑛.

The general proof of Fermat’s last theorem is very
technical, but we content ourselves to stating a few
ingredients of the proof: start with a putative solu-
tion (𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 of (9) satisfying that gcd(𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 = 1 and
𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 0 (to avoid the trivial solutions). It is enough to
prove the statement when 𝑛𝑛 is a prime number, and
when 𝑛𝑛 = 𝑛. The case 𝑛𝑛 = 𝑛 was proved by Fermat,
so suppose that 𝑛𝑛 is an odd prime number ℓ.

1. Attach to the solution the Frey elliptic curve

𝐸𝐸 ∶ 𝑌𝑌 2𝑍𝑍 = 𝑋𝑋(𝑋𝑋 − 𝑎𝑎ℓ𝑍𝑍𝑋(𝑋𝑋 + 𝑎𝑎ℓ𝑍𝑍𝑋.

2. Wiles proved that this elliptic curve is modular
i.e. is related to an holomorphic function of

the complex upper half plane satisfying many
transformation properties (such functions are
called modular forms). The number of equations
depend on a parameter 𝑁𝑁 (a positive integer)
called the level of the modular form. For the ex-
perienced reader, the modular form has weight
2 and is invariant under the group Γ0(𝑁𝑁𝑋.

3. For each value of 𝑁𝑁 , the set of modular forms
satisfying the relations given by the value 𝑁𝑁 is
actually a finite dimensional vector space. There
are many algorithms to compute a basis for it
(using the so called modular symbols). The prob-
lem is that the value of 𝑁𝑁 attached to 𝐸𝐸 depends
on 𝑎𝑎𝑋 𝑎𝑎 and 𝑎𝑎 (which are unknown).

4. Making use of the particular shape of a solution,
results of Hellegouarch and Ribet imply that ac-
tually one can take (up to a congruence) 𝑁𝑁 = 2.

5. The space of modular forms for the parameter
𝑁𝑁 = 2 is zero, so there is no form in this space
to match the curve 𝐸𝐸 attached to our solution.
This gives a contradiction, so the original solu-
tion (𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 cannot exist.

As previously mentioned, the proof follows from
the effort and contributions of many mathematicians,
including Frey, Hellegouarch, Mazur, Ribet, Serre,
Wiles and Taylor among others.

7 The generalized Fermat equation

Let 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎 be non-zero positive integers. The
so called generalized Fermat equation is the equation

𝑎𝑎𝑦𝑦𝑎𝑎 + 𝑎𝑎𝑦𝑦𝑎𝑎 = 𝑎𝑎𝑦𝑦𝑎𝑎. (10)

The case 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 = 1 and 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 is the classical
Fermat’s equation. There is a big difference between
equation (10) and Fermat’s one, since the former de-
fines an affine surface (instead of a projective curve).
There are many examples of surfaces containing lines
(like a cone, although it is a singular surface). For this
reason, the number of solutions to (10) depends on
whether (1𝑦𝑎𝑎𝑋 + (1𝑦𝑎𝑎𝑋 + (1𝑦𝑎𝑎𝑋 is larger than 1, equals 1
or is smaller than 1. See ([1]) for a nice exposition in
the case 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 = 1.

The first case (called spherical) corresponds to the
exponents (2𝑋 2𝑋 𝑎𝑎𝑋, (2𝑋 𝑎𝑎𝑋 2𝑋, (2𝑋 𝑛𝑋 𝑛𝑋, (2𝑋 𝑛𝑋 𝑛𝑋, (2𝑋 𝑛𝑋 𝑛𝑋
or (2𝑋 𝑛𝑋 5𝑋. In general one expects that if one solu-
tion exists, then there are infinitely many (and the so-
lutions can be parametrized). See §14 of [5].
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The second case (called parabolic) corresponds to
the exponents (2, 6, 3), (2, 4, 4), (4, 4, 2), (3, 3, 3) or
(2, 3, 6). In this cases one also expects that if one so-
lution exists, then there should be infinitely many of
them (but we do not expect a parametrization). See
§6 of [7] and also §6.5 of [4].

The last case (called hyperbolic) is the general one.
Note that since the polynomial giving (10) is not ho-
mogeneous, we cannot assume that our solution is
primitive (i.e. gcd(𝑥𝑥, 𝑥𝑥, 𝑥𝑥) 𝑥 𝑥). This phenomenom
gives raise to the existence of many unwanted solu-
tions.

Here is an example taken from [7]: consider the
equation

𝑥𝑥3 + 𝑥𝑥3 𝑥 𝑥𝑥4.
(corresponding to equation (10) with parameters
(𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎) 𝑥 (𝑥, 𝑥, 𝑥, 3, 3, 4)). Let 𝑥𝑥 𝑥 𝑧𝑧3 + 𝛽𝛽3,
𝑥𝑥 𝑥 𝑧𝑧𝑥𝑥, 𝑥𝑥 𝑥 𝛽𝛽𝑥𝑥 for 𝑧𝑧, 𝛽𝛽 arbitrary integers. These are
all solutions! (though all of them but finitely many
are not primitive). For this purpose, one focus on
studying only primitive solutions. Here is a very nice
general result.

Theorem 10 (Darmon-Granville).— If 𝑥
𝑎𝑎

+ 𝑥
𝑎𝑎

+ 𝑥
𝑎𝑎

< 𝑥
then equation (10) has finitely many primitive solu-
tions.

The proof (see [7]) depends on Mordell’s conjecture
(Theorem 8), so it is not effective. It is expected that
once (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) is fixed, the set of primitive solutions
(where the exponents (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) vary) is still finite. Here
is an explicit version of what we expect to be true.

Conjecture 1.— Any primitive solution to

𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑎𝑎 𝑥 𝑥𝑥𝑎𝑎,
with 𝑥

𝑎𝑎
+ 𝑥

𝑎𝑎
+ 𝑥

𝑎𝑎
< 𝑥 is either the solution 𝑥𝑎𝑎 + 23 𝑥 32,

or it belongs to a finite list.

In other words, if we vary the exponents (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) with
the condition that the equation is hyperbolic, then the
union of all solutions is a finite set. There is an explicit
candidate for the finite list (based on numerical com-
putations) which we omit for space reasons. They all
have the property that one of 𝑎𝑎, 𝑎𝑎 or 𝑎𝑎 equals 2. A con-
jecture of Beal (with a prize of 𝑥 million USD for its
resolution) actually states that there are no solution if
min{𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑝 𝑝 2.

8 Our contribution to the problem

Together with my former student Lucas Villagra Tor-
comian, we study the particular generalized Fermat

equations:
𝑥𝑥4 + 𝑑𝑑𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎, (11)

and
𝑥𝑥2 + 𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎, (12)

for different values of 𝑑𝑑. In [12], following the modu-
lar method used in the proof of Fermat’s last theorem,
we gave an algorithm that for fixed 𝑑𝑑, proves (in many
instances) the non-existence of solutions for any large
value of the exponent 𝑎𝑎 (assuming it is a prime num-
ber). Here are a few particular instances of the results
proven in [12].

Theorem 11.— There are no non-trivial primitive so-
lutions of 𝑥𝑥4 + 5𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎 if 𝑎𝑎 is any prime number
larger than 499.

The result should hold for small values of 𝑎𝑎 as well
(say larger than 𝑥3), but getting this bound requires
a huge computational effort that is unfeasible nowa-
days.

Theorem 12.— There are no non-trivial primitive so-
lutions of 𝑥𝑥2 + 6𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎 if 𝑎𝑎 is any prime number
larger than 563.

When 𝑑𝑑 < 𝑑 equations (11) and (12) become harder
to study. However, in [13] we proved some partial
results like the following.

Theorem 13.— Let 𝑎𝑎 𝑝 𝑥9 be a prime number such
that 𝑎𝑎 𝑝 9𝑝 and 𝑎𝑎 𝑝 𝑥, 3 (m𝑝d 𝑝). Then (±𝑝, ±2𝑑, 𝑥)
are the only non-trivial primitive solutions of the
equation 𝑥𝑥4 − 6𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎.

The aforementioned results depend on a computa-
tion for each value of the parameter 𝑑𝑑. Recently, in
[10] we obtained the following asymptotic result.

Theorem 14.— Let 𝑑𝑑 be a prime number congruent
to 3 modulo 𝑝 and such that the class number of
ℚ(√−𝑑𝑑) is not divisible by 3. Then there are no non-
trivial primitive solutions of the equation

𝑥𝑥4 + 𝑑𝑑𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎,
for 𝑎𝑎 large enough.

A similar result was obtained for the equation 𝑥𝑥2 +
𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎, namely that if 𝑑𝑑 is a prime number congru-
ent to 𝑥9 modulo 24 and such that the class number
of ℚ(√−𝑑𝑑) is not divisible by 3, then the equation
𝑥𝑥2 + 𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎 does not have non-trivial primitive
solutions for 𝑎𝑎 large enough.
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