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Abstract.—Bayes’ theorem is a central result of Statistics and related fields, such as Artificial 
Intelligence and Machine Learning. In this note, we offer a gentle introduction to a geometric 
interpretation of Bayesian inference that allows one to think of priors, likelihoods, and 
posteriors as vectors in an Hilbert space. The given framework can be conceptualized as 
a geometry of learning from data, and it can be used to construct measures of agreement 
between these vectors. Conceptually, the geometry is tantamount to that of Pearson 
correlation, but where an inner product is considered over the parameter space—rather than 
over the sample space.

1 Introduction

This note builds on ideas from two prominent
thinkers: Thomas Bayes (c. 1701–1761) and David
Hilbert (1862–1943).[1] While their lives never over-
lapped temporally, this note shows how the work of
Hilbert can be used to reinterpret Bayes’ theorem and
Bayesian inference from a geometric viewpoint—as
well as other key statistical concepts on what we re-
gard as a geometry of learning from data.

The Bayesian paradigm is a well-known statisti-
cal inference approach that can be used for learning
from data about a parameter of statistical interest us-
ing Bayes theorem. Let 𝑌𝑌1, … , 𝑌𝑌𝑛𝑛 be a sequence of
independent and identically distributed (iid) random
variables in a measurable space (Ω, 𝒜𝒜𝒜 that are drawn
from parametric density function

𝑓𝑓𝜃𝜃(y𝒜 ≡ 𝑓𝑓(y ∣ 𝜃𝜃𝒜,
with y ∈ Ω and 𝜃𝜃 ∈ 𝜃. The sets Ω and 𝜃 are respec-
tively known as sample space and parameter space.

The key goal of Bayesian inference is to learn
about the distribution of the parameter 𝜃𝜃 given the
data 𝑦𝑦 𝑦 (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛𝒜. It follows from Bayes theorem

that,

𝑝𝑝(𝜃𝜃 ∣ 𝑦𝑦𝒜 𝑦 𝜋𝜋(𝜃𝜃𝒜𝜋(𝜃𝜃𝒜
∫𝜃 𝜋𝜋(𝜋𝜋𝒜𝜋(𝜋𝜋𝒜 d𝜋𝜋

. (1)

where 𝜋(𝜃𝜃𝒜 𝑦 ∏𝑛𝑛
𝑖𝑖𝑦1 𝑓𝑓𝜃𝜃(𝑦𝑦𝑖𝑖𝒜 is the likelihood function,

and 𝜋𝜋(𝜃𝜃𝒜 is the prior density function. The density
𝑝𝑝(𝜃𝜃 ∣ 𝑦𝑦𝒜 is known as posterior density and it summa-
rizes what we learn about 𝜃𝜃 after observing 𝑦𝑦.

The prior density can understood as a way adding
prior knowledge about 𝜃𝜃 to the analysis—say, from an
expert opinion, from a census, and so on—or simply
as a way to “initiate the inferential machine.” Quoting
[9]:

The choice of a prior distribution is neces-
sary (as you would need to initiate the in-
ferential machine) but there is no notion of
the “optimal” prior distribution. Choosing
a prior distribution is similar in principle
to initializing any other sequential proce-
dure (e.g., iterative optimization methods
[…] etc.). The choice of such initializa-
tion can be good or bad in the sense of the
rate of convergence of the procedure to its
final value, but as long as the procedure
is guaranteed to converge, the choice of
prior does not have a permanent impact.

[1] The key concepts and methods from this note relate with the ideas and principles in [3], which was awarded with the 2018 Lindley Prize
from the International Society of Bayesian Analysis.
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And indeed, the posterior can be shown to converge
to the true value, under rather general conditions
on the prior distribution—a result known in statisti-
cal parlance as the Bernstein—von Mises theorem [11,
Theorem 10.1].

The remainder of this note is organized as follows.
In §2 we note that there’s an hidden geometry under-
lying Eq. (4) that can be used to rethink Bayesian infer-
ence and to develop measures of agreement between
prior, likelihood, and posterior. In §3 we illustrate
how that geometry can be used for shedding light on
other statistical inference concepts.

Before we get started a disclaimer is in order. To
make the presentation of the key ideas more acces-
sible, we will often use visualizations based on Carte-
sian representations. Yet, it is important to remember
that these representations are mainly heuristic and
hence should be interpreted with care.

2 The geometry of Bayesian inference

2.1 Abstract geometry

We first clarify the sense in which the term geometry
will be used throughout this note. The following def-
inition of abstract geometry can be found in [7, p. 17].

Definition 1 (Abstract geometry).— An abstract ge-
ometry 𝒜𝒜 consists of a pair {𝒫𝒫 𝒫 𝒫𝒫, where the ele-
ments of set 𝒫𝒫 are designed as points, and the ele-
ments of the collection 𝒫 are designed as lines, such
that:

1. For every two points 𝐴𝐴𝒫 𝐴𝐴 𝐴 𝒫𝒫 , there is a line
𝑙𝑙 𝐴 𝒫 .

2. Every line has at least two points.

Our abstract geometry of interest is 𝒜𝒜 𝒜 {𝒫𝒫 𝒫 𝒫𝒫,
where 𝒫𝒫 𝒜 𝒫𝒫2(Θ) is the the space of square inte-
grable functions, and the set of all lines is

𝒫 𝒜 {𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝒫 𝑔 𝐴 𝒫𝒫2(Θ)𝒫 𝑔𝑔 𝐴 R𝒫. (2)

Hence, in our setting points can be, for example, prior
densities, posterior densities, or likelihoods, as long

as they are in 𝒫𝒫2(Θ). While not all priors and likeli-
hoods are in 𝒫𝒫2(Θ), the framework discussed herein
may extend beyond 𝒫𝒫2(Θ) with some modifications,
while still allowing similar geometric interpretations
as the ones provided below. See [3, §3] for details.

2.2 Bayes geometry

2.2.1 The marginal likelihood is an inner product

Suppose the goal of the inference is over a parameter
𝜃𝜃 which takes values on Θ ⊆ R𝑝𝑝. We use the geom-
etry of the Hilbert space ℋ 𝒜 (𝒫𝒫2(Θ)𝒫 ⟨⋅𝒫 ⋅⟩), with
inner-product[2]

⟨𝑔𝑔𝒫 𝑔⟩ 𝒜 ∫Θ
𝑔𝑔(𝜃𝜃)𝑔(𝜃𝜃) d𝜃𝜃𝒫 𝑔𝑔𝒫 𝑔 𝐴 𝒫𝒫2(Θ). (3)

Adopting the geometric terminology used in linear
spaces, we denote the elements of 𝒫𝒫2(Θ) as vectors,
and assess their magnitudes through the use of the
norm induced by the inner product in (3), i.e., ‖ ⋅ ‖ 𝒜
(⟨⋅𝒫 ⋅⟩)1/2.

The starting point for constructing our geometry
is the observation that Bayes theorem can be written
using the inner-product in (2.2.1) as follows

𝑝𝑝(𝜃𝜃 𝑝 𝑝𝑝) 𝒜 𝜋𝜋(𝜃𝜃)𝜋(𝜃𝜃)
⟨𝜋𝜋𝒫 𝜋⟩

𝒫 (4)

where ⟨𝜋𝜋𝒫 𝜋⟩ 𝒜 ∫Θ 𝑓𝑓(𝑝𝑝 𝑝 𝜃𝜃)𝜋𝜋(𝜃𝜃) d𝜃𝜃 is the so-called
marginal likelihood. The inner product in (3) natu-
rally leads to considering 𝜋𝜋 and 𝜋 that are in 𝒫𝒫2(Θ),
which is compatible with a wealth of parametric mod-
els and proper priors.

As can be seen from Fig. 1, by considering 𝑝𝑝, 𝜋𝜋, and
𝜋 as vectors with different magnitudes and directions,
Bayes’ theorem essentially describes the method of re-
shaping the prior vector in order to derive the poste-
rior vector. The likelihood vector amplifies or dimin-
ishes the magnitude of the prior vector, and appropri-
ately adjusts its direction, in a way that will be clearly
defined in the subsequent discussion.

The marginal likelihood ⟨𝜋𝜋𝒫 𝜋⟩ is simply the inner
product between the likelihood and the prior, and
thus can be interpreted as an assessment of the con-
cordance between the prior and the likelihood. To
provide a more tangible understanding, let’s define
the angle measure between the prior and the likeli-

[2] In mathematical terminology, the assertion that ℋ constitutes a Hilbert space is frequently referred to as the Riesz–Fischer theorem. For
a proof see [2, p. 411].
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Figure 1.—Cartesian representation of vectors of interest in a 
Bayesian analysis.

hood as

𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋𝜋𝜋𝜋
⟨𝜋𝜋𝜋 𝜋𝜋

‖𝜋𝜋‖‖𝜋‖
. (5)

Since 𝜋𝜋 and 𝜋 are nonnegative, the angle between the
prior and the likelihood can only be acute or right, i.e.,
𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋 𝜋𝜋∘]. The closer 𝜋𝜋𝜋𝜋 is to 𝜋∘, the greater
the agreement between the prior and the likelihood.
Conversely, the closer 𝜋𝜋𝜋𝜋 is to 𝜋𝜋∘, the greater the
disagreement between prior and likelihood. In the
limiting case where 𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋∘—which implies the
prior and the likelihood have all of their mass on dis-
joint sets—we say that the prior is orthogonal to the
likelihood. Bayes theorem does not allow for a prior
to be orthogonal to the likelihood as 𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋∘ im-
plies that ⟨𝜋𝜋𝜋 𝜋𝜋 𝜋 𝜋, thus yielding a division by zero
in (4).

2.2.2 Compatibility

The object we aim to focus next is given by a stan-
dardized inner product

𝜅𝜅𝜋𝜋𝜋𝜋 𝜋
⟨𝜋𝜋𝜋 𝜋𝜋

‖𝜋𝜋‖‖𝜋‖
. (6)

The quantity 𝜅𝜅𝜋𝜋𝜋𝜋 𝜋 (𝜋𝜋 1] assesses the extent to
which an expert’s viewpoint aligns with the data,
thereby offering an intuitive measurement of the con-
cordance between the prior and the data.

Extending the principle in (6), for any two points
in the geometry under consideration we define their
compatibility as a standardized inner product.

Definition 2 (Compatibility).— The compatibility
between points in the geometry under consideration
is defined as

𝜅𝜅𝑔𝑔𝜋𝑔 𝜋
⟨𝑔𝑔𝜋 𝑔𝜋

‖𝑔𝑔‖‖𝑔‖
𝜋 𝑔𝑔𝜋 𝑔 𝜋 𝑔𝑔2(Θ). (7)

Particular instances include (6) as well as:

• 𝜅𝜅𝜋𝜋1𝜋𝜋𝜋2
: which assesses the level of agreement

between two experts, with respective priors 𝜋𝜋1
and 𝜋𝜋2.

• 𝜅𝜅𝜋𝜋𝜋𝜋𝜋: which is a metric of the sensitivity of the
posterior to the prior specification.

Example 1 (Beta-Bernoulli model).— Let

{
𝑌𝑌𝑖𝑖 ∣ 𝜃𝜃 iid∼ Bern(𝜃𝜃)𝜋 𝑖𝑖 𝜋 1𝜋 𝜃 𝜋 𝜃𝜃𝜋
𝜃𝜃 ∼ Beta(𝑎𝑎𝜋 𝑎𝑎).

(8)

Then, 𝜃𝜃 ∣ 𝜃𝜃 ∼ Beta(𝑎𝑎⋆𝜋 𝑎𝑎⋆) with 𝑎𝑎⋆ 𝜋 𝜃𝜃1 + 𝑎𝑎 and
𝑎𝑎⋆ 𝜋 𝜃𝜃 𝑛 𝜃𝜃1 + 𝑎𝑎, where 𝜃𝜃1 𝜋 ∑𝜃𝜃

𝑖𝑖𝜋1 𝜃𝜃𝑖𝑖.
The compatibility between prior and likelihood

for this beta–Bernoulli model is

𝜅𝜅𝜋𝜋𝜋𝜋 𝜋 𝐵𝐵(𝑎𝑎⋆𝜋 𝑎𝑎⋆)
{𝐵𝐵(2𝑎𝑎 𝑛 1𝜋 2𝑎𝑎 𝑛 1)𝐵𝐵(2𝜃𝜃1 + 1𝜋 2(𝜃𝜃 𝑛 𝜃𝜃1) + 1)}1/2 𝜋

for 𝑎𝑎𝜋 𝑎𝑎 𝑎 1/2, with 𝐵𝐵(𝑎𝑎𝜋 𝑎𝑎) 𝜋 ∫1
𝜋 𝑢𝑢𝑎𝑎𝑛1(1 𝑛 𝑢𝑢)𝑎𝑎𝑛1 𝑑𝑑𝑢𝑢.[3]

To assess how compatible the priors 𝜋𝜋1 ∼ Beta(𝑎𝑎1𝜋 𝑎𝑎1)
and 𝜋𝜋2 ∼ Beta(𝑎𝑎2𝜋 𝑎𝑎2) are, we obtain

𝜅𝜅𝜋𝜋1𝜋𝜋𝜋2
𝜋

𝐵𝐵(𝑎𝑎1 + 𝑎𝑎2 𝑛 1𝜋 𝑎𝑎1 + 𝑎𝑎2 𝑛 1)
{𝐵𝐵(2𝑎𝑎1 𝑛 1𝜋 2𝑎𝑎1 𝑛 1)𝐵𝐵(2𝑎𝑎2 𝑛 1𝜋 2𝑎𝑎2 𝑛 1)}1/2 .

for 𝑎𝑎1𝜋 𝑎𝑎2𝜋 𝑎𝑎1𝜋 𝑎𝑎2 𝑎 1/2.

[3] The geometry underlying compatibility can be reframed within an Hellinger affinity context so to allow for any 𝑎𝑎𝜋 𝑎𝑎 𝑎 𝜋. See [3, §3].
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Figure 2.—Cartesian representation underlying the strong likelihood principle (left) 
and sufficiency (right). See §§ 3.2 and 3.3.

3 Further perspectives and insights

The roadmap for this section is as follows. §3.1 notes
that a variational representation of the posterior den-
sity naturally fits our geometry. §§3.2 and 3.3 are re-
lated with collinearity; it follows from §2, whenever
the symbol “∝” is used in a Bayesian setting it simply
implies that two likelihoods, priors or posteriors are
collinear. Finally, §3.4 notes the similarities between
the geometry of compabitility and that of Pearson cor-
relation.

3.1 Donsker–Varadhan representation

The celebrated Donsker–Varadhan representation
shows that the posterior density is the solution to
a variational problem with search domain 𝒫𝒫 𝒫𝒫𝒫;
here and below, 𝒫𝒫 𝒫𝒫𝒫 is the space of probability
density functions that can be defined over 𝒫 and
𝑙𝑙𝒫𝑙𝑙𝒫 𝑙 𝑙𝑙𝑙 𝑙𝒫𝑙𝑙𝒫 is the log likelihood. Specifically, the
Donsker–Varadhan representation is given by

𝑝𝑝𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 𝑙 𝑝𝑝𝑙 𝑝𝑝𝑝
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

[−E𝑞𝑞{𝑙𝑙𝒫𝑙𝑙𝒫𝑙 𝑙 KL𝒫𝑞𝑞𝑞 𝑞𝑞𝒫𝑞𝑞 (9)

where E𝑞𝑞 and KL are respectively the prior expecta-
tion and Kullback–Leibler divergence, that is,

𝐸𝐸𝑞𝑞{𝑙𝑙𝒫𝑙𝑙𝒫𝑙 𝑙 ∫𝒫
𝑙𝑙𝒫𝑙𝑙𝒫 𝑞𝑞𝒫𝑙𝑙𝒫 d𝑙𝑙𝑞

KL𝒫𝑞𝑞𝑞 𝑞𝑞𝒫 𝑙 ∫𝒫
𝑞𝑞𝒫𝑙𝑙𝒫 𝑙𝑙𝑙{𝑞𝑞𝒫𝑙𝑙𝒫𝑞𝑞𝑞𝒫𝑙𝑙𝒫𝑙 d𝑙𝑙𝜃

A geometric interpretation of (3.1) follows from ele-
mentary properties of inner products,

𝑝𝑝𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 𝑙 𝑝𝑝𝑙 𝑝𝑝𝑝
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

−⟨𝑞𝑞𝑞 𝑙𝑙𝑞 𝑙 ⟨𝑞𝑞𝑞 𝑙𝑙𝑙𝒫𝑞𝑞𝑞𝑞𝑞𝒫𝑞

𝑙 𝑝𝑝𝑙 𝑝𝑝x
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

⟨𝑞𝑞𝑞 𝑙𝑙𝑞 − ⟨𝑞𝑞𝑞 𝑙𝑙𝑙𝒫𝑞𝑞𝑞𝑞𝑞𝒫𝑞

𝑙 𝑝𝑝𝑙 𝑝𝑝x
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

⟨𝑞𝑞𝑞 DV𝑞𝑞𝑞𝑞 (10)

where DV𝑞𝑞 is what we refer to as the Donsker–
Varadhan likelihood ratio,

DV𝑞𝑞𝒫𝑙𝑙𝒫 𝜃 𝑙𝑙𝑙[𝑙𝒫𝑙𝑙𝒫𝑞{𝑞𝑞𝒫𝑙𝑙𝒫𝑞𝑞𝒫𝑙𝑙𝒫𝑙𝑞𝜃 (11)

Loosely, (10) implies that the posterior density is the
density in 𝒫𝒫 𝒫𝒫𝒫 which is most lined up with the
Donsker–Varadhan likelihood ratio in (11).

3.2 Collinearity, I: likelihood principle

Let 𝑙𝑓𝑓 and 𝑙𝑔𝑔 be the likelihoods based on observing
𝑝𝑝 𝑦 𝑓𝑓 and 𝑝𝑝∗ 𝑦 𝑔𝑔, respectively. The strong likelihood
principle states that if

𝑙𝑓𝑓 𝒫𝑙𝑙𝒫 𝑙 𝑓𝑓𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 ∝ 𝑔𝑔𝒫𝑙𝑙 𝑝 𝑝𝑝∗𝒫 𝑙 𝑙𝑔𝑔𝒫𝑙𝑙𝒫𝑞
then the same inference should be drawn from both
samples. According to our geometry, this means that
likelihoods with the same direction yield the same in-
ference. For instance, the Bernoulli likelihood of the
model from Example (1) is

𝑙𝑓𝑓 𝒫𝑙𝑙𝒫 𝑙
𝑛𝑛

∏
𝑖𝑖𝑙𝑖

𝑙𝑙𝑝𝑝𝑖𝑖𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−𝑝𝑝𝑖𝑖 𝑙 𝑙𝑙∑𝑛𝑛
𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖 𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−∑𝑛𝑛

𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖 𝑞

wheras that of the Binomial model for 𝑛𝑛𝑖 𝑙 ∑𝑛𝑛
𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖

is

𝑙𝑔𝑔𝒫𝑙𝑙𝒫 𝑙 (
𝑛𝑛
𝑛𝑛𝑖)𝑙𝑙𝑛𝑛𝑖𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−𝑛𝑛𝑖 𝑞
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Figure 3.—Left: Prior, posterioar, and likelihood for beta–binomial specification from 
Example 1 with (a,b) = (4, 4), n = 40, and n1 = 30 so that, for example, κπ,l = 0.41. 
Right: Simulated data from bivariate normal distribution with ρX,Y = 0.98.

with (𝑎𝑎
𝑏𝑏) denoting the binomial coefficient. Trivially,

ℓ𝑓𝑓 (𝜃𝜃𝜃 𝜃 ℓ𝑔𝑔(𝜃𝜃𝜃𝜃
and hence ℓ𝑓𝑓 and ℓ𝑔𝑔 are collinear.

3.3 Collinearity, II: sufficiency

Roughly speaking, a sufficient statistic is one that con-
tains all the information that is required to learn about
𝜃𝜃.[4] The geometry from §2.2 can also be used to re-
think a celebrated characterization of sufficient statis-
tics in a geometric fashion.

Theorem 3 (Neyman factorization).— Suppose that
𝑌𝑌 𝑌 (𝑌𝑌1𝜃 … 𝜃 𝑌𝑌𝑛𝑛𝜃 has a joint density function or a fre-
quency function 𝑓𝑓𝜃𝜃(𝑦𝑦𝜃. Then 𝑇𝑇 (𝑌𝑌 𝜃 is sufficient for
𝜃𝜃 iff there exists a function of that statistic, 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃,
that is collinear to ℓ(𝜃𝜃𝜃, that is,

ℓ(𝜃𝜃𝜃 𝜃 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃𝜃

See, for instance, [6, §4] for a nongeometrical formu-
lation of this classical result. Let’s illustrate this on a
well-known example.

Example 2.— Let 𝑌𝑌1𝜃 … 𝜃 𝑌𝑌𝑛𝑛
iid∼ Uniform(0𝜃 𝜃𝜃𝜃. It can

be easily shown that

ℓ(𝜃𝜃𝜃 𝑌
𝑛𝑛

∏
𝑖𝑖𝑌1

1
𝜃𝜃
1[0𝜃𝜃𝜃𝜃(𝑦𝑦𝑖𝑖𝜃 𝜃 1

𝜃𝜃𝑛𝑛1[0𝜃𝜃𝜃𝜃{𝑇𝑇 (𝑦𝑦𝜃𝑇 𝑇 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃𝜃

where 𝑇𝑇 (𝑦𝑦𝜃 𝑌 𝑇𝑇𝑇{𝑦𝑦1𝜃 … 𝜃 𝑦𝑦𝑛𝑛𝑇 and 1𝐴𝐴 is the indicator
function.

3.4 Compatibility vs Pearson correlation

Compatibility in Definition 2 follows the same con-
struction principles as the Pearson correlation coeffi-
cient, which is based on the inner product

⟨𝑋𝑋𝜃 𝑌𝑌 𝑋 𝑌 ∫Ω
𝑋𝑋𝑌𝑌 d𝑃𝑃 𝜃 𝑋𝑋𝜃 𝑌𝑌 𝑃 𝑃𝑃2(Ω𝜃 𝔹𝔹Ω𝜃 𝑃𝑃 𝜃𝜃 (12)

instead of the inner product in (3). Recall that Pear-
son correlation is defined as

𝜌𝜌𝑋𝑋𝜃𝑌𝑌 𝑌 cov(𝑋𝑋𝜃 𝑌𝑌 𝜃
sd(𝑋𝑋𝜃 sd(𝑌𝑌 𝜃

𝜃

and it can be understood as a cosine of 𝑋𝑋𝑋𝑌𝑌 in a
similar fashion as (5)—but with “cov” and “sd” denot-
ing the covariance (inner product) and standard devi-
ation (norm), respectively. And indeed, just like the
cosine function, 𝜌𝜌𝑋𝑋𝜃𝑌𝑌 𝑃 [−1𝜃 1𝜃.

Compatibility is however defined for priors, pos-
teriors, and likelihoods in 𝑃𝑃2(Θ𝜃 equipped with the
inner product (3), whereas Pearson correlation works
with random variables in 𝑃𝑃2(Ω𝜃 𝔹𝔹Ω𝜃 𝑃𝑃 𝜃 equipped
with the inner product (12).

Fig. 3 sheds light on the different uses of compati-
bility and Pearson correlation. For example, 𝜅𝜅𝜋𝜋𝜃ℓ mea-

[4] Recall that a statistic 𝑇𝑇 𝑌 𝑇𝑇 (𝑌𝑌 𝜃 is sufficient for 𝜃𝜃 if, 𝑃𝑃 (𝑌𝑌 𝑃 𝐴𝐴 𝑃 𝑇𝑇 𝑌 𝑃𝑃𝜃 does not depend on 𝜃𝜃, for all 𝑃𝑃 in the range of 𝑇𝑇 and for all sets 𝐴𝐴.
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sures the agreement between likelihood and prior
density, whereas 𝜌𝜌𝑋𝑋𝑋𝑋𝑋 assesses the degree of linear as-
sociation between random variables 𝑋𝑋 and 𝑋𝑋 . The
value 𝜅𝜅𝜋𝜋𝑋𝜋 = 0.41 is in line with the moderate over-
lap between prior and likelihood visible in Fig. 3. The
value of 𝜌𝜌𝑋𝑋𝑋𝑋𝑋 = 0.98 is in line with the strong posi-
tive association between the random variables 𝑋𝑋 and
𝑋𝑋 that can be seen in Fig. 3.

4 Closing remarks

This note offers a gentle introduction to geometrical
aspects underlying the Bayesian paradigm that can be
used for defining metrics of agreement between pri-
ors, likelihoods and posteriors as well as to rethink
other concepts and results related with learning from
data.

Geometrical interpretations are commonplace in
Statistics and related fields—including for example
that of Pearson correlation [15], least squares and
LASSO (Least Absolute Shrinkage and Selection Op-
erator) [10], and information geometry [1]; also, the
geometry of multivariate analysis is well-known [13].
Many well-known geometrical insights concentrate
on the geometry of data itself, whereas the focus of
this note has been on the geometry of learning from
data. Despite the long tradition of geometrical in-
terpretations of statistical concepts, the view of the
Bayesian paradigm along the lines of this note is rela-
tively novel and it has been pioneered by [3] and [5].

Beyond geometry, topology and algebra hava also
recently introduced a variety of insights and novel
paradigms to the practice of learning from data—
leading to the fields of topological data analysis [12]
and algebraic statistics [4, 14].

Finally, we note that the geometrical view of the
Donsker–Varadhan representation in (10) consists of
a variational maximum inner product problem, and
that nonvariational versions of such problems are of
interest in the Machine Learning literature [8].
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