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Having appeared at the end of the seventeenth cen-
tury, the calculus (differential and integral calculi for
Leibniz, method of fluxions for Newton) was un-
doubtedly the most important branch of pure math-
ematics in the eighteenth century. This importance
was recognized at the time:

“one of the most wonderful inventions in mathemat-
ics, which not only raised geometry almost to its high-
est peak, but also expanded the other disciplines to
such an extent that one would have to write entire
books if one wanted to specify the benefits of this cal-
culus” [Zedler, 1731–1754, vol. 5, col. 190].

“Of all the discoveries that have ever been made in the
sciences, there is none as important, nor as fruitful in
applications, as that of infinitesimal analysis” [Bossut,
1784, lxxii].

This is also a common view among modern-day his-
torians:

“Considered broadly, mathematical activity in the
eighteenth century was characterized by a strong em-
phasis on analysis and mechanics. The great advances
occurred in the development of calculus-related parts
of mathematics and in the detailed elaboration of the
program of inertial mechanics founded during the
Scientific Revolution” [Fraser, 2003, 305].

“The Enlightenment in Mathematics is defined by the
level achieved in the mastery of the new differential

and integral calculus […] The mark of the modernity
of a work is the use made of the calculus, and un-
doubtedly a work whose content does not include
the calculus can be said to be outdated” [Ausejo &
Medrano, 2010, 26].

For all its centrality in eighteenth-century Euro-
pean mathematics, the adoption of the calculus in
Portugal was slow [Domingues, 2021; to appear]. Be-
fore 1760, only a few isolated cases can be found of
Portuguese individuals knowing about the calculus,
and in each case one may wonder how profound was
such knowledge. In the 1760s there were a couple of
attempts at introducing the calculus into mathemati-
cal teaching, but they were not fruitful. The first suc-
cessful case of the calculus being taught in Portugal
occurred only as a result of the 1772 reform of the Uni-
versity of Coimbra, which created a Faculty of Mathe-
matics (in section 2 we will look at the textbook used
in that context).

1 Jacob de Castro Sarmento’s explanation
of fluxions (1737)

The very first text in Portuguese about the calculus
was very short and non-technical.

It was written by Jacob de Castro Sarmento (born
Henrique de Castro, 1691–1762), a “New Christian”
physician who escaped to London in 1721 fleeing the
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Inquisition and there converted to Judaism [Goldish,
1997]. In 1737 he published in London, but in Por-
tuguese, a book on the Newtonian theory of tides
which also includes an eulogy of Newton and a glos-
sary of scientific words. Sarmento’s treatment of tides
does not involve any calculus, but the largest entry
in the glossary is precisely “fluxions” (the Newtonian
equivalent of differentials) [Sarmento, 1737, 129–131].
In two and a half pages, Sarmento expounds the New-
tonian point of view of a line being generated by the
motion of a point, a surface being generated by the
motion of line, and a solid being generated by the mo-
tion of a surface; the velocity of each of these motions
is the fluxion of the line, surface, or solid, while the
line, surface, or solid is the fluent of that fluxion. The
Direct Method of Fluxions is used to find the fluxion
of any quantity, given the fluent (which is the quan-
tity itself); the Inverse Method of Fluxions is used to
find the fluent, given the fluxion. Finally, the direct
method is useful in drawing tangents, solving prob-
lems of maxima and minima, etc.; while the inverse
method is useful in calculating arclengths, areas and
volumes. They have also plenty of use in physics and
astronomy.

In short, this is a concise explanation for a layper-
son, not an introduction to the subject, by any means.

2 Bézout’s textbook

2.1 The first translation (1774)

It was only as a consequence of the 1772 reform of the
University of Coimbra that an introductory text on
the calculus was published in Portuguese. This was
a translation of a then recent text by the Frenchman
Étienne Bézout (1730–1783).

Bézout, an examiner of the French navy schools,
published between 1764 and 1769 a Cours de Math-
ématiques in six volumes (containing arithmetic, ge-
ometry and trigonometry, algebra, calculus, mechan-
ics, and navigation) for the students of those schools.
This course was hugely successful, and over the fol-
lowing decades either the full set or extracted parts
were reprinted numerous times and translated into
several languages.

For the new Faculty of Mathematics created in
Coimbra in 1772, José Monteiro da Rocha (1734–1819),
one of the main main people involved in the establish-
ment of the Faculty, translated the first volume of Bé-
zout’s course, on arithmetic, and the section on plane
trigonometry from the second volume — both to be

used in the first year of mathematics. He also trans-
lated a textbook on mechanics by a different French
author, to be used in the third year.

For the second year, which included algebra and
the calculus, the parts from Bézout’s course on these
subjects were adopted. Their translations were pub-
lished as volumes 1 and 2 of [Bézout, 1774]. It is
not known who translated them into Portuguese, al-
though by the 19th century it was said that the transla-
tor had been Fr. Joaquim de Santa Clara (1740–1818)
— a Benedictine who graduated in theology but who
also taught philosophy and mathematics in the early
1770s. Be as it may, there is a marked difference be-
tween this translation and those made by Monteiro
da Rocha: while the latter adapted several passages
and included additional material as he saw fit, [Bé-
zout, 1774] is a very literal translation.

The volume on the calculus, [Bézout, 1774, II],
presents a traditional Leibnizian version of the sub-
ject, with a strong geometrical tendency — particu-
larly in the differential calculus.

Bézout casually accepts the existence of infinitely
large and infinitely small quantities. His variable
quantities increase (or decrease) by infinitely small de-
grees. Thus, the differential of a quantity is defined as
the infinitely small difference between the values of
that quantity in two consecutive moments. For in-
stance, the differential of 𝑥𝑥𝑥𝑥 is 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥, because
the difference between two consecutive states of 𝑥𝑥𝑥𝑥 is
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥, and 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥
must be omitted because it is infinitely small with re-
gard to both 𝑥𝑥 𝑥𝑥𝑥𝑥 and 𝑥𝑥 𝑥𝑥𝑥𝑥. Accordingly, in order to
calculate tangents, Bézout conceives a curve as a poly-
gon with an infinite number of infinitely small sides.
The tangent is the prolongation of one of these sides.

About two thirds of the differential calculus are
taken up with geometrical applications — more pre-
cisely, applications to the study of curves: not only
tangents (subtangents, subnormals) but also topics
such as multiple points, points of inflexion, cusps,
and radii of curvature. Yet another geometrical appli-
cation is the determination of maxima and minima,
which are treated as largest and smallest ordinates, so
that the condition 𝑥𝑥𝑥𝑥𝑑𝑥𝑥𝑥𝑥 𝑥 𝑑 comes from the tangent
to a curve being parallel to the abscissas.

Another aspect of Bézout’s calculus, consistent
with this predominance of geometry, is the relative
unimportance of the concept of function: the word
“function” is first used 65 pages after “differential”, in
a section on multiple points of curves, as a mere ab-
breviation. Throughout the differential calculus, the
object of study are quantities, fully geometrical or rep-
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Figure 1.—Three figures from
[Bézout, 1794] (similar to figures
appearing in [Bézout, 1774]). In
Fig. 1, line 𝑇𝑇𝑇𝑇 is tangent to the
curve 𝐴𝐴𝑇𝑇, and is obtained
prolonging the infinitely small
side 𝑇𝑇𝑀𝑀 of this curve, regarded
as a polygon; 𝐴𝐴𝐴𝐴 is the abscissa
𝑥𝑥, 𝐴𝐴𝑇𝑇 the ordinate 𝑦𝑦,
𝐴𝐴𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃 𝑃 𝑃𝑃𝑥𝑥, 𝑀𝑀𝑃𝑃 𝑃 𝑃𝑃𝑦𝑦; 𝑇𝑇𝑃𝑃𝑀𝑀 is an
infinitely small triangle, similar
to the finite triangle 𝑇𝑇𝐴𝐴𝑇𝑇,
whence the subtangent 𝐴𝐴𝑇𝑇 is
equal to 𝑦𝑦 𝑃𝑃𝑥𝑥𝑦𝑃𝑃𝑦𝑦.

Figure 2.—A diagram for propositions 13 and 14 from book 15 of [Cunha, 1790]. 𝐴𝐴𝐴𝐴 is an abscissa and 𝐴𝐴𝐵𝐵
an ordinate (oblique coordinates!) of a curve 𝐴𝐴𝐴𝐴. In prop. 13, Cunha proves that if 𝐴𝐴𝐵𝐵 is the fluxion of
the abscissa 𝐴𝐴𝐴𝐴, then parallelogram 𝐴𝐴𝐵𝐵 (that is, the parallelogram with diagonal 𝐴𝐴𝐵𝐵) is the fluxion of
the area 𝐴𝐴𝐵𝐵𝐴𝐴; for that, he assumes that the ordinate function is monotonic and trusts the diagram to
convince the reader that area 𝐵𝐵𝐴𝐴𝐵𝐵 is contained in the parallelogram with diagonal 𝐵𝐵𝐴𝐴 (not drawn):
𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 is the height of parallelogram 𝐴𝐴𝐵𝐵 , and calling (𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵𝐵 𝐵 𝐵𝐵 the distance from 𝐴𝐴 to the axis of
abscissas, it will be 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵; this means that 𝐴𝐴𝐴𝐴 constant and 𝐴𝐴𝐵𝐵 infinitesimal would make 𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵
and (𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝑦𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵(𝑃 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵𝐵 infinitesimal, fulfilling the conditions in the definition of
fluxion.

1

resented geometrically.
This geometrical point of view was the norm at the

time, in calculus textbooks all over Europe. The only
major exception was Euler’s treatises on the calculus
(published between 1748 and 1770), where the pri-
mary object of study were functions. But these were
treatises, not textbooks.

Still, it must be said that Bézout’s integral calcu-
lus is much more analytical than his differential cal-
culus: the integral is essentially defined as what we
would call an antiderivative (which, again, was the
most common approach at the time), so that the in-
tegral calculus deals naturally with expressions from
the start; accordingly, the word “function” receives
a definition at the beginning of the integral calcu-
lus[1]. There are some geometrical applications (areas,
arc lengths and some volumes) but they occupy only
about one fifth of the integral calculus.

2.2 The second translation (1794)

[Bézout, 1774] was too much of a literal translation,
even including references to parts of Bézout’s course

that had not been translated nor adopted in Coim-
bra. In the 1790s, the same parts of Bézout’s course
were translated again, from scratch, by José Joaquim
de Faria (1759–1828), who was at the time a substitute
professor at the Faculty of Mathematics. The calculus
volume appeared as [Bézout, 1794].

Unlike the previous one, this new translation is
far from literal. There are minor adaptations to ac-
commodate the text to the series of textbooks in use
at the University, several calculations or arguments
are shortened, and there are two small but relevant
attempts to modernize the differential calculus: the
word “function” is introduced somewhat earlier and
is used more often; and a new (short) section is added,
on Maclaurin and Taylor series.

At about the same time that this second translation
came out, in France the calculus as a subject of teach-
ing was changing dramatically. A new version of the
calculus, inspired by Euler and Lagrange, and much
more analytical than Bézout’s, was being taught at the
École polytechnique, founded in 1793. The changes in-
troduced by José Joaquim de Faria were small steps in
the same direction — certainly not caused by the new

[1] After having already been used, as was noticed above.
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trends spreading from the École polytechnique; more
likely, resulting from similar motivations, namely the
growing gap between advanced, research-level works,
which were typically very much analytical, and tradi-
tional introductory texts such as Bézout’s. But Faria’s
changes were not enough to fundamentally change
what was quickly becoming an outdated textbook.

3 José Anastácio da Cunha’s fluxionary
calculus

The earliest introduction to the calculus originally in
Portuguese that is still extant[2] was written by the
most original Portuguese mathematician of the 18th
century, José Anastácio da Cunha (1744–1787), and it
contains a remarkable definition of “fluxion” that has
been described as the first rigorous analytic definition
of the differential.

Cunha’s introduction to the calculus was included
in [Cunha, 1790], a short (little over 300 pages),
very concise but very comprehensive, introduction to
mathematics, from elementary geometry to some cal-
culus of variations, organized in a logical way. This
was a posthumous publication, and its text was never
really finished, but as far as the calculus section is con-
cerned, a manuscript text dated 1780 is known con-
taining some of its main ideas.

Some of Cunha’s personal opinions (such as his
admiration for Newton, who preferred a geometrical
style over algebra, his dislike of Euler, his distrust of
conclusions drawn exclusively from analytical argu-
ments) might lead us to expect from him a geometri-
cally inclined version of the calculus. However, what
we find is mostly analytical, albeit in an original way
[Domingues, 2023]. It is certainly much more analyti-
cal than Bézout’s calculus, and betrays more influence
from Euler than Cunha would probably like to admit.

The book [Cunha, 1790] is divided into 21 “books”
(so called following the Euclidean fashion; we would
call them chapters). The calculus is introduced in
“book” 15.

Book 15 opens with a crucial definition: “if an ex-
pression can assume more than one value, while an-
other can assume only one, the latter will be called
constant, and the former variable”. This may seem
trivial to a modern reader, but it was at the very least
extremely unusual in the 18th century: a variable was

almost always regarded as a quantity (not an expres-
sion) that varied (presumably over some sort of im-
plicit time).

The second definition is built on the first one: “a
variable always capable of assuming a value smaller
than any proposed magnitude will be called infinites-
imal”. This means that, instead of infinitesimals
being infinitely small quantities, as was then com-
monly the case, they are simply expressions that can
assume arbitrarily small (but finite) values. In prac-
tice, Cunha’s statements involving infinitesimals have
the form “𝑥𝑥 infinitesimal makes 𝑓𝑓𝑓𝑥𝑥𝑓 infinitesimal”,
which is equivalent to lim𝑥𝑥𝑥𝑥 𝑓𝑓𝑓𝑥𝑥𝑓 𝑓 𝑥. Proposi-
tion 1 of book 15 states that if 𝑥𝑥 is infinitesimal then
𝐴𝐴𝑥𝑥 𝐴 𝐴𝐴𝑥𝑥2 𝐴 𝐶𝐶𝑥𝑥3 𝐴 &𝑐𝑐𝑐 is also infinitesimal, and its
proof is (as long as 𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝑥𝑥2𝐴𝐶𝐶𝑥𝑥3𝐴&𝑐𝑐𝑐 is interpreted
as a polynomial) an impeccable 𝜀𝜀-𝛿𝛿 argument.

The third definition is that of function: an expres-
sion 𝐴𝐴 is a function of another expression 𝐴𝐴 if the
value of 𝐴𝐴 depends on the value of 𝐴𝐴. This is not so
remarkable, but it is worth noticing that “function”
is defined at the outset (compare with what was said
above about Bézout’s text), which allows for the cal-
culus to be about functions.

But the big highlight is the fourth definition, that
of fluxion:

“Some magnitude having been chosen, homogeneous
to an argument 𝑥𝑥, to be called fluxion of that argu-
ment, and denoted by 𝑑𝑑𝑥𝑥; we will call fluxion of Γ𝑥𝑥,
and will denote by 𝑑𝑑Γ𝑥𝑥, the magnitude that would
make 𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 constant and 𝑓Γ𝑓𝑥𝑥 𝐴 𝑑𝑑𝑥𝑥𝑓 𝑥 Γ𝑥𝑥𝑓𝑑𝑑𝑑𝑥𝑥 𝑥
𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 infinitesimal or zero, if 𝑑𝑑𝑥𝑥 were infinitesimal
and all that does not depend on 𝑑𝑑𝑥𝑥 constant”.

Notice that Cunha seems to combine the two
main traditions in the calculus: the word “fluxion” is
Newtonian, while the notation 𝑑𝑑𝑥𝑥𝑑 𝑑𝑑Γ𝑥𝑥 is Leibnizian.
However, this definition does not belong in either
tradition. Youschkevitch [1973] said of it that “it was
Cunha who, for the first time, formulated a rigorous
analytical definition of the differential, taken up again
and used later by the mathematicians of the nine-
teenth century”. Mawhin [1990] was more specific,
saying that it “corresponds to the modern definition
of differential”: 𝑑𝑑Γ𝑥𝑥 is a linear function of 𝑑𝑑𝑥𝑥 (since
𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 is constant) such that

lim
𝑑𝑑𝑥𝑥𝑥𝑥

Γ𝑓𝑥𝑥 𝐴 𝑑𝑑𝑥𝑥𝑓 𝑥 Γ𝑥𝑥 𝑥 𝑑𝑑Γ𝑥𝑥
𝑑𝑑𝑥𝑥

𝑓 𝑥𝑐

[2] José Monteiro da Rocha is known to have written an introduction to the calculus in the 1760s, that was never published. The manuscript
was at the Academy of Sciences of Lisbon in 1825, but its present whereabouts is unknown.
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Figure 1.—Three figures from
[Bézout, 1794] (similar to figures
appearing in [Bézout, 1774]). In
Fig. 1, line 𝑇𝑇𝑇𝑇 is tangent to the
curve 𝐴𝐴𝑇𝑇, and is obtained
prolonging the infinitely small
side 𝑇𝑇𝑀𝑀 of this curve, regarded
as a polygon; 𝐴𝐴𝐴𝐴 is the abscissa
𝑥𝑥, 𝐴𝐴𝑇𝑇 the ordinate 𝑦𝑦,
𝐴𝐴𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃 𝑃 𝑃𝑃𝑥𝑥, 𝑀𝑀𝑃𝑃 𝑃 𝑃𝑃𝑦𝑦; 𝑇𝑇𝑃𝑃𝑀𝑀 is an
infinitely small triangle, similar
to the finite triangle 𝑇𝑇𝐴𝐴𝑇𝑇,
whence the subtangent 𝐴𝐴𝑇𝑇 is
equal to 𝑦𝑦 𝑃𝑃𝑥𝑥𝑦𝑃𝑃𝑦𝑦.

Figure 2.—A diagram for propositions 13 and 14 from book 15 of [Cunha, 1790]. 𝐴𝐴𝐴𝐴 is an abscissa and 𝐴𝐴𝐵𝐵
an ordinate (oblique coordinates!) of a curve 𝐴𝐴𝐴𝐴. In prop. 13, Cunha proves that if 𝐴𝐴𝐵𝐵 is the fluxion of
the abscissa 𝐴𝐴𝐴𝐴, then parallelogram 𝐴𝐴𝐵𝐵 (that is, the parallelogram with diagonal 𝐴𝐴𝐵𝐵) is the fluxion of
the area 𝐴𝐴𝐵𝐵𝐴𝐴; for that, he assumes that the ordinate function is monotonic and trusts the diagram to
convince the reader that area 𝐵𝐵𝐴𝐴𝐵𝐵 is contained in the parallelogram with diagonal 𝐵𝐵𝐴𝐴 (not drawn):
𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 is the height of parallelogram 𝐴𝐴𝐵𝐵 , and calling (𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵𝐵 𝐵 𝐵𝐵 the distance from 𝐴𝐴 to the axis of
abscissas, it will be 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵; this means that 𝐴𝐴𝐴𝐴 constant and 𝐴𝐴𝐵𝐵 infinitesimal would make 𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵
and (𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝑦𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵(𝑃 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵𝐵 infinitesimal, fulfilling the conditions in the definition of
fluxion.

1

Such correspondence is not complete: for instance,
𝑑𝑑𝑑𝑑𝑑 is not explicitly stated to be a function of 𝑑𝑑𝑑𝑑;
and the existence of 𝑑𝑑𝑑𝑑𝑑 is not questioned — like all
his contemporaries, Cunha assumed all functions to
be differentiable. However, Cunha is definitely closer
to a modern definition of differential than the usual
definitions in the 18th century.

The propositions in book 15 can be roughly di-
vided into two groups. Up to proposition 12, we
find, in a very concise way, the fundamentals of what
we call differential calculus: for instance, 𝑑𝑑𝑑𝑑𝑑𝑛𝑛) =
𝑛𝑛 𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑 (prop. 2), 𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑, 𝑑𝑑 standing for hyper-
bolic (that is, natural) logarithm (prop. 8), the Tay-
lor series of a function 𝑑𝑑𝑑 (prop. 11), and the equality
of mixed higher-order derivatives (prop. 12). All of
this is proven (not always up to modern standards of
proof, naturally) in an analytical way. For example,
prop. 8 is obtained from the power series of the ex-

ponential:

𝑑𝑑𝑑𝑑 = 𝑑𝑑(𝑛 + 𝑑𝑑𝑑𝑑 + 𝑛
2

𝑑𝑑𝑑𝑑𝑑)2 + 𝑛
6

𝑑𝑑𝑑𝑑𝑑)3+

+ 𝑛
24

𝑑𝑑𝑑𝑑𝑑)4 + 𝑛
𝑛20

𝑑𝑑𝑑𝑑𝑑)5 + &c.) =

= 𝑑𝑑𝑑𝑑𝑑𝑑 + 2
2

𝑑𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑 + 3
6

𝑑𝑑𝑑𝑑𝑑)2𝑑𝑑𝑑𝑑𝑑𝑑 + 4
24

𝑑𝑑𝑑𝑑𝑑)3𝑑𝑑𝑑𝑑𝑑𝑑+

+ 5
𝑛20

𝑑𝑑𝑑𝑑𝑑)4𝑑𝑑𝑑𝑑𝑑𝑑 + &c. =

= (𝑛 + 𝑑𝑑𝑑𝑑 + 𝑛
2

𝑑𝑑𝑑𝑑𝑑2) + 𝑛
6

𝑑𝑑𝑑𝑑𝑑)3 + 𝑛
24

𝑑𝑑𝑑𝑑𝑑)4+

+&c.)𝑑𝑑𝑑𝑑𝑑𝑑 =

= 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑥

In the rest of the book appear the simplest geomet-
rical applications: the fluxions of the area under a
curve, of the arc length of a curve, and of the volume
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of a simple solid.
Most of the following books are dedicated to ap-

plications or particular topics in the calculus. Book 16
is instead dedicated to trigonometry, but with a pecu-
liar organization (for an introductory text) that makes
the calculus central: one of the earliest propositions
gives the fluxion of the sine, from there the power se-
ries for the sine and cosine are derived, and it is from
these that comes the formula for the sine of the sum
of two arcs.

In book 17, we find topics of elementary differen-
tial geometry of curves: multiple points, asymptotes,
radius of curvature. In other words, geometrical ap-
plications similar to those that are so important in [Bé-
zout, 1774].

Book 18 gives several techniques of integration
(such as partial fraction decomposition), L’Hôpital’s
rule (proven using Taylor series expansions of the nu-
merator and of the denominator), and the Bernoulli
series of a function Γ𝑥𝑥.

Book 19 addresses very quickly (in only 6 pages)
several aspects of differential equations: “exact flux-
ions”, homogeneous equations, integrating factors,
higher-order linear equations [Baroni, 2001].

Book 20 gives an introduction to the calculus of
finite differences.

Book 21 is a miscellany, probably compiled from
several short manuscripts left by Cunha on diverse
topics, by whoever arranged for the final publication
of [Cunha, 1790]. Some of these topics are not related
to the calculus, while others are. The latter include a
couple of improper integrals, the condition 𝑑𝑑Γ𝑥𝑥 𝑑 𝑑
for a maximum of Γ𝑥𝑥 (which had not been given be-
fore), and a very short introduction to the calculus of
variations.

Summing up, as an introduction to the calculus,
the relevant sections in [Cunha, 1790] are very ambi-
tious in scope, but often too brief; it was, generally,
an up to date text at the time (more so than Bézout’s);
and, of course, its definition of fluxion (along with its
handling of infinitesimals) was very innovative, even
in an European context.

4 Early attempts at research

The Academy of Sciences of Lisbon was founded in
the final days of 1779. This was the first institution
in Portugal with the goal of promoting scientific re-
search — including mathematical research.

In the 1790s two volumes of memoirs were pub-

lished containing mathematics. In total, four of those
memoirs can be classified under “calculus”: three in
the first volume, and one in the second.

In the first volume (published in 1797 but with ar-
ticles written in the 1780s), two pieces concern an ap-
proximation method for integrals by Alexis Fontaine
(1704–1771). The Academy had proposed for 1785 a
prize for a proof of Fontaine’s method and a study of
its (rate of) convergence, which was won by Manuel
Joaquim Coelho da Maia (1750–1817), one of the first
batch of doctors in mathematics from Coimbra. The
winning entry was the subject of harsh criticism by
José Anastácio da Cunha, which prompted Monteiro
da Rocha to write some additional comments, in de-
fence of the Academy’s honour. Coelho da Maia’s so-
lution [Maia, 1797] is indeed mediocre, but [Monteiro
da Rocha, 1797] contains valuable additions about the
rate of convergence of the method [Figueiredo, 2011,
ch. 9].

Also in the first volume, there is a memoir by Fran-
cisco Garção Stockler (1759–1829) on the “true prin-
ciples of the Method of Fluxions” — like Anastácio
da Cunha, Stockler admired Newton and d’Alembert,
and his purpose was to expand on ideas that those
two mathematicians had supposedly only sketched.
But he was neither very original nor very clear.
Briefly, Stockler

1. defined “fluent” as a variable quantity, in the
traditional 18th-century sense, explicitly admit-
ting that a fluent increases or decreases in inter-
vals of time — a modern reader might interpret
Stockler’s fluents as functions of a time variable;

2. then considered “hypothetical fluxions”, which
were ratios between increments or decrements
of fluents and the corresponding time intervals,
and “proper fluxions”, which had an unclear
definition (the increments or decrements that
the fluents’ “tendency” to increase or decrease
could produce in a unit of time) but could be
calculated as limits of hypothetical fluxions;

3. and finally used power series expansions to cal-
culate those limits.

Stockler also published with the Academy a small
booklet on limits [Stockler, 1794], far less ambitious
but quite interesting. Inspired by the Swiss Simon
l’Huilier (1750–1840), Stockler assumed that there are
two cases when a variable has a limit: it can be an
increasing limit or a decreasing limit (that is, they as-
sumed that only monotonic variables could had lim-
its). But, unlike l’Huilier, Stockler devoted a great
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deal of attention to variables that decrease without
limit; in modern terms, these are variables with limit
zero. The first section of [Stockler, 1794] uses elemen-
tary but careful 𝜀𝜀-𝛿𝛿 arguments to develop an exten-
sive arithmetic of such variables. This is then used
in the second section, on variables with (non-zero)
limits, by means of a Fundamental Principle: if 𝑍𝑍 𝑍
𝐴𝐴𝐴𝐴𝐴, where 𝑍𝑍 is a variable, 𝐴𝐴 a constant, and 𝐴𝐴 a vari-
able that decreases without limit, then 𝐴𝐴 is the limit of
𝑍𝑍 . This makes Stockler’s proofs much less tiresome
than those of l’Huilier, who had mostly written in al-
gebraic language Greek-style exhaustion arguments.
The third and fourth section deal with trigonometric,
logarithmic, and exponential functions.[3] In spite of
Stockler’s careful treatment of more elementary lim-
its, his handling of infinite series is not up to modern
standards; for instance, he uses them to “prove” that
the limit of any function of a variable equals the func-
tion of the limit of the variable. However, in a time
when almost all limit arguments were vague at best,
[Stockler, 1794] is worthy of note.

The second volume of memoirs from the
Academy of Sciences (published in 1799) includes
another article by Stockler on the calculus [Stockler,
1799]. This is a quite long (100 pages) attempt at
simplifying and systematizing conditions for exact
differentials (Stockler calls them “exact fluxions”). It
is explicitly inspired by (early) works of Condorcet,
who had tried to create a general theory of integration
[Gilain, 1988], himself inspired by works of Fontaine
and Euler.

5 Final remarks

The effective introduction of the calculus in Portugal
occurred relatively late. However, in the final three
decades of the 18th century a number of texts were
published in Portuguese about the calculus, which
was by then well established as part of mathematical
curricula.

Also, the calculus had a prominent place in the
first attempts at organized mathematical research in
Portugal — partly reflecting the place it had in con-
temporary European mathematical research.

Most of the 19th century would be a period of stag-
nation in Portuguese mathematics, but that was not
foreseeable around 1800.

References

Elena Ausejo, Francisco Javier Medrano Sánchez,
2010. “Construyendo la modernidad: nuevos datos
y enfoques sobre la introducción del cálculo in-
finitesimal en España”, Llull 33, n.º 71, 25–56.

Rosa Lúcia Sverzut Baroni, 2001. “Aspects of Dif-
ferential Equations in José Anastácio da Cunha’s
Mathematical Principles”, Revista Brasileira de
História da Matemática, 1(2) (Oct. 2001), 27–36.

Étienne Bézout, 1774. Elementos de Analisi Mathema-
tica, 2 vols., Coimbra: Real Officina da Universi-
dade.

Étienne Bézout, 1794. Elementos de Analyse, vol. II,
Coimbra: Real Imprensa da Universidade. Pre-
sented as 2nd ed. of [Bézout, 1774, II]. Reprinted
in 1801, 1818, and 1825.

Charles Bossut, 1784. “Discours préliminaire”, En-
cyclopédie Méthodique — Mathématiques, vol. 1, i–
cxiv, Paris: Panckoucke.

José Anastácio da Cunha, 1790. Principios Mathemati-
cos, Lisbon: Antonio Rodrigues Galhardo.

João Caramalho Domingues, 2021. “O cálculo infinite-
simal em Portugal antes da Reforma Pombalina”, in
M. Lübeck & S. R. Nobre (eds.), Anais/Actas do 8.º
Encontro Luso-Brasileiro de História da Matemática,
Foz do Iguaçu: Unioeste, 393–405.

João Caramalho Domingues, 2023. “Geometry and
analysis in Anastácio da Cunha’s calculus”, Archive
for History of Exact Sciences, v. 77, 579–600.

João Caramalho Domingues, to appear. “O Cálculo
Infinitesimal em Portugal no século XVIII”, in Ac-
tas/Anais do 9.º Encontro Luso-Brasileiro de História
da Matemática.

Fernando B. Figueiredo, José Monteiro da Rocha e a
actividade científica da ‘Faculdade de Mathematica’
e do ‘Real Observatório da Universidade de Coimbra’:
1772–1820, doctoral thesis, University of Coimbra,
2011.

Craig Fraser, 2003. “Mathematics”, in Roy Porter
(ed.), The Cambridge History of Science, vol. 4
(Eighteenth-Century Science), Cambridge: Cam-
bridge University Press, 305–327.

[3] For more details on the contents of [Stockler, 1794], see [Saraiva, 2001].

7
CIM Bulletin December 2024.46 23



Christian Gilain, 1988. “Condorcet et le Calcul inté-
gral”, in Roshdi Rashed (ed.), Sciences a l’Époque
de la Révolution Française — recherches historiques,
Paris: Albert Blanchard, 87–147.

Matt Goldish, 1997. “Newtonian, Converso, and
Deist: The Lives of Jacob (Henrique) de Castro Sar-
mento”, Science in Context, v. 10, 651–675.

Manoel Joaquim Coelho da Maia, 1797. “Solução
do Problema proposto pela Academia Real das
Sciencias sobre o Methodo de approximação de
M.r Fontaine”, Memorias da Academia Real das Sci-
encias de Lisboa, I, 503–525.

Jean Mawhin, 1990. “Le concept de différentielle chez
da Cunha et ses successeurs”, in M. L. Ferraz, J. F.
Rodrigues, L. Saraiva (eds.), Anastácio da Cunha
1744/1787, o matemático e o poeta, Imprensa Na-
cional – Casa da Moeda, 97–105.

José Monteiro da Rocha, 1797. “Additamentos á Re-
gra de M. Fontaine. Para resolver por approxima-
çaõ os Problemas que se reduzem ás Quadraturas”,
Memorias da Academia Real das Sciencias de Lisboa,
I, 218–243.

Luis Manuel Ribeiro Saraiva, 2001. “Garção Stockler
and the Foundations of the Calculus at the end of

the 18th century”, Revista Brasileira de História da
Matemática, 1(2) (Oct. 2001), 75–100.

Jacob de Castro Sarmento, 1737. Theorica verdadeira
das mares, conforme à Philosophia do incomparavel
cavalhero Isaac Newton, London.

Francisco de Borja Garção Stockler, 1794. Compen-
dio da Theorica dos Limites, ou Introducçaõ ao
Methodo das Fluxões, Lisbon: Academia R. das Sci-
enc.

Francisco de Borja Garção Stockler, 1797. “Memoria
Sobre os verdadeiros principios do Methodo das
Fluxões”, Memorias da Academia Real das Sciencias
de Lisboa, I, 200–217.

Francisco de Borja Garção Stockler, 1799. “Memo-
ria Sobre as Equações de condiçaõ das Funcções
Fluxionaes”, Memorias de Mathematica e Phisica da
Academia R. das Sciencias de Lisboa, II, 196–295.

A. P. Youschkevitch, 1973. “J. A. da Cunha et les
fondements de l’analyse infinitésimale”, Revue
d’histoire des sciences 26, 3–22.

Johann Heinrich Zedler (ed.), 1731–1754. Grosses
vollständiges Universal-Lexicon aller Wissenschaff-
ten und Künste, 68 vols., Leipzig and Halle: Johann
Heinrich Zedler.

8
24


