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In four movements — Pythagorean Arithmiusic, Tone Algebra, Harmonisation of Analysis, Digital Mu-
surgia — and through a few examples, we will present a brief introduction to the numerous interac-
tions between mathematics and music throughout history, which can help us understand the modern 
interpretation of Leibniz’s expression:

Musica est exercitium arithmeticae occultum 
nescientis se numerare animi.[+]

[+] Music is a hidden arithmetic exercise of a mind unconscious that it is counting.
[++] It’s by the numbers and not by the sense that one should evaluate the sublimity of music. Study the monochord.

Left: Bust of Pythagoras. Right: Denis Diderot (1713–1784)

1. Pythagorean arithmusic

C’est par les nombres et non par le sens qu’il faut estimer la 
sublimité de la musique. Etudiez le monocorde.[++]

—Diderot, Pythagoreanism, Encyclopédie XII (1765)

Guido d’Arezzo (992–1050?) in the Micrologus, attri-
butes to Pythagoras (6th century BCE) the fundamen-
tal discovery of the dependence of musical intervals 
on the quotients of the first integers numbers, writing:

A certain Pythagoras, on one of his journeys, happened to pass 
a workshop where an anvil was being beaten with five ham-
mers. Astonished by the pleasant harmony (concordiam) they 
produced, our philosopher approached them and, thinking at 
first that the quality of the sound and harmony (modulationis) 
lay in the different hands, exchanged the hammers. In this way, 
each hammer retained its own sound. After removing one that 
was dissonant, he weighed the others and, marvellously, by 
the grace of God, the first weighed twelve, the second nine, the 
third eight, the fourth six of I don’t know what unit of weight.

For the Pythagorean School, the harmony of sounds 
was in direct correspondence with the arithmetic of 
proportions:

unison — ratio 1 ∶ 1 octave (diapason) 1 ∶ 2
fifth (diapente) 2 ∶ 3  fourth (diatessaron) 3 ∶ 4

These ratios can be obtained from those four num-
bers, corresponding respectively to a string length 
equal to 12 units (unison), halved to 6 (octave), 8 units 
(fifth) or 9 (fourth).
 The Greek heritage, was transmited in particular 
by the Roman Boethius (6th century CE), “the great, 
astonishing and very sudden relationship (concor-
diam) that exists between music and the proportions 
of numbers (numerum proportione)”.
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Top: Franchinus Gafurius (Theorica musicae, 1492)

Bottom: Boetius; c. 480–524, De Institutione Musi-
ca. Division of intervals (Paris, Bibl Nat, 12th cent.)

 The arithmetic of proportion establishes: the prod-
uct of 2/3 (fraction associated with the fifth) by 3/4 
(fraction associated with the fourth) gives the frac-
tion 1/2 associated with the octave; its division (sub-
traction of intervals) is associated with the fraction 8/9 = (2/3) ÷ (3/4) which represents a tone, i.e. the 
difference between a fifth and a fourth. Analogous-
ly, an octave is made up of two fourths and a tone 1/2 = 3/4 × 3/4 × 8/9.
 The Sectio Canonis, or the “Division of a mono-
chord”, 300 BCE, by Euclid, has twenty propositions 
argued in the form of theorems, treatment of intervals 
as ratios between integers numbers and culminates 
with the division of the Kanon, For example, its 15th 
Proposition says “the fourth is less than two and a half 
tones and the fifth less than three and a half tones”, 
and others, like the 9 th (<= VIII.2), are consequenc-
es of the Book VIII of the Elements.
 The ancient Greeks also divided the mathematical 
sciences into four parts:

arithmetic (static discrete quantities)
music (discrete quantities in motion)
geometry (stationary magnitudes)
astronomy (dynamic magnitudes).

This classification constituted the Quadrivium, as part 
of the seven liberal arts of the medieval curriculum, 
which were complemented by the Trivium (grammar, 
dialectic and rhetoric).
 Arithmetic, geometric and harmonic proportional-
ity are present throughout medieval science and mu-
sic, where the latter is defined as number associated 
with sound—numerus relatus ad sonum. For example, 
in the speculative treatise Ars novae musicae (1319), the 
Parisian mathematician and astronomer Jean de Mu-
ris wrote: 

Sound is generated by movement, since it belongs to the class 
of successive things. It therefore exists only as long as it is 
produced, ceasing to exist once it has been produced . . . All 
music, especially measurable music, is based on perfection, 
combining in itself number and sound.

Claudius Ptolemy (2nd century, CE), author of Math-
ematike Syntaxis (Almagest) and of the treatise Har-
monica, in which he transmitted the myth of how the 
mathematical relationships underlying the structures 
of audible music constitute the forms of the essence 
and cause of harmonies both in the human soul and 
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Neumas, Micrologus, Guido d’Arezzo
Manuscript, 12th cent. (Biblioth. Nationale, Paris)

in the movements and configurations of the stars.
 In the Boeotian terminology, this corresponded 
to musica instrumentalis (produced by the lyre, flute, 
etc.), musica humana (inaudible, produced in man by 
the interaction between body and soul), musica mun-
dana (produced by the cosmos itself, also known as 
the music of the spheres).

 The cube with 6 faces, 8 vertices and 12 edges, and 
therefore considered a harmonic solid, together with 
other more subtle parallelisms between arithmetic and 
geometry, led classical civilisation to the doctrine of 
the music of the spheres and, in Aristotle’s expression, 
to consider that the whole sky is number and harmo-
ny.
 For Joannes Kepler (1571–1630), the movement of 
the planets was still an immanent music of divine per-
fection, but this didn’t prevent him to conclude the 
three laws of motion:

1. the planets revolve around the Sun in elliptical 
orbits;

2. with the Sun as a foci and their orbital areas are 
travelled in proportion to time;

3. the squares of the periods of revolution of each 
planet are proportional to the cubes of their av-
erage distances from the Sun.

Following his third law, in 1619 Kepler wrote: musi-
cal modes or tones are reproduced in a certain way 
at the extremities of planetary movements. Consid-
ering the seven consonant intervals of the octave of 
his time, he established the following harmonies of 

Left
Johannes Kepler (1571–1630)

Right
Harmonices Mundi, 1619
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the six known planets:

Saturn 4 : 5 (a major tertia)
Jupiter 5 :6 (a minor tertia)
Mars 2 : 3 (a fifth)
Earth 5 : 16 (a half-tone)
Venus 24 :25 (a sharp)
Mercury 5 : 12 (an octave and a minor tertia);

by calculating the aphelion/perihelion ratios for each 
of them: Saturn travels an arc of 106 or 135 seconds 
per day when it is at its furthest point (aphelion) or 
closest (perihelion) to the Sun, respectively, obtaining 
the ratio 106/135 ~ 4/5.

 Kepler’s metaphysics goes so far as to states that the 
Earth sings the notes MI, FA, MI, so that from them it 
can be conjectured that misery (MIseria) and hunger 
(FAmes) prevail in our midst.

2. tone algebra

Pythagorean scales are based on the elementary “ratio-
nal” intervals (octave, fifth and fourth) and their alter-
nating successions, i.e., starting from a sound from a 
sound 𝑓𝑓0 = 𝑓𝑓  and the sound 𝑓𝑓1 = 3𝑓𝑓𝑓𝑓 located a fifth 
higher on the scale, the sound 𝑓𝑓2 = 3𝑓𝑓1/4 = 9𝑓𝑓/𝑓 will 
be one fourth below 𝑓𝑓1, the sound 𝑓𝑓3 a fifth above 𝑓𝑓2 
and so on. This gives the cycle of fifths as

𝑓𝑓𝑛𝑛 = (32)𝑛𝑛 (12)𝑝𝑝 𝑓𝑓
which isn’t a real cycle, because if it were, there would 
have to be two integers 𝑛𝑛 and 𝑝𝑝 such that 3𝑛𝑛 = 2𝑛𝑛𝑛𝑛𝑛; 
but an odd number is different from an even number, 
so it is impossible!
 In classical solfege “12 fifths correspond to 7 oc-
taves”, mathematically it would be 312 = 219, which 
is false. We have that 312

219 = 531441524288 ≈ 1.

This only translates into a certain tolerance of the ear 
to that tuning and this difference is the Pythagore-
an coma.
 A theoretical formulation of equal temperament can 
already be found in the work De musica by F. Salinas, 
published in Salamanca in 1577, which states that the 
octave must be divided into twelve equally proportional 
parts, which will be the equal semitones.

Kepler’s Mysterium cosmographicum (1596), with the embe-
ding of the cube (Saturn-Jupiter), tetrahedron (Jupiter-Mars), 
dodecahedron (Mars-Earth), icosahedron (Earth-Venus) and
octahedron (Venus-Mercury) in the sphere.
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 If 𝜏𝜏  is the interval between two consecutive tones, 
it is equal to the irrational number

𝜏𝜏 𝜏 12√2 𝜏 1, 059463094 …
and represents the ratio of the respective geometric 
progression. So the frequencies associated with the 
seven notes of the usual scale are given by Dó = 𝑓𝑓  , 
Ré = 6√2𝑓𝑓 , Mi = 3√2𝑓𝑓 , Fá = 12√25𝑓𝑓 , Sol = 12√27𝑓𝑓 , 
Lá = 4√23𝑓𝑓 , Si = 12√211𝑓𝑓  e Dó = 2𝑓𝑓 .
 Methods for mumerical approximations of equal 
temperament can be found in Zarlino in the 16th cent. 
and in M. Mersenne’s Harmonie Universelle (1636–7) 
or in A. Kircher’s Musurgia Universalis (1650).
 The theorising of equal temperament in the 17th 
century will use logarithms. C. Huygens (1629–1695) 
in Novus Cyclus Harmonicus (1691) theorised the divi-
sion of the octave into 31 equal intervals and was one 
of the first to introduce the calculation of logarithms 
into music.
 Referring to Salinas and Mersenne as authors who 
had already considered this division to be of no great 
consequence, Huygens remarked that if their prede-
cessors had been mistaken because “they hadn’t known 
how to divide the octave into 31 equal parts (. . .) for 
this the intelligence of Logarithms was necessary.” 
 In Euler (1707–1783) we find one of the most inge-
nious algebraic theories of the division of the octave 
and the degree of consonance of musical intervals.
 In the Essay on a new theory of music (Tentamen 
novae theoriae musicae, 1739), Euler develops an ar-

gument in which proportions generate musical plea-
sure, via order and perfection — music is the science 
of combining sounds in a pleasing harmony — so that, 
for this mathematician, a musical object is a simple 
arithmetical object.

Left: A spiral of fifths. Right: A 12-tone chromatic clock

Calculations of 1691 of the division of the 
octave into 31 tones by Huygens 
using logarithms
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 Euler introduced a mesure of the degree of conso-
nance (agrément) of an interval through an algebraic 
formula in which 𝑝𝑝𝑖𝑖 are prime numbers and 𝑚𝑚𝑖𝑖, inte-
ger exponents:

𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝑛𝑛
∑𝑖𝑖𝛼𝑖 (𝑚𝑚𝑖𝑖𝑝𝑝𝑖𝑖 − 𝑚𝑚𝑖𝑖) + 𝑖.

Euler also wrote other essays, such as Du véritable car-
actere de la musique moderne (On the true character of 
modern music), in Mémoires de l’Académie des Sci-
ences de Berlin (1764), 1766.
 But the algebra of tones is not limited to the prob-
lems associated with temperament, but also appears 
in the structure of sounds and in musical composition 
itself.

 Musical notes can be grouped into equivalence 
classes and hence called by the same name, i.e. two 
notes are said to be equivalent if they are separated by 
an exact number of octaves, i.e. if they have frequen-
cies 𝑝𝑝 and 𝑞𝑞, the interval between them is of the form 𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝, with 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘 and will be denoted 
by 𝑝𝑝 𝑝 𝑝𝑝.
 In the 12-note tempered system, the interval is char-
acterised by the number of semitones and the notes 
can be associated with the set of integers

ℤ12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
which is a group for addition (mod 12).

Geometric and algebraic representations of a group

Inversion (horizontal symmetry), Petrushka by Igor Stravinsky
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 Another typical example is given in J.S. Bach’s Mu-
sical Offering of 1747, which presents three types of 
transformations: translations (upward transpositions, 
as in the canon ascendenteque Modulationem ascen-
dat gloria Regis), horizontal symmetries (melodic in-
versions, as in the canon Per Motum Contrarium) and 
vertical symmetries (retrogrades, as in the canon a 2 
which plays the same theme starting on the last note 
and moving backwards to the first). Also known as 
palindromes or crab canons: 𝑦𝑦 𝑦 𝑦𝑦𝑦.

3. harmonisation of analysis

Marin Mersenne (1588–1648) is credited with estab-
lishing the basic laws of modern string acoustics. Har-
monie universelle (1636), establishes the experimental 
laws on the proportionality of the period of vibration 
of the string, in relation to its length, to the inverse of 
the square root of its tension and to the square root 
of its thickness or cross-sectional area.
 Galileo Galilei, in Discorsi e dimostrazioni matem-
atiche . . . (1638) refers to the question of vibrating 
strings and consonance as follows:

. . . the first and immediate reason on which the ratios of mu-

sical intervals depend is neither the length of the strings nor 
their thickness, but the proportion existing between the fre-
quencies of the vibrations, and therefore of the waves which, 
propagating in the air, reach the eardrum of the ear causing 
it to vibrate at the same intervals of time.

The mathematical analysis of the sound starts with 
the modeling of the vibrating string, namely with the 
computation of its fundamental period by B. Taylor 
in 1713, with the first ODE analysis by Jean Bernoulli 
in 1727 and the famous controversy between D’Alem-
bert and Euler on the admissible initial conditions on 
the wave equation.
 It is above all with the introduction of the equation𝜕𝜕2𝑢𝑢𝜕𝜕𝜕𝜕2 = 𝑐𝑐2 𝜕𝜕2𝑢𝑢𝜕𝜕𝜕𝜕2
in D’Alembert’s 1747 memoire published by the Berlin 
Academy, Recherche sur la courbe que forme une corde 
tendue mise en vibration, and with the subsequent 
works of Euler, Daniel Bernoulli and Lagrange, that the 
mathematical theory of the “musical string” acquires 
the appropriate model for small vibrations, which will 
be decisive in the study of oscillations in continuous 
media, in particular the propagation of sound in air.
 During the course of the famous “vibrating string 
controversy”, a scientific dispute involving the lead-
ing mathematicians of the 1700s, Daniel Bernoulli, in 
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a 1753 letter, established the principle of the superpo-
sition of small harmonic oscillations as a physical law 
and not so much as a mathematical result, concluding 
that

every sounding body potentially contains an infinity of sounds 
and a corresponding infinity of ways of producing their re-
spective vibrations.

In a memoir by the Turinese mathematician Lagrange 
(1736-1813), we find a formula for the solution of the 

wave equation which, in the 19th century, after the 
work of Fourier, will allow us to demonstrate D. Ber-
noulli’s principle of superposition of waves. Lagrange 
not only sought to analyse the propagation of sound, 
he also tried to provide a scientific explanation for 
Tartini’s theory of the combination of tones, set out 
in his Treatise on Music of 1754.
 The musical string is just the first mathematical ex-
ample of sound analysis. Both the sound produced by 

Left: Ratios of frequencies of two pure tones (a) 1 :1 (b) 15:16 (c) 4 :5 (d) 2 :3 (e) 20:31 (f) 30:59 (g) 1 :2. 
Right: An excerpt of Recherches sur la nature de la propagation du son (1579) by Lagrange.

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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most musical instruments and the human ear itself re-
quire mathematical models that take into account the 
various dimensions of physical space and geometry.
 In the mathematical analysis of the sound a famous 
question arouse: is it possible to hear the shape of a 
drum? This question, which has a precise and profound 
meaning in maths, consists of knowing whether from 
the same family of eigenvalues, i.e., numbers 𝜆𝜆 𝜆 𝜆𝜆𝑛𝑛, 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛, that satisfy the equation Δ𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢 𝑢 𝑢 in 
two domains Ω1 and Ω2 it is possible to say that these 
regions are congruent in the sense of Euclidean geom-
etry. Of all the drums with the same area, the round 
one has the deepest sound.

a) Isospectral (reproducing the same sound) 
drum shapes (flat polygons) with different 
shapes ( C. Gordon and D. Webb, 1991).
b) Isospectral spatial shapes of bells 
(Riemannian surfaces) by P. Buser (1986).

M. Mersenne, Harmonie Universelle (1636–37)

4. Digital musurgia

As early as the 17th century, an obscure German math-
ematician, K. Schott, following the ideas of Mersenne 
and his teacher Kircher, author of a Musurgia Uni-
versalis (1650), argued in his Organum mathematicum 
(1668) that to compose harmonic chants it was enough 
to master the new art of music-arithmetic, which con-
sisted of combining the bacilli musurgici (the musical 
keys) and using the abaci melothetici and the tabulae 
musarithmeticae.
These ideas were based on the new combinatorial art 
of Mersenne, in Harmonie Universelle (1636), for whom 
composing was reduced to combining, he had distin-
guished permutations without repetition of a given 
number of 𝑛𝑛 notes (ordinary combinations which he 
calculated up to 𝑛𝑛 𝑛 𝑛𝑛) 𝑆𝑆𝑛𝑛 = 𝑛𝑛𝑛, from permutations 
with repetition of 𝑛𝑛 notes (𝑝𝑝 are different), which he 
used to calculate the table of chants that can be made 
from 9 notes, he also calculated arrangements with-
out repetition (𝑝𝑝 different notes among 𝑛𝑛 given) and 
also combinations without repetition.
 In the evolution of mathematics from the 17th to the 
18th century, particularly for G.W. Leibniz, the math-
ematical sciences acquired a broader role as a science 
about the representations of all possible relationships 
and dependencies of the simplest elements, seeking a 
universal language and an algebra of reasoning, perfect-
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ing calculation and creating new algorithms to which 
it became necessary to give a symbolism appropriate 
to the essence of the concepts and operations.
 In his dissertation on the art of combinatorics 
(1666), the young Leibniz already intended to reorga-
nise logic, but it was after the creation of the Calculus 
that he referred to binary notation in a 1701 letter to J. 
Bernoulli: Many years ago an original idea occurred 
to me about a type of arithmetic where everything is 
expressed with 0 and 1.
 However, this new type of binary arithmetic was 
only realised in modern computers, where each bit 

M. Mersenne,
Harmonie 
Universelle
(1636-37)

represents an electrical state: on (current) is associat-
ed with the number 1; off (no current) is associated 
with 0; and sequences of electrical impulses, such as 01000001 which represents the number 65 in the bi-
nary system, and which can also be assigned to the 
capital letter A using another code.
 Forerunners of modern calculators, the machines 
of the 17th century had a limited impact, in particular 
those of W. Schickard (1592–1635) and B. Pascal (1623–
1662), capable of adding and subtracting mechanically, 
or that of Leibniz in 1671, which could also multiply 
and divide.

Left:
G. W. Leibniz (1646–1716)

Right;
Binary system designed by 
Leibniz, which reads “one
created everything out of 
nothing” at the top and 
“one is necessary” at the 
bottom.
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 However, only C. Babbage’s (1791-1871) mechanical 
machines, namely the Difference Engine (1821) and 
the Analytical Engine (1834), are considered to be the 
forerunners of electronic computers, even though 
they were never built.
 In a passage on the conception of that machine, Ada 
Lovelace specifically states that its operative mechanism 
could act on things other than numbers, objects such 
that their fundamental reciprocal relationships could 
be expressed by the abstract science of operations and, 
as a concrete example within the framework of the 
operative notation and mechanisms of the Analyti-
cal Engine, explicitly supposes that the fundamental 
relationships of sounds determined in the science of 
harmony and musical composition could be expressed 
and adaptable to its action; the machine could com-
pose scientific and elaborate musical pieces, with any 
degree of complexity or extension.
 However, a sufficiently powerful mechanism ca-
pable of incorporating the science of operations only 
appeared with the modern computer in the second 
half of the 20th century.
 The first experiments in computer-assisted musical 
composition appeared from the start L. Hiller in 1956 
in the USA, followed by P. Barbaud and I. Xenakis in 

Left:
Ada Lovelace (1815-1852)

Right:
RCA Mark II
Electronic Music 
Synthesizer,
H. Olson e H. Belar (1957)

France and others. At Bell Laboratories, in 1957, M. 
Mathews and his collaborators made the first numer-
ical record and the first computer synthesis of sounds 
and, in 1965, J.C. Risset computer-simulated the first 
sounds of musical instruments.
 In 1973, the first numerical synthesiser was built, 
Synclavier, which was then commercialised, and about 
ten years later theten years later, the public had access 
to digital recording CD’s (compact discs).
 Since 1983, the MIDI (Musical Instrumental Digital 
Interface) standard has allowed computers to record 
and edit music.
 If today we have the mastery of numerisation in 
the analysis and synthesis of musical sound, if we have 
begun to outline the mathematisation of certain musi-
cal structures and computers allow us to hear mathe-
matical calculations and structures, i.e. to paraphrase 
Saccheri we have Pythagoras ab omni naevo vindica-
tus sive Conatus arithmeticus quo stabiliuntur prima 
ipsa universa musica principia (Pythagoras freed from 
all taint or the arithmetical attempt to establish the first 
principles of all music). we can continue to agree with 
Aristoxenus and accept that the justification of music 
lies in the pleasure of its hearing and its enjoyment.
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