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Abstract.—In this note we  will review the main steps in the proof of Fermat’s Last 
Theorem and discuss Darmon’s program to tackle the generalized Fermat equation 
Axq + Byr = Czp. Finally, we discuss how combining the classical approach with 
some ideas of Darmon led to recent results for equations of the form xr+ yr= Czp.
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1 Introduction

After Wiles’ proof [27] of Fermat’s Last Theorem (FLT)
attention shifted towards the so-called generalized
Fermat equation (GFE)

𝐴𝐴𝐴𝐴𝑟𝑟+𝐵𝐵𝐵𝐵𝑞𝑞 = 𝐶𝐶𝐶𝐶𝑝𝑝 with 𝒳𝒳 𝒳 1
𝑟𝑟

+1
𝑞𝑞

+1
𝑝𝑝

< 1, (1.1)

where 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 are fixed non-zero coprime integers
and 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 𝑟 𝑟 are integers. The triple (𝑟𝑟, 𝑞𝑞, 𝑝𝑝𝑟 is called
the signature of the GFE. A solution (𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑟 𝑎 ℤ3

to (1.1) is called primitive if gcd(𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑟 = 1 and non-
trivial if 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎.

The condition 𝒳𝒳 < 1 is required to guarantee
finiteness of solutions. More precisely, Darmon and
Granville [13] proved that if we fix both the coef-
ficients 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and the exponents 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 satisfying
𝒳𝒳 < 1 then there are only finitely many primitive
solutions to (1.1). But more is conjectured (see [4]):
it is expected that the number of primitive solutions
remains finite if we fix the coefficients but allow the
three exponents to vary while still verifying 𝒳𝒳 < 1.
On the other hand, if 𝒳𝒳 𝒳 1 then the set of solutions
is either empty or infinite by a result of Beukers [3]
and, for 𝒳𝒳 = 1, the problem reduces to the determi-
nation of rational points on genus-1 curves. A very
natural question is whether the strategy that proved
FLT, which is now known as the modular method, can
be used to establish more cases of the aforementioned

conjecture.
As we shall see below, to apply the modular

method to other instances of (1.1) one needs to start
with the construction of a Frey curve. However, there
are only a few choices of the exponents 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 in (1.1)
for which Frey curves are known (see [10, p.14] for a
complete list of rational Frey curves). To circumvent
this issue, Darmon described in [11] a remarkable pro-
gram to study (1.1) where he replaces Frey curves by
higher dimensional abelian varieties. However, ap-
plying the rest of his program is very challenging be-
cause several of the main steps rely on open conjec-
tures.

The objective of this expository note is to briefly
discuss some recent results regarding the subfamily
of (1.1) of the shape 𝐴𝐴𝑟𝑟 + 𝐵𝐵𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑝𝑝 obtained by com-
bining the classical approach with Frey curves and
some of the ideas in the Darmon’s program. For a
brief introduction to Diophantine equations includ-
ing a quick discussion of the modular method we re-
fer the reader to [22].

2 Elliptic curves

For this section, the main reference is [24].
Let 𝐾𝐾 be a field. An elliptic curve 𝐸𝐸 over 𝐾𝐾 is a

smooth curve in ℙ𝑟 given by an equation

𝐵𝐵𝑟𝐶𝐶 + 𝑎𝑎1𝐴𝐴𝐵𝐵𝐶𝐶 + 𝑎𝑎3𝐵𝐵𝐶𝐶𝑟 = 𝐴𝐴3 + 𝑎𝑎𝑟𝐴𝐴𝑟𝐶𝐶 + 𝑎𝑎4𝐴𝐴𝐶𝐶𝑟 + 𝑎𝑎6𝐶𝐶3,

1
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with 𝑎𝑎𝑖𝑖 ∈ 𝐾𝐾 . If the characteristic of 𝐾𝐾 is not 2 or 3,
then we can transform to a much simpler model given
by the affine equation

𝑌𝑌 2 = 𝑋𝑋3 + 𝑎𝑎𝑋𝑋 + 𝑎𝑎𝑎 𝑎𝐸𝐸 = −16(4𝑎𝑎3 + 27𝑎𝑎2) ≠ 0𝑎
where 𝑎𝑎 and 𝑎𝑎 ∈ 𝐾𝐾 . There is a distinguished 𝐾𝐾-point,
the ‘point at infinity’, which we denote by ∞. Given
a field 𝐿𝐿 𝐿 𝐾𝐾 , the set of 𝐿𝐿-points on 𝐸𝐸 is

𝐸𝐸(𝐿𝐿) = 𝐸(𝐸𝐸𝑎 𝐸𝐸) ∈ 𝐿𝐿2 ∶ 𝐸𝐸2 = 𝐸𝐸3 + 𝑎𝑎𝐸𝐸 + 𝑎𝑎𝑎 Y 𝐸∞𝑎.
It turns out that the set 𝐸𝐸(𝐿𝐿) has the structure of
an abelian group with ∞ as the identity element.
The group structure is easy to describe geometrically:
three points 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 ∈ 𝐸𝐸(𝐿𝐿) add up to the identity
element if and only if there is a line ℓ defined over 𝐿𝐿
meeting 𝐸𝐸 in 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 (with multiplicities counted
appropriately). The classical Mordell–Weil Theorem
states that for a number field 𝐾𝐾 the group 𝐸𝐸(𝐾𝐾) is
finitely generated.

Now suppose 𝐾𝐾 = ℚ. There is an integer 𝑁𝑁𝐸𝐸
called the conductor of 𝐸𝐸 with the following proper-
ties. There is an algorithm to compute 𝑁𝑁𝐸𝐸 and, for all
primes 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 , the reduction modulo 𝑝𝑝 of a minimal
model for 𝐸𝐸 gives an elliptic curve ̃𝐸𝐸 over 𝔽𝔽𝑝𝑝. More-
over, if a prime 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 then it divides the discrimi-
nant of any model for 𝐸𝐸 so the reduced curve ̃𝐸𝐸𝐸𝔽𝔽𝑝𝑝
is not an elliptic curve, and we can think of 𝑁𝑁𝐸𝐸 as a
measure of how ‘complicated’ these reduced curves
are. Finally, for 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 , the set ̃𝐸𝐸(𝔽𝔽𝑝𝑝) is necessarily
finite, and we define

𝑎𝑎𝑝𝑝(𝐸𝐸) = 𝑝𝑝 + 1 − 𝐸 ̃𝐸𝐸(𝔽𝔽𝑝𝑝).

3 Modular forms

For this section, the main reference is [14].
Let 𝑁𝑁 ∈ ℤ≥1. A modular form of weight 2 for

Γ0(𝑁𝑁) is an analytic function on the complex upper
half-plane H satisfying suitable growth conditions at
the boundary as well as the transformations

𝑓𝑓 (
𝑎𝑎𝑎𝑎 + 𝑎𝑎
𝑐𝑐𝑎𝑎 + 𝑐𝑐 ) = (𝑐𝑐𝑎𝑎 + 𝑐𝑐)2𝑓𝑓(𝑎𝑎)

for all matrices ( 𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐 ) ∈ SL2(ℤ) satisfying 𝑐𝑐 𝑝 𝑁𝑁 and

all 𝑎𝑎 ∈ H. Invariance under translation by 1 leads to
a Fourier expansion

𝑓𝑓(𝑎𝑎) =
∞

∑
𝑛𝑛=0

𝑎𝑎𝑛𝑛(𝑓𝑓)𝑓𝑓𝑛𝑛𝑎 𝑓𝑓 = 𝑞𝑞2𝜋𝜋𝑖𝑖𝑎𝑎.

The group Γ0(𝑁𝑁) acts on H via fractional linear trans-
formations and the quotient 𝑌𝑌0(𝑁𝑁) = Γ0(𝑁𝑁)𝑁H has
the structure of a non-compact Riemann surface.

This has a standard compactification denoted 𝑋𝑋0(𝑁𝑁)
and the difference 𝑋𝑋0(𝑁𝑁) − 𝑌𝑌0(𝑁𝑁) is a finite set of
points called the cusps. To the modular forms that
vanish at all the cusps we call cusp forms; in particu-
lar, they satisfy 𝑎𝑎0(𝑓𝑓) = 0.

The space of cusp forms 𝑆𝑆2(𝑁𝑁) is a finite dimen-
sional ℂ-vector space. There is a natural family of
commuting operators 𝑇𝑇𝑛𝑛 ∶ 𝑆𝑆2(𝑁𝑁) 𝑁 𝑆𝑆2(𝑁𝑁) (with
𝑛𝑛 ≥ 1) called the Hecke operators. The eigenforms
of level 𝑁𝑁 are the cusp forms that are simultaneous
eigenvectors for all the Hecke operators. An eigen-
form 𝑓𝑓 is called normalized if 𝑎𝑎1(𝑓𝑓) = 1 and thus its
Fourier expansion has the form

𝑓𝑓 = 𝑓𝑓 + ∑
𝑛𝑛≥1

𝑎𝑎𝑛𝑛(𝑓𝑓)𝑓𝑓𝑛𝑛.

Shimura-Taniyama-Weil Conjecture asserts that for ev-
ery elliptic curve 𝐸𝐸𝐸ℚ with conductor 𝑁𝑁𝐸𝐸 there is a
normalized eigenform 𝑓𝑓 of weight 2 for Γ0(𝑁𝑁𝐸𝐸), such
that for every prime 𝑝𝑝 the corresponding Fourier co-
efficient satisfies 𝑎𝑎𝑝𝑝(𝑓𝑓 ) = 𝑎𝑎𝑝𝑝(𝐸𝐸). When this is the
case we say that the curve 𝐸𝐸 is modular. In his sem-
inal paper [27] and its companion [26] ( jointly with
R. Taylor), Andrew Wiles proved the S-T-W Conjec-
ture in the case of semistable elliptic curves, i.e. el-
liptic curves with square free conductor 𝑁𝑁𝐸𝐸 . This
groundbreaking theorem was also the final step to
complete the proof of FLT.

4 Galois representations

For this section, the main references are [14, Chap-
ter 9] and (for more advanced readers) [7].

Let ℚ be the algebraic closure of ℚ inside ℂ. We
write 𝐺𝐺ℚ ≔ Gal(ℚ𝐸ℚ) for the group of field automor-
phisms of ℚ (fixing ℚ). The group 𝐺𝐺ℚ is called the ab-
solute Galois group of ℚ. The representations of 𝐺𝐺ℚ
are central objects in Arithmetic Geometry. Here we
will work only with residual Galois representations,
also known as mod 𝑝𝑝 representations.

Definition 1.— A mod 𝑝𝑝 Galois representation is de-
fined to be a group homomorphism

𝜌𝜌 ∶ Gal(ℚ𝐸ℚ) 𝑁 GL2(𝔽𝔽 𝑝𝑝)
which is continuous with respect to the profinite
topology on the left and the discrete topology on the
right. In particular, there is a finite extension 𝔽𝔽𝑓𝑓𝐸𝔽𝔽𝑝𝑝
such that the image of 𝜌𝜌 lies in GL2(𝔽𝔽𝑓𝑓).

Definition 2.— A mod 𝑝𝑝 Galois representation 𝜌𝜌 ∶
Gal(ℚ𝐸ℚ) 𝑁 GL2(𝔽𝔽 𝑝𝑝) is unramified at a prime ℓ ≠ 𝑝𝑝
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if 𝜌𝜌𝜌𝜌𝜌ℓ) = {1}, where 𝜌𝜌ℓ is an inertia group at ℓ
in Gal𝜌ℚ/ℚ). Otherwise, it is ramified at ℓ.

The reader unfamiliar with the inertia subgroups of
𝐺𝐺ℚ should simply keep in mind that there is a unique
(up to conjugation) inertia subgroup for each prime ℓ
and that a representation 𝜌𝜌 is easier to understand if
it has little ramification. Further, there is a positive
integer 𝑁𝑁𝜌𝜌𝜌), called the Serre level of 𝜌𝜌, that measures
the ramification of 𝜌𝜌 at all primes ℓ ≠ 𝑝𝑝. Moreover,
by Galois theory, the kernel of a representation 𝜌𝜌 as
above corresponds to a field extension of finite de-
gree which is ramified at a prime ℓ if and only if 𝜌𝜌 is
ramified at ℓ.

4.1 Representations from elliptic curves

Let 𝐸𝐸 be an elliptic curve over ℂ. The structure of
the abelian group 𝐸𝐸𝜌ℂ) is particularly easy to describe.
There is a discrete lattice Λ ⊂ ℂ of rank 2 (that is, as
an abelian group Λ ≃ ℤ2) depending on 𝐸𝐸, and an
isomorphism

𝐸𝐸𝜌ℂ) ≃ ℂ/Λ.

Let 𝑝𝑝 be a prime. By the 𝑝𝑝-torsion of 𝐸𝐸𝜌ℂ) we mean
the subgroup

𝐸𝐸𝐸𝑝𝑝𝐸 = {𝐸𝐸 𝐸 𝐸𝐸𝜌ℂ) ∶ 𝑝𝑝𝐸𝐸 = 𝑝}.
It follows that 𝐸𝐸𝐸𝑝𝑝𝐸 ≃ 𝜌ℤ/𝑝𝑝ℤ)2 which can be viewed
as a 2-dimensional 𝔽𝔽𝑝𝑝-vector space. Now let 𝐸𝐸 be an
elliptic curve over ℚ. Then we may view 𝐸𝐸 as an el-
liptic curve over ℂ, and with the above definitions ob-
tain an isomorphism 𝐸𝐸𝐸𝑝𝑝𝐸 ≃ 𝜌ℤ/𝑝𝑝ℤ)2. However, in
this setting the points of 𝐸𝐸𝐸𝑝𝑝𝐸 have algebraic coordi-
nates, and are acted on component-wise by Gal𝜌ℚ/ℚ).
Thus we obtain a 2-dimensional representation de-
pending on 𝐸𝐸/ℚ and the prime 𝑝𝑝:

𝜌𝜌𝐸𝐸𝐸𝑝𝑝 ∶ 𝐺𝐺ℚ → GL2𝜌𝔽𝔽𝑝𝑝)𝐸
called the mod 𝑝𝑝 representation attached to 𝐸𝐸. We say
that 𝜌𝜌𝐸𝐸𝐸𝑝𝑝 is irreducible if the image 𝜌𝜌𝐸𝐸𝐸𝑝𝑝𝜌𝐺𝐺ℚ) cannot be
conjugated into a subgroup of GL2𝜌𝔽𝔽𝑝𝑝) consisting of
upper triangular matrices.

4.2 Representations from modular forms

Let 𝑓𝑓 = ∑𝑛𝑛𝑛1 𝑎𝑎𝑛𝑛𝜌𝑓𝑓)𝑓𝑓𝑛𝑛 be a weight-2 normalized
eigenform for Γ𝑝𝜌𝑁𝑁) with 𝑁𝑁 𝑛 1. Denote by 𝐾𝐾𝑓𝑓 =
ℚ𝜌{𝑎𝑎𝑛𝑛𝜌𝑓𝑓) ∶ 𝑛𝑛 𝑛 1}) the field generated by the
Fourier coefficients of 𝑓𝑓 . It is a non-trivial theorem
that 𝑎𝑎𝑛𝑛𝜌𝑓𝑓 ) are algebraic integers and 𝐾𝐾𝑓𝑓 is a num-
ber field, which we view as a subfield of ℚ. We

denote by 𝒪𝒪𝐾𝐾𝑓𝑓
the ring of integers of 𝐾𝐾𝑓𝑓 , and we

have 𝑎𝑎𝑛𝑛𝜌𝑓𝑓 ) 𝐸 𝒪𝒪𝐾𝐾𝑓𝑓
for all 𝑛𝑛; we refer to [14, §6.5] for

details.
Let 𝑝𝑝 be a prime number, and 𝔭𝔭 a prime in 𝐾𝐾𝑓𝑓

above 𝑝𝑝. We write 𝔽𝔽𝔭𝔭 = 𝒪𝒪𝐾𝐾𝑓𝑓
/𝔭𝔭 for the residue field

at 𝔭𝔭. The following is a consequence of a deep result
proved by Eichler and Shimura.

Theorem 3 (Eichler–Shimura).— Up to isomor-
phism, there is a unique semisimple mod 𝑝𝑝 Galois
representation

𝜌𝜌𝑓𝑓𝐸𝔭𝔭 ∶ Gal𝜌ℚ/ℚ) → GL2𝜌𝔽𝔽𝔭𝔭)
satisfying the following properties: it is unramified
outside 𝑁𝑁𝑝𝑝 and for every prime ℓ ∤ 𝑁𝑁𝑝𝑝, the charac-
teristic polynomial of 𝜌𝜌𝑓𝑓𝐸𝑝𝑝𝜌Frobℓ) is the mod 𝔭𝔭 reduc-
tion of

𝑋𝑋2 − 𝑎𝑎ℓ𝜌𝑓𝑓)𝑋𝑋 𝑓 ℓ. (4.1)

Here Frobℓ denotes a choice of a Frobenius element
at ℓ in Gal𝜌ℚ/ℚ) and by semisimple we mean that
𝜌𝜌𝑓𝑓𝐸𝔭𝔭 is either irreducible or isomorphic to the sum of
two characters.

Definition 4.— A mod 𝑝𝑝 Galois representation

𝜌𝜌 ∶ Gal𝜌ℚ/ℚ) → GL2𝜌𝔽𝔽 𝑝𝑝)
is said to be modular of level 𝑁𝑁 𝑛 1 if there exists a
weight-2 eigenform 𝑓𝑓 for Γ𝑝𝜌𝑁𝑁) and a prime 𝔭𝔭 𝔭 𝑝𝑝 in
𝐾𝐾𝑓𝑓 such that 𝜌𝜌 ≃ 𝜌𝜌𝑓𝑓𝐸𝔭𝔭. In this case, we also say that 𝜌𝜌
arises from 𝑓𝑓 .

Building on the groundbreaking work of Wiles’ and
many others, Khare and Wintenberger [17, 18] have
proved the following theorem known as Serre’s Con-
jecture.

Theorem 5.— Let 𝜌𝜌 ∶ 𝐺𝐺ℚ → GL2𝜌𝔽𝔽 𝑝𝑝) be an irre-
ducible odd representation. Assume that 𝜌𝜌 arises
from a finite flat group scheme at 𝑝𝑝. Then 𝜌𝜌 is modu-
lar of level 𝑁𝑁𝜌𝜌𝜌) and weight 2.

The technical condition that 𝜌𝜌 arises from a finite flat
group scheme at 𝑝𝑝 should, for simplicity, be thought
informally as the restriction of 𝜌𝜌 to an inertia sub-
group at 𝑝𝑝 being well behaved; recall that ramification
at ℓ ≠ 𝑝𝑝 is measured by 𝑁𝑁𝜌𝜌𝜌).

5 Proof of FLT

For this section, the main references are [9] and [12].
We have introduced the minimal set of tools to

sketch the proof of FLT. We decided to organize the
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proof in three main steps because these are the steps
that we will focus on when presenting the Darmon
program in the later sections.

Step 1—Construction: Suppose 𝑝𝑝 𝑝 𝑝 is prime, and
𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are non-zero coprime integers satisfy-
ing 𝑎𝑎𝑝𝑝 + 𝑏𝑏𝑝𝑝 = 𝑐𝑐𝑝𝑝. We can reorder (𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐𝑎 so that

𝑏𝑏 𝑏 𝑏 (𝑏𝑏𝑏 𝑏𝑎 and 𝑎𝑎𝑝𝑝 𝑏 −1 (𝑏𝑏𝑏 4𝑎.
We consider the Frey–Hellegouarch curve which de-
pends on (𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐𝑎:

𝐸𝐸 𝐸 𝐸𝐸 𝑏 = 𝑋𝑋(𝑋𝑋 − 𝑎𝑎𝑝𝑝𝑎(𝑋𝑋 + 𝑏𝑏𝑝𝑝𝑎. (5.1)

From all the hypotheses on 𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐, we compute the
minimal discriminant and conductor of 𝐸𝐸:

Δ = (𝑎𝑎𝑏𝑏𝑐𝑐𝑎𝑏𝑝𝑝

𝑏8 ≠ 𝑏𝑎 𝑁𝑁𝐸𝐸 = ∏
ℓ∣Δ

ℓ.

Note that the conductor is square-free and satisfies
𝑏 ∣∣ 𝑁𝑁 .

Step 2—Residual modularity: As 𝑝𝑝 𝑝 𝑝, it follows
from the work of Mazur [21] that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 is irreducible.
It is well known that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 is odd and Hellegouarch
showed that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 arises on a finite flat group scheme
at 𝑝𝑝. Computing the Serre level we obtain 𝑁𝑁(𝜌𝜌𝐸𝐸𝑎𝑝𝑝𝑎 =
𝑏. Therefore, by Serre conjecture, we have that

𝜌𝜌𝐸𝐸𝑎𝑝𝑝 ≃ 𝜌𝜌𝑔𝑔𝑎𝑔𝑔

where 𝑔𝑔 is an eigenform of level 𝑏 and weight 2, and
𝑔𝑔 ∣ 𝑝𝑝 is a prime in 𝐾𝐾𝑔𝑔 .

Step 3—Contradiction: There are no eigenforms of
weight 𝑏 and level 𝑏, a contradiction.

Remark 1.— Note that the Frey curve construction
applies for trivial solutions as well. However, in this
case, it does not give rise to an elliptic curve (as it is
singular), therefore, there are no modular representa-
tions associated with it. This is a fortunate feature of
the classical Fermat equation. We will see below that
this is no longer the case for the GFE which obstructs
its resolution in many cases.

Remark 2.— The reader may be wondering where is
Wiles’ work used in the previous proof. Since the
original proof of FLT predates the proof of Serre’s
conjecture, modularity of the residual representation
𝜌𝜌𝐸𝐸𝑎𝑝𝑝 was instead derived as a corollary of modular-
ity of the Frey curve 𝐸𝐸. Note that 𝐸𝐸 has square-free
conductor hence it is modular by the work of Wiles.
We note also that the work of Wiles and all the ideas
around it is heavily used in the proof of Serre’s con-
jecture.

6 Darmon’s program

As we see from the proof of FLT it is the modu-
larity together with the little ramification of the 2-
dimensional residual representation 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 that is key
for the contradiction. The Frey curve 𝐸𝐸 is simply a
geometric object from which we know how to extract
a 2-dimensional Galois representation with the right
properties, namely 𝜌𝜌𝐸𝐸𝑎𝑝𝑝.

There are higher dimensional generalizations of el-
liptic curves, called abelian varieties, in the sense that
there is a group structure on the set of points of an
abelian variety 𝐴𝐴. The main idea of Darmon’s pro-
gram is to put the focus directly on 2-dimensional
mod 𝑝𝑝 representations with the correct properties,
and find the abelian varieties giving rise to them.

Definition 6.— Let 𝑟𝑟𝑎 𝑟𝑟𝑎 𝑝𝑝 𝑝 𝑏 be integers. A Frey rep-
resentation of signature (𝑟𝑟𝑎 𝑟𝑟𝑎 𝑝𝑝𝑎 over a number field 𝐾𝐾
in characteristic ℓ > 𝑏 is a Galois representation

𝜌𝜌 = 𝜌𝜌(𝜌𝜌𝑎 𝐸 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 → GL𝑏(𝔽𝔽 𝑎
where 𝔽𝔽 is a finite field of characteristic ℓ such that
the following conditions hold:

(i) The restriction of 𝜌𝜌 to 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 has trivial determi-
nant and is irreducible.

(ii) The projectivization

𝜌𝜌geom 𝐸 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 → PSL𝑏(𝔽𝔽 𝑎
of this representation is unramified outside
{𝑏𝑎 1𝑎 ∞}.

(iii) It maps the inertia groups at 𝑏, 1, and ∞ to sub-
groups of PSL𝑏(𝔽𝔽 𝑎 of order 𝑟𝑟, 𝑟𝑟, and 𝑝𝑝 respec-
tively.

Here 𝐾𝐾(𝜌𝜌𝑎 is the function field over 𝐾𝐾 in the vari-
able 𝜌𝜌 and 𝐾𝐾 is an algebraic closure of 𝐾𝐾 , and 𝜌𝜌𝑘𝑘 𝐸=
Gal(𝑘𝑘𝑘𝑘𝑘𝑎 denotes the absolute Galois group of 𝑘𝑘 for
any field 𝑘𝑘.

In [11], Darmon counts the number of Frey represen-
tations up to some equivalence relation (introduced
in loc. cit.) and describes (often not in an explicitly
way) where they should arise. In particular, he proves
the following classification result.

Theorem 7 (Hecke-Darmon).— Up to equivalence,
there is only one Frey representation of signa-
ture (𝑝𝑝𝑎 𝑝𝑝𝑎 𝑝𝑝𝑎. It occurs over ℚ in characteristic 𝑝𝑝 and
is associated with the Legendre family

𝐿𝐿(𝜌𝜌𝑎 𝐸 𝐿𝐿𝑏 = 𝑥𝑥(𝑥𝑥 − 1𝑎(𝑥𝑥 − 𝜌𝜌𝑎.
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Example 1.— It is not difficult to check that the classi-
cal Frey–Hellegouarch curve

𝑦𝑦2 = 𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑝𝑝)𝑥𝑥𝑥 𝑥 𝑥𝑥𝑝𝑝)
is obtained from 𝐿𝐿𝑥𝐿𝐿) after specialization at

𝐿𝐿0 = 𝑥𝑥𝑝𝑝

𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑝𝑝

and taking quadratic twist by 𝑥𝑥𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑝𝑝).

A Frey representation 𝜌𝜌𝑥𝐿𝐿) should be seen as a family
of representations where we can specialize the param-
eter 𝐿𝐿 to obtain mod 𝑝𝑝 representations of 𝐺𝐺𝐾𝐾 as in the
previous example. We are then interested in the mod-
ularity of the mod 𝑝𝑝 representations obtained in this
way.

From now on, we restrict ourselves to the case
of 𝐾𝐾 being a totally real field, i.e., a number field such
that all embeddings into ℂ have image in ℝ. This is
a natural restriction, because modularity related ob-
jects are very poorly understood for fields with at
least one complex embedding. In contrast, for a to-
tally real 𝐾𝐾 there is a well established theory of Hilbert
modular forms (see [15]) which are the natural replace-
ment for the modular forms over ℚ; it is not our ob-
jective to discuss details of this theory here. The only
thing to keep in mind is that they satisfy the analo-
gous properties over 𝐾𝐾 to those of modular forms
over ℚ. In particular, modularity of abelian varieties
and their residual representations can be defined via
a connection to representations arising from Hilbert
eigenforms (see [25]). Therefore, we can state the fol-
lowing special case of Serre conjecture over totally
real fields.

Conjecture 1 ([11, Conjecture 3.2]).— Let 𝐾𝐾 be a to-
tally real field. Let 𝜌𝜌 𝜌 𝐺𝐺𝐾𝐾 → GL2𝑥𝔽𝔽 𝑝𝑝) be a totally
odd and irreducible representation with determinant
the mod 𝑝𝑝 cyclotomic character.

Assume that 𝜌𝜌 arises from a finite flat group
scheme at all primes 𝔭𝔭 in 𝐾𝐾 above 𝑝𝑝. Then there is a
Hilbert eigenform 𝑔𝑔 over 𝐾𝐾 for Γ0𝑥𝑁𝑁𝑥𝜌𝜌)) of (parallel)
weight 2 and a prime 𝔭𝔭 𝔭 𝑝𝑝 in the field of coefficients
of 𝑔𝑔 such that 𝜌𝜌 𝜌 𝜌𝜌𝑔𝑔𝑔𝔭𝔭.

This conjecture is still open for all 𝐾𝐾 , therefore when
applying the Darmon program in the next section
we need to derive residual modularity without it.
Also, this conjecture is concerned with 2-dimensional
representations whilst representations arising from
abelian varieties of dimension 𝑛𝑛 are naturally of di-
mension 2𝑛𝑛. We thus focus only on the subfamily of
abelian varieties giving rise to 2-dimensional repre-
sentations, as per the next definition and well known

theorem.

Definition 8.— Let 𝐴𝐴 be an abelian variety over a
field 𝐿𝐿 of characteristic 0. We say that 𝐴𝐴𝐴𝐿𝐿 is of GL2-
type (or GL2𝑥𝐹𝐹 )-type) if there is an embedding

𝐹𝐹 𝐹 𝐹𝐹𝐹𝐿𝐿𝑥𝐴𝐴) 𝐴ℤ ℚ
where 𝐹𝐹 is a number field with [𝐹𝐹 𝜌 ℚ] = 𝐹im 𝐴𝐴.

Theorem 9.— Let 𝐴𝐴𝐴𝐿𝐿 be an abelian variety of
GL2𝑥𝐹𝐹 )-type. Let 𝔭𝔭 be a prime in 𝐹𝐹 above 𝑝𝑝. Then
there is a 2-dimensional mod 𝑝𝑝 representation at-
tached to 𝐴𝐴, denoted 𝜌𝜌𝐴𝐴𝑔𝔭𝔭 𝜌 𝐺𝐺𝐾𝐾 → GL2𝑥𝔽𝔽𝔭𝔭), unram-
ified outside the primes where 𝐴𝐴 has bad reduction
and 𝑝𝑝.

Darmon also discusses the existence of Frey varieties
𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴ℚ associated to solutions 𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) of (1.1) for
any choice of exponents, and explains how these give
rise (after base changing to certain totally real num-
ber fields) to all the possible Frey representations.
However, only the varieties for exponents 𝑥𝑝𝑝𝑔 𝑝𝑝𝑔 𝑝𝑝)
and 𝑥𝑝𝑝𝑔 𝑝𝑝𝑔 𝑝𝑝) are explicit enough to work with. Finally,
he finishes with the following extremely difficult con-
jecture [11, Conjecture 4.1].

Conjecture 2 (Large image conjecture).— Let 𝐾𝐾 be
totally real field. There exists a constant 𝐶𝐶𝐾𝐾 such
that, for any abelian variety 𝐴𝐴𝐴𝐾𝐾 of GL2-type with
𝐹𝐹𝐹𝐾𝐾𝑥𝐴𝐴) 𝐴 ℚ = 𝐾𝐾 , and all primes 𝔭𝔭 of 𝐾𝐾 of norm
> 𝐶𝐶𝐾𝐾 , we have SL2𝑥𝔽𝔽𝔭𝔭) ⊂ 𝜌𝜌𝐴𝐴𝑔𝔭𝔭𝑥𝐺𝐺𝐾𝐾).
We finish this section with the description of how the
Darmon program is expected to work. We emphasize
every step that we do not know how to do, or that de-
pends on conjectures or relies on computations that
are not possible in practice with current algorithms
and hardware.

1. Let 𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽 𝑎 ℤ satisfy 𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑞𝑞 = 𝐽𝐽𝑝𝑝 and
gc𝐹𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) = 𝑎.

2. Let 𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴ℚ be the associated Frey variety.
Over a totally real field 𝐾𝐾 it becomes of GL2𝑥𝐾𝐾)-
type. We consider 𝐽𝐽 = 𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴𝐾𝐾 and its
mod 𝔭𝔭 representation 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 given by Theorem 9.

3. Assume 𝑝𝑝 > 𝐶𝐶𝐾𝐾 where 𝐶𝐶𝐾𝐾 is the constant
in Conjecture 2. If 𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) is non-trivial then
SL2𝑥𝔽𝔽𝔭𝔭) is conjecturally contained in the image
of 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 by Conjecture 2. In particular, 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 is
conjecturally irreducible.

4. The representation 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 is totally odd with cyclo-
tomic determinant and conjecturally arises on a
finite flat group scheme at all 𝔭𝔭 𝔭 𝑝𝑝 in 𝐾𝐾 .

5. We compute the Serre level 𝑁𝑁𝑥𝜌𝜌𝐽𝐽𝑔𝔭𝔭).

5
CIM Bulletin December 2024.46 43



6. The representation 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 is conjecturally modular
of level 𝑁𝑁𝑁𝜌𝜌𝐽𝐽𝐽𝐽𝐽) and (parallel) weight 2 by Con-
jecture 1, that is 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≃ 𝜌𝜌𝑔𝑔𝐽𝐽𝐽 for some Hilbert
eigenform 𝑔𝑔 of level 𝑁𝑁𝑁𝜌𝜌𝐽𝐽𝐽𝐽𝐽).

7. We compute the relevant space of eigenforms
and show that 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≄ 𝜌𝜌𝑔𝑔𝐽𝐽𝐽 except for the eigen-
forms 𝑔𝑔0 corresponding via modularity to the
Frey varieties 𝐽𝐽0 ∶= 𝐽𝐽𝑁𝐽𝐽𝐽 𝐽𝐽𝐽 𝐽𝐽) where 𝑁𝐽𝐽𝐽 𝐽𝐽𝐽 𝐽𝐽) sat-
isfies 𝐽𝐽𝐽𝐽𝐽𝐽 = 0 i.e. Frey varieties attached to triv-
ial solutions.

8. Conjecturally the varieties 𝐽𝐽0 have complex mul-
tiplication, thus SL2𝑁𝔽𝔽𝐽𝐽) is not contained in the
image of 𝜌𝜌𝑔𝑔0𝐽𝐽𝐽. Thus we also have 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≄ 𝜌𝜌𝑔𝑔0𝐽𝐽𝐽, a
contradiction with Step 6.

In view of the three main steps in the proof of FLT,
the previous bullet points are divided as follows: Step
1 corresponds to 1–2, Step 2 corresponds to 3–6 and
Step 3 corresponds to 7–8.

To conclude this section, we note that the contra-
diction step which was trivial in the proof of FLT is
quite challenging in this more general situation. As
mentioned in Remark 1, the trivial solutions repre-
sent a major obstruction, but there are other issues.
Namely, the space of revelant Hilbert modular forms
might not be accessible with current software im-
plementations (either because it is too large, or by
lack of efficient algorithms in certain specific situa-
tions). Moreover, we miss a general method for dis-
carding isomorphisms between residual Galois rep-
resentations. In particular, it is an open problem to
show that given two non-isogenous rational elliptic
curves 𝐸𝐸𝐽 𝐸𝐸′, then for all large enough primes 𝑝𝑝, the
representations 𝜌𝜌𝐸𝐸𝐽𝑝𝑝 and 𝜌𝜌𝐸𝐸′𝐽𝑝𝑝 are not isomorphic.

7 Some recent results for signature 𝑁𝑟𝑟𝐽 𝑟𝑟𝐽 𝑝𝑝)

We now discuss our contribution to the Darmon’s
program in the case of the generalized Fermat equa-
tion

𝑥𝑥𝑟𝑟 + 𝑦𝑦𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑛𝑛𝐽 (7.1)

where 𝑟𝑟 is a fixed prime ≥ 3, 𝐶𝐶 is a fixed positive
integer and 𝑛𝑛 ≥ 2 is an integer.

Throughout this paragraph, we fix the following
notation.

• 𝜁𝜁𝑟𝑟 primitive 𝑟𝑟-th root of unity

• 𝜔𝜔𝑖𝑖 = 𝜁𝜁𝑖𝑖
𝑟𝑟 + 𝜁𝜁−𝑖𝑖

𝑟𝑟 , for every 𝑖𝑖 ≥ 0

• ℎ𝑁𝑋𝑋) =
𝑁𝑟𝑟−𝑟)𝑟2

∏
𝑖𝑖=𝑟

𝑁𝑋𝑋 − 𝜔𝜔𝑖𝑖) ∈ ℤ[𝑋𝑋𝑋

• 𝐾𝐾 = ℚ𝑁𝜁𝜁𝑟𝑟)+ = ℚ𝑁𝜔𝜔𝑟) maximal totally real sub-
field of ℚ𝑁𝜁𝜁𝑟𝑟)

• 𝒪𝒪𝐾𝐾 integer ring of 𝐾𝐾

• 𝐽𝐽𝑟𝑟 unique prime ideal above 𝑟𝑟 in 𝒪𝒪𝐾𝐾 (totally ram-
ified)

Let 𝐽𝐽𝐽 𝐽𝐽 be non-zero coprime integers such that 𝐽𝐽𝑟𝑟 +
𝐽𝐽𝑟𝑟 ≠ 0. Following a construction of Kraus [19], we
consider the curve 𝐶𝐶𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) given by the equation

𝑦𝑦2 = 𝑁𝐽𝐽𝐽𝐽)
𝑟𝑟−𝑟

2 𝑥𝑥ℎ (
𝑥𝑥2

𝐽𝐽𝐽𝐽
+ 2) + 𝐽𝐽𝑟𝑟 − 𝐽𝐽𝑟𝑟.

The discriminant of this model is

Δ𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) = 𝑁−𝑟)
𝑟𝑟−𝑟

2 22𝑁𝑟𝑟−𝑟)𝑟𝑟𝑟𝑟𝑁𝐽𝐽𝑟𝑟 + 𝐽𝐽𝑟𝑟)𝑟𝑟−𝑟

which is non-zero as 𝐽𝐽𝑟𝑟 + 𝐽𝐽𝑟𝑟 ≠ 0. In particular, it
defines a hyperelliptic curve of genus 𝑁𝑟𝑟 − 𝑟)𝑟2.

Examples 1.— Here are explicit equations for Kraus’
curve with 𝑟𝑟 = 3𝐽 𝑟𝐽 𝑟.

𝑟𝑟 = 3 ∶ 𝑦𝑦2 = 𝑥𝑥3 + 3𝐽𝐽𝐽𝐽𝑥𝑥 + 𝐽𝐽3 − 𝐽𝐽3

𝑟𝑟 = 𝑟 ∶ 𝑦𝑦2 = 𝑥𝑥𝑟 + 𝑟𝐽𝐽𝐽𝐽𝑥𝑥3 + 𝑟𝐽𝐽2𝐽𝐽2𝑥𝑥 + 𝐽𝐽𝑟 − 𝐽𝐽𝑟

𝑟𝑟 = 𝑟 ∶ 𝑦𝑦2 = 𝑥𝑥𝑟 + 𝑟𝐽𝐽𝐽𝐽𝑥𝑥𝑟 + 𝑟4𝐽𝐽2𝐽𝐽2𝑥𝑥3 + 𝑟𝐽𝐽3𝐽𝐽3𝑥𝑥+
+ 𝐽𝐽𝑟 − 𝐽𝐽𝑟.

The Jacobian 𝐽𝐽𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) of the curve 𝐶𝐶𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) is thus an
abelian variety of dimension 𝑁𝑟𝑟 − 𝑟)𝑟2. In particular,
when 𝑟𝑟 𝑟 3, it has dimension 𝑟 𝑟 and hence there is
no obvious way to attach 2-dimensional Galois repre-
sentations to 𝐽𝐽𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽).

To circumvent this issue we use ideas from Dar-
mon’s program as explained in the previous section.
In particular, the theorem below shows how to re-
cover Kraus’ Frey hyperelliptic curve in a similar way
as the usual Frey-Hellegouarch elliptic curve (see Ex-
ample 1). This result achieves Steps 1–2 from the de-
scription of Darmon’s program given in Section 6 in
the case of equation (7.1).

Theorem 10 ([6]).— There exists a hyperelliptic
curve 𝐶𝐶′

𝑟𝑟 𝑁𝑡𝑡) over 𝐾𝐾𝑁𝑡𝑡) of genus 𝑟𝑟−𝑟
2

such that 𝐽𝐽 ′
𝑟𝑟 𝑁𝑡𝑡) =

Jac𝑁𝐶𝐶′
𝑟𝑟 𝑁𝑡𝑡)) is of GL2𝑁𝐾𝐾)-type.

Moreover, for every prime ideal 𝐽𝐽 in 𝒪𝒪𝐾𝐾 above a
rational prime 𝑝𝑝, the representation

𝜌𝜌𝐽𝐽 ′
𝑟𝑟 𝑁𝑡𝑡)𝐽𝐽𝐽 ∶ 𝐺𝐺𝐾𝐾𝑁𝑡𝑡) → GL2𝑁𝒪𝒪𝐾𝐾𝑟𝐽𝐽)

is a Frey representation of signature 𝑁𝑟𝑟𝐽 𝑟𝑟𝐽 𝑝𝑝).
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The hyperelliptic curve 𝐶𝐶𝑟𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 is obtained
from 𝐶𝐶′

𝑟𝑟 (𝑡𝑡𝑎 after specialization at

𝑡𝑡0 = 𝑎𝑎𝑟𝑟

𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟

and taking the quadratic twist by

− (𝑎𝑎𝑎𝑎𝑎
𝑟𝑟−𝑟

2

𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟 .

In this result, it is crucial to notice that the prime 𝑝𝑝
is arbitrary. In particular, if we choose 𝑝𝑝 = 𝑟𝑟 (and
hence 𝔭𝔭 = 𝔭𝔭𝑟𝑟), then 𝜌𝜌𝐽𝐽 ′

𝑟𝑟 (𝑡𝑡𝑎𝑎𝔭𝔭𝑟𝑟
is a Frey representa-

tion of signature (𝑟𝑟𝑎 𝑟𝑟𝑎 𝑟𝑟𝑎. According to Theorem 7,
it arises in the Legendre family, allowing us to appeal
to the stronger results available for the case of elliptic
curves.

This is a key idea in Darmon’s program that as-
suming an appropriate generalization of Serre’s mod-
ularity conjecture for totally real fields (Conjecture 1),
the mod 𝔭𝔭𝑟𝑟 representation is modular and plays the
role of a ‘seed’ for modularity of all Frey varieties de-
scribed by Darmon (see diagram in [11, p. 433]).

The result below makes this argument uncondi-
tional for the Kraus Frey variety - under some irre-
ducibility assumption (which is proved to hold for
many values of 𝑟𝑟 such as 𝑟𝑟 = 𝑟 for instance) and parity
conditions - hence completing Steps 3-6 in Darmon’s
program from Section 6 for equation (7.1).

Theorem 11.— Let (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 be a non trivial primitive
solution to equation (7.1) for exponent 𝑛𝑛 = 𝑝𝑝 prime
such that 𝑝𝑝 𝑝 2𝑟𝑟𝐶𝐶 . Assume that

𝑎𝑎 𝑎 0 (𝑎𝑎𝑎 2𝑎 and 𝑎𝑎 𝑎 𝑟 (𝑎𝑎𝑎 𝑏𝑎. (7.2)

Let 𝐽𝐽𝑟𝑟 be the Jacobian of 𝐶𝐶𝑟𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎 base changed to 𝑎𝑎 .
Suppose further that 𝜌𝜌𝐽𝐽𝑟𝑟𝑎𝔭𝔭 is absolutely irreducible.
Then, there is a Hilbert newform 𝑔𝑔 over 𝑎𝑎 satisfying
the following properties:

(i) 𝑔𝑔 is of parallel weight 2, trivial character and
level 22𝔭𝔭2

𝑟𝑟 𝔫𝔫𝐶𝐶 ;

(ii) 𝜌𝜌𝐽𝐽𝑟𝑟𝑎𝔭𝔭 ≃ 𝜌𝜌𝑔𝑔𝑎𝑔𝑔 for some 𝑔𝑔 𝔓 𝑝𝑝 in the field of coeffi-
cients 𝑎𝑎𝑔𝑔 of 𝑔𝑔;

(iii) for all 𝔮𝔮2 𝔓 2 in 𝑎𝑎 , we have (𝜌𝜌𝑔𝑔𝑎𝑔𝑔 ⊗ ℚ𝑝𝑝𝑎|𝐼𝐼𝔮𝔮2
≃

𝛿𝛿 𝛿 𝛿𝛿−𝑟, where 𝛿𝛿 is a character of order 𝑟𝑟;

(iv) 𝑎𝑎 𝐾 𝑎𝑎𝑔𝑔 .

Moreover, if 𝔫𝔫𝐶𝐶 ≠ 𝑟 then 𝑔𝑔 has no complex multipli-
cation.

Note that, contrary to the case of Fermat’s last the-
orem, the 2-adic assumptions (7.2) in Theorem 11

are not valid in general; indeed, from the symmetry
of (7.1), we can only swap 𝑎𝑎 and 𝑎𝑎, so the possibility
of 𝑎𝑎 being even is excluded in the above theorem. We
shall explain in the next section how several ‘Frey va-
rieties’ can complement each other to obtain a com-
plete resolution of certain generalized Fermat equa-
tions (7.1) for specific values of 𝑟𝑟 and 𝐶𝐶 .

8 Diophantine applications

In this section, we discuss the Steps 7–8 from Sec-
tion 6 for the case 𝑟𝑟 = 𝑟 and 𝐶𝐶 = 𝐶 in the generalized
Fermat equations (7.1). In this situation, we achieve
the following complete result.

Theorem 12 ([5, Theorem 1.1]).— For all integers 𝑛𝑛 𝑛
2, there are no non-trivial primitive solutions to

𝑥𝑥𝑟 + 𝑦𝑦𝑟 = 𝐶𝑧𝑧𝑛𝑛. (8.1)

First of all, we can reduce the problem of solving 𝑥𝑥𝑟 +
𝑦𝑦𝑟 = 𝐶𝑧𝑧𝑛𝑛 for 𝑛𝑛 𝑛 2 to the case where 𝑛𝑛 = 𝑝𝑝 is prime
and 𝑝𝑝 𝑛 𝑝, 𝑝𝑝 ≠ 𝑟, using simple arithmetic consider-
ations and work of Bennett-Skinner [1] (for 𝑛𝑛 = 2),
Bennett-Skinner-Yazdani [2] (for 𝑛𝑛 = 𝐶) and Serre
[23] (for 𝑛𝑛 = 𝑟).

In [5], we actually give three different proofs
of Theorem 12 which rely on a ‘multi-Frey’ ap-
proach using a combination of Kraus’ hyperellip-
tic curve 𝐶𝐶𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎 and two Frey elliptic curves 𝐸𝐸𝑎ℚ
and 𝐹𝐹 𝑎ℚ(𝜁𝜁𝑟 + 𝜁𝜁−𝑟

𝑟 𝑎 whose construction is due to Dar-
mon and Freitas, respectively.

Our first proof uses the classical modular method
outlined in the case of FLT in Section 5 with the two
aformentioned Frey elliptic curves attached to equa-
tion (8.1).

• (Darmon, [20, §4.5.1.3]) A Frey curve over ℚ:

𝐸𝐸𝑎𝑎𝑎𝑎𝑎 ∶ 𝑦𝑦2 = 𝑥𝑥𝐶 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎𝑏𝑥𝑥 + 𝑎𝑎6

where
𝑎𝑎2 = −(𝑎𝑎 − 𝑎𝑎𝑎2𝑎
𝑎𝑎𝑏 = −2𝑎𝑎𝑏 + 𝑎𝑎𝐶𝑎𝑎 − 𝑝𝑎𝑎2𝑎𝑎2 + 𝑎𝑎𝑎𝑎𝐶 − 2𝑎𝑎𝑏𝑎
𝑎𝑎6 = 𝑎𝑎6 − 6𝑎𝑎𝑝𝑎𝑎 + 𝑏𝑎𝑎𝑏𝑎𝑎2 − 𝑟𝐶𝑎𝑎𝐶𝑎𝑎𝐶 + 𝑏𝑎𝑎2𝑎𝑎𝑏−

−6𝑎𝑎𝑎𝑎𝑝 + 𝑎𝑎6.

• (Freitas, [16, p. 619]) A Frey curve over the totally
real cubic field ℚ(𝜁𝜁𝑟 + 𝜁𝜁−𝑟

𝑟 𝑎:
𝐹𝐹𝑎𝑎𝑎𝑎𝑎 ∶ 𝑦𝑦2 = 𝑥𝑥(𝑥𝑥 − 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 + 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where for 𝑖𝑖 = 𝑟𝑎 2, we have 𝜔𝜔𝑖𝑖 = 𝜁𝜁𝑖𝑖
𝑟 + 𝜁𝜁−𝑖𝑖

𝑟 and

𝑥𝑥𝑎𝑎𝑎𝑎𝑎 = (𝜔𝜔2 − 𝜔𝜔𝑟𝑎(𝑎𝑎 + 𝑎𝑎𝑎2

𝑥𝑥𝑎𝑎𝑎𝑎𝑎 = (2 − 𝜔𝜔2𝑎(𝑎𝑎2 + 𝜔𝜔𝑟𝑎𝑎𝑎𝑎 + 𝑎𝑎2𝑎.
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We note here that Freitas’ Frey elliptic curve 𝐹𝐹 𝐹 𝐹𝐹𝑎𝑎𝑎𝑎𝑎
is defined over a totally real field of degree > 1 and
is not base change from ℚ. In particular, its mod 𝑝𝑝
representations are not explained by Darmon’s classi-
fication of Frey representations of signature (7𝑎 7𝑎 𝑝𝑝𝑝.

The total running time for this first proof is ap-
proximately 40 minutes with around 3/4 of this
time devoted to computing the Hilbert newforms
over ℚ(𝜁𝜁7 + 𝜁𝜁−1

7 𝑝 of parallel weight 2 and level 𝔮𝔮3
2𝔮𝔮3𝔮𝔮7

(with 𝔮𝔮𝑖𝑖 the unique prime ideal above 𝑖𝑖 in ℚ(𝜁𝜁7 +𝜁𝜁−1
7 𝑝)

used to deal with the case where 𝑎𝑎𝑎𝑎 is even and 7 ∣
𝑎𝑎 + 𝑎𝑎. There are precisely 121 such newforms gener-
ating a space of dimension 818, with coefficient fields
of degree up to 18.

Our second and third proofs of Theorem 12 add
in the use of Kraus’ Frey hyperelliptic curve

𝐶𝐶7(𝑎𝑎𝑎 𝑎𝑎𝑝 𝑎 𝑎𝑎2 𝐹 𝑥𝑥7+7𝑎𝑎𝑎𝑎𝑥𝑥5+14𝑎𝑎2𝑎𝑎2𝑥𝑥3+7𝑎𝑎3𝑎𝑎3𝑥𝑥+𝑎𝑎7−𝑎𝑎7

in two different ways: the second proof uses 𝐶𝐶7(𝑎𝑎𝑎 𝑎𝑎𝑝
as much as possible whilst the third and last proof is
designed to minimize the computational time among
all proofs we give. The total running times for these
proofs are approximatively 10 minutes and 1 minute
respectively.

Our second proof is much more involved and
requires introducing many new elimination tech-
niques [6, §9] to discard the isomorphism in The-
orem 11((ii)). To illustrate the computational chal-
lenges we have faced, let us mention that we had to
compute here in the space of Hilbert newforms of
level 𝔮𝔮2

2𝔮𝔮3𝔮𝔮2
7 which has dimension 698. This dimen-

sion is comparable in size with that of the space con-
sidered in the first proof, but it turns out to be much
faster to initialize yielding only 61 newforms. Some
of these forms have coefficient field of degree as large
as 54 making the elimination procedure considerably
more difficult. Fortunately, we are able to reduce the
number of newforms to consider down to 25 using
the condition 𝐾𝐾 𝐾 𝐾𝐾𝑔𝑔 from Theorem 11((iv)). As
explained in [5] this ‘instantaneous reduction’ is only
available when working with abelian varieties of di-
mension > 1. Moreover, we also developed a collec-
tion of techniques to speed up the elimination pro-
cedure resulting in a great saving in the total running
time; see [5, §7]. While this approach a priori requires
harder and lengthier computations, it ends up allow-
ing for a faster proof than the previous one.

Our third and last proof builds on the two previ-
ous ones. Combining information about the Frey (hy-
per)elliptic curves introduced above and their twists
we manage to lower down to 104 the dimension of
the largest space we have to consider. Then we apply

the techniques explained for the second proof to deal
with the corresponding 19 newforms (whose coeffi-
cient fields are all of degree ≤ 15) yielding the most
efficient proof in less than a minute. This illustrates
how the additional structures carried by the Frey va-
rieties of dimension > 1 can be exploited to reduce
computations, despite the fact that we have to work
with Jacobians of hyperelliptic curves.

Finally, let us point out that these methods have
already been applied to other Fermat-type equations
to obtain results not within reach of the classical ap-
proach with Frey elliptic curves. In the case of 𝑟𝑟 𝐹
11 in (7.1), we refer the reader to [6] and for signa-
ture (𝑝𝑝𝑎 𝑝𝑝𝑎 5𝑝 to the recent preprint of Chen and Kout-
sianas [8].
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