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In March of 2024, a new direction board of CIM took office and the 
editorial board of the CIM bulletin was renewed. The editorial board is 
committed to continue the efforts of fulfilling the bulletin’s main goals of 
promoting Mathematics and especially mathematical research.
 In this issue, we include three articles on topical research subjects.  One 
of them reviews the development of the theory of impulsive dynamical 
systems, which model real-world phenomena characterized by abrupt 
changes, and proposes future directions for its further advancement.
 Another article reviews the main steps in the proof of Fermat’s Last 
Theorem and explores Darmon’s program for addressing the generalized 
Fermat equation Axq +Byr = Czp. Further, it highlights recent advances 
achieved by integrating the classical techniques with insights from 
Darmon’s approach. The last article provides an elegant and concise 
exposition of the Lie theory needed to appreciate the eightfold way in 
particle physics.
 Inserted in the cycle of historical articles, we feature an article 
dedicated to the Portuguese texts on the calculus in the 18th century. It 
explores the gradual introduction of the calculus in Portugal, emphasizing 
the contributions of Jacob de Castro Sarmento, the influence of Bézout’s 
textbook and the  work of José Anastácio da Cunha, the most original 
Portuguese mathematician of the 18th century.
 We include an insightful article on the theme of Mathematics and 
Music, presenting  a beautiful historical journey about the numerous 
interactions between these two fields, from Ancient Greece to the 
modern technological era.
 We celebrate that Professor Jorge Buescu was awarded the Grande 
Prémio Ciência Viva 2024, that Professor José Francisco Rodrigues has 
been elected President of the Lisbon Academy of Sciences and that 
Professor Luís Nunes Vicente has been selected as a Fellow of the Society 
for Industrial and Applied Mathematics (SIAM). 
 As usual, we publish several summaries and reports regarding the 
activities partially supported by CIM during the last year.
 We recall that the bulletin continues to welcome the submission of 
review, feature, outreach and research articles in Mathematics and its 
applications.

Maria Joana Torres

Centro de Matemática e Departamento de Matemática, 
Universidade do Minho

EditorialContents

02 Editorial 
by Maria Joana Torres

03 Unraveling the Dynamics of Impulsive 
Semiflows: Ergodic and Topologic Features 
by Jaqueline Siqueira

11 Mathematics and Music—25 years after the 
Diderot Mathematical Forum 
Report by José Francisco Rodrigues

16 International Conference on Mathematical 
Analysis and Applications in Science and 
Engineering 
Report by Carla M. A. Pinto

17 Portuguese texts on the calculus 
in the 18th century 
by João Caramalho Domingues

25 Mathematics and Music 
by José Francisco Rodrigues

36 Professor José Francisco Rodrigues has been 
elected President of the Lisbon Academy of 
Sciences

37 LxDS Spring School 2024 
Report by Telmo Peixe

39 The Generalized Fermat Equation 
by Nicolas Billerey  and Nuno Freitas

48 Professor Luís Nunes Vicente has been selected 
as a fellow of SIAM

49 Integrability and Moduli—A Conference in 
Honor of Leon Takhtajan 
Report by Carlos Florentino

50 Professor Jorge Buescu was awarded the 
Grande Prémio Ciência Viva 2024

51 Perspectives in Representation Theory 
Report by Teresa Conde, Samuel Lopes, Ana 
Paula Santana and Ivan Yudin

52 The 14th Combinatorics Days 
by Cláudio Piedade, Fátima Rodrigues, Inês 
Rodrigues, Olga Azenhas and Samuel Lopes

53 Lie theory and the eightfold way 
by John Huerta

2



Unraveling the Dynamics of impUlsive semiflows: 
ergoDic anD topological featUres

by Jaqueline Siqueira*

* Departamento de Matemática, Instituto de Matemática, Universidade Federal do Rio de Janeiro 
 Email: jaqueline@im.ufrj.br

Everything is logical. To understand is to justify.
— Eugène Ionesco

1 Introduction

The time evolution of various natural phenomena
often exhibits sudden changes of state, occurring
at certain points where the duration of these dis-
turbances is either null or minimal in comparison
to the overall duration of the phenomenon. These
sudden changes are referred to as impulses and can
be observed in fields such as physics, biology, eco-
nomics, control theory, and information science, see
[20, 24, 29, 32, 6, 26] and references therein.

Impulsive dynamical systems (IDS) are effective
mathematical models of real world phenomena that
display abrupt changes in their behavior. More pre-
cisely, an IDS is defined by three objects: a continu-
ous semiflow on a phase space 𝑀𝑀 ; an impulsive re-
gion 𝐷𝐷 𝐷 𝑀𝑀 , where the flow experiences sudden
perturbations; and an impulsive map 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 ,
which determines the change in the trajectory each
time it hits the impulsive region 𝐷𝐷.

Under broad conditions an IDS generates a semi-
flow, called impulsive semiflow, that is not continu-
ous in general. This inherent feature of the dynamics
of an impulsive semiflow is a key challenge when try-
ing to describe its topological and ergodic behavior.

In [21, 22], Kaul initiated the study of impulsive dy-
namical systems with impulses at variable times and
since then several authors have contributed to the de-
velopment of the theory. We mention the important
contributions of Ciesielski [14, 15, 16], as well as those
of Bonotto and his collaborators [9, 11, 12, 10].

However the study of impulsive semiflows from
the perspective of smooth topological dynamics and
ergodic theory has been initiated only recently. In

this work we aim to outline the development of the
theory to date and to propose potential directions for
its further advancement.

Definition and first properties

Since the lack of continuity of an impulsive semiflow
happens independently of the regularity of the IDS
that generates it, we shall not consider the most gen-
eral class of impulsive semiflows (see [10]). We thus
start by assuming some regularity on the IDS.

Let 𝑀𝑀 be a compact manifold endowed with the
Riemannian metric 𝑑𝑑 and let 𝜑𝜑𝐼 𝑀𝑀 𝜑 ℝ+

0 𝐼 𝑀𝑀
be a semiflow: 𝜑𝜑0(𝑥𝑥𝑥 𝑥 𝑥𝑥 and 𝜑𝜑𝑡𝑡+𝑡𝑡(𝑥𝑥𝑥 𝑥 𝜑𝜑𝑡𝑡(𝜑𝜑𝑡𝑡(𝑥𝑥𝑥𝑥
for all 𝑥𝑥 𝑥 𝑀𝑀 and 𝑡𝑡𝑡 𝑡𝑡 𝑥 ℝ+

0 . We assume that
𝜑𝜑 is generated by a 𝐶𝐶1-vector field 𝑋𝑋, that 𝐷𝐷 is a
submanifold of codimension one transversal to 𝑋𝑋,
and that 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 is a continuous map so that
𝐼𝐼(𝐷𝐷𝑥 Z 𝐷𝐷 𝐷 𝐷. The IDS (𝑀𝑀𝑡 𝜑𝜑𝑡 𝐷𝐷𝑡 𝐼𝐼𝑥 generates an
impulsive semiflow as follows.

The first impulsive time map 𝜏𝜏1 𝐼 𝑀𝑀𝐼𝑀0𝑡 +𝑀𝑀 is the
map that records the first visit of each 𝜑𝜑-trajectory
to 𝐷𝐷: 𝜏𝜏1(𝑥𝑥𝑥 𝐼𝑥 𝑥𝑥𝑥 {𝑡𝑡 𝑡 0𝐼 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥 𝑥 𝐷𝐷} if 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥 𝑥
𝐷𝐷 for some 𝑡𝑡𝑡0 and 𝜏𝜏1(𝑥𝑥𝑥 𝐼𝑥 +𝑀, otherwise. Given
𝑥𝑥 𝑥 𝑀𝑀 , the impulsive trajectory 𝛾𝛾𝑥𝑥 and the subsequent
impulsive times 𝜏𝜏2(𝑥𝑥𝑥𝑡 𝜏𝜏3(𝑥𝑥𝑥𝑡 𝜏𝜏4(𝑥𝑥𝑥𝑡 𝑥 are defined in-
ductively. For 0 ≤ 𝑡𝑡 𝑡 𝜏𝜏1(𝑥𝑥𝑥 we set 𝛾𝛾𝑥𝑥(𝑡𝑡𝑥 𝑥 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥𝑥
Assuming that 𝛾𝛾𝑥𝑥(𝑡𝑡𝑥 is defined for 𝑡𝑡 𝑡 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 for some
𝑛𝑛 𝑛 2, we set

𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥 𝑥 𝐼𝐼(𝜑𝜑𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥𝜏𝜏𝑛𝑛𝑥1(𝑥𝑥𝑥(𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛𝑥1(𝑥𝑥𝑥𝑥𝑥𝑥𝑥
Defining the (𝑛𝑛 + 1𝑥th impulsive time of 𝑥𝑥 as

𝜏𝜏𝑛𝑛+1(𝑥𝑥𝑥 𝑥 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 + 𝜏𝜏1(𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥𝑥𝑡
for 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 𝑡 𝑡𝑡 𝑡 𝜏𝜏𝑛𝑛+1(𝑥𝑥𝑥, we set
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Figure 1.—Building the trajectory of a point . Set , , .

𝛾𝛾𝑥𝑥(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛(𝑥𝑥𝑡(𝛾𝛾𝑥𝑥(𝑡𝑡𝑛𝑛(𝑥𝑥𝑡𝑡𝑡𝑥

Since we assume 𝐼𝐼(𝐼𝐼𝑡Z𝐼𝐼 𝑡 𝐷 [3, Remark 1.1] we
have that 𝑇𝑇 (𝑥𝑥𝑡 𝑇𝑡 𝑇𝑇𝑇𝑇𝑡𝑡𝑛𝑛(𝑥𝑥𝑡𝑥 𝑛𝑛 𝑥 𝑥𝑥 𝑡 𝑥𝑥 thus im-
pulsive trajectories are defined for all positive times.

According to [9, Proposition 2.1], the trajectories
defined above indeed generate a semiflow which we
call an impulsive semiflow:

𝜓𝜓 𝑇 ℝ+
0 × 𝑀𝑀 𝑀 𝑀𝑀
(𝑡𝑡𝑥 𝑥𝑥𝑡 𝑡 𝛾𝛾𝑥𝑥(𝑡𝑡𝑡𝑥

In general terms, 𝜓𝜓-impulsive trajectories are built
with segments of 𝑡𝑡-trajectories in the following way.
Given a point 𝑥𝑥 𝑥 𝑀𝑀 , consider its 𝑡𝑡-trajectory until
it hits 𝐼𝐼 (𝑥𝑥𝑥, in Figure 1). Then delete the intersection
point 𝑥𝑥𝑥, restart the impulsive trajectory at the image
of the deleted point under I (𝑦𝑦𝑥 𝑡 𝐼𝐼(𝑥𝑥𝑥𝑡). From there,
follow its 𝑡𝑡-trajectory until it hits 𝐼𝐼 again, and repeat
the process. Note that since 𝐼𝐼Z𝐼𝐼(𝐼𝐼𝑡 𝑡 𝐷, an impul-
sive trajectory of a point 𝑥𝑥 𝑥 𝑀𝑀 intersects 𝐼𝐼 only if
𝑥𝑥 𝑥 𝐼𝐼. Moreover, no periodic trajectories intersect
the impulsive region 𝐼𝐼.

2 Ergodic theory of impulsive semiflows

The field of ergodic theory has been developed with
the goal of understanding the statistical behavior of
a dynamical system via measures which remain in-
variant under its action. Describing the behavior of
the orbits in a dynamical system can be challenging,
particularly for systems with complex topological and
geometrical structures. One powerful method for an-
alyzing such systems is through invariant probability
measures. For example, Birkhoff’s Ergodic Theorem
states that almost every initial condition within each
ergodic component of an invariant measure shares
the same statistical distribution in space.

We say that 𝜇𝜇 is an invariant probability measure
under a semiflow 𝑡𝑡 if 𝜇𝜇(𝑡𝑡𝑡𝑥

𝑡𝑡 (𝐴𝐴𝑡𝑡 𝑡 𝜇𝜇(𝐴𝐴𝑡 for all Borel
sets 𝐴𝐴 𝐴 𝑀𝑀 and for all 𝑡𝑡 𝑡 0. Denote by ℳ(𝑡𝑡𝑡 the
set of all invariant probability measures.

A point 𝑥𝑥 𝑥 𝑀𝑀 is called non-wandering for 𝑡𝑡 if
for every neighborhood 𝒰𝒰 of 𝑥𝑥 and for every 𝑡𝑡 𝑡 0,
there exists 𝑇𝑇 𝑥 𝑡𝑡 so that 𝑡𝑡𝑡𝑥

𝑇𝑇 (𝒰𝒰𝑡 Z 𝒰𝒰 𝒰 𝐷𝑥 Denote
by Ω(𝑡𝑡𝑡 the set of all non-wandering points for 𝑡𝑡.

The compactness of 𝑀𝑀 implies that Ω(𝑡𝑡𝑡 𝒰 𝐷 and
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is compact. Moreover, if 𝜑𝜑 is continuous, the non-
wandering set is invariant: 𝜑𝜑𝑡𝑡(Ω(𝜑𝜑𝜑𝜑 𝜑 Ω(𝜑𝜑𝜑 for all
𝑡𝑡 𝑡 𝑡𝑡 However, this does not remain true in general
for impulsive semiflows, which is quite a suprising
phenomenon (see [3]).

For an invariant measure, the relevant points are
the non-wandering ones, meaning that any invari-
ant measure is supported on the non-wandering set.
When we assume that 𝜑𝜑 is a continuous semiflow on
a compact metric space there is always a 𝜑𝜑-invariant
measure [30, Theorem 2.1]. However, one can build
examples of impulsive semiflows with no invariant
measures (e.g. [3, Example 2.2]).

Set 𝜏𝜏𝐷𝐷(𝑥𝑥𝜑 𝑥 𝜏𝜏1(𝑥𝑥𝜑 if 𝑥𝑥 𝑥 Ω(𝑥𝑥𝜑𝑥𝐷𝐷 and 𝜏𝜏𝐷𝐷(𝑥𝑥𝜑 𝑥 𝑡
if 𝑥𝑥 𝑥 Ω(𝑥𝑥𝜑 Z 𝐷𝐷. Let (𝑀𝑀𝑀 𝜑𝜑𝑀 𝐷𝐷𝑀 𝑀𝑀𝜑 be an IDS so that
𝜑𝜑 is continuous on a compact metric space 𝑀𝑀 , 𝜏𝜏𝐷𝐷 is
continuous and 𝑀𝑀(Ω(𝑥𝑥𝜑 Z 𝐷𝐷𝜑 𝜑 Ω(𝑥𝑥𝜑𝑥𝐷𝐷. Therefore,
by [3, Theorem A], the impulsive semiflow 𝑥𝑥 admits
an invariant measure.

The existence of invariant measures can also be
obtained by assuming some regularity and transver-
sality conditions on the IDS [1, Theorem I] as follows.

A criterion for existence of invariant measures

Theorem 1.— Let 𝜑𝜑𝜑 𝑀𝑀 𝜑 ℝ+
𝑡 → 𝑀𝑀 be a 𝐶𝐶1-

semiflow, 𝐷𝐷 a compact submanifold of codimension
one, transversal to the flow direction and 𝑀𝑀 𝜑 𝐷𝐷 → 𝑀𝑀
a continuous map. Then the impulsive semiflow 𝑥𝑥
admits an invariant probability measure.

2.1 Topological pressure

The topological pressure of a semiflow with respect
to a potential function is the rate of growth of trajecto-
ries of the semiflow where each point is weighted ac-
cording to the potential. We recall the classical defini-
tion of topological pressure for continuous semiflows
and generalize this concept to impulsive semiflows.

Topological pressure for continuous semiflows

Let 𝜑𝜑𝜑 𝑀𝑀 𝜑 ℝ+
𝑡 → 𝑀𝑀 be a continuous semiflow.

Given 𝜀𝜀 𝑡 𝑡 and 𝑡𝑡 𝑥 ℝ+, a subset 𝐸𝐸 of 𝑀𝑀 is said to
be (𝜑𝜑𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated if for any 𝑥𝑥𝑀 𝑥𝑥 𝑥 𝑀𝑀 with 𝑥𝑥 𝑥 𝑥𝑥
there is some 𝑠𝑠 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠 such that 𝑑𝑑 (𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝑀 𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝜑 𝑡 𝜀𝜀.
Given 𝑓𝑓 𝜑 𝑀𝑀 → ℝ a continuous potential, define

𝑍𝑍(𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑 𝑥 𝑍𝑍𝑍
𝐸𝐸 {∑

𝑥𝑥𝑥𝐸𝐸
𝑒𝑒∫𝑡𝑡

𝑡 𝑓𝑓(𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝜑 𝑑𝑑𝑠𝑠
}

𝑀 where

the supremum is taken over (𝜑𝜑𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated sets𝑡

We also define

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝜑 𝑥 𝑃𝑃𝑃 𝑍𝑍𝑍
𝑡𝑡→+𝑡

1
𝑡𝑡

𝑃og 𝑍𝑍(𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑𝑡

The topological pressure of 𝜑𝜑 with respect to 𝑓𝑓 is
defined as

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓𝜑 𝑥 𝑃𝑃𝑃
𝜀𝜀→𝑡

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝜑𝑡

The topological entropy of 𝜑𝜑, ℎ(𝜑𝜑𝜑, is the topolog-
ical pressure of 𝜑𝜑 with respect to the identically zero
potential.

New definition for semiflows with discontinuities

Let 𝑥𝑥 𝜑 ℝ+
𝑡 𝜑 𝑀𝑀 → 𝑀𝑀 be a semiflow possibly ex-

hibiting discontinuities. Consider a function 𝑇𝑇 as-
signing to each 𝑥𝑥 𝑥 𝑀𝑀 a sequence (𝑇𝑇𝑛𝑛(𝑥𝑥𝜑𝜑𝑛𝑛𝑥𝑛𝑛(𝑥𝑥𝜑 of
nonnegative numbers, where either 𝑛𝑛(𝑥𝑥𝜑 𝑥 ℕ or
𝑛𝑛(𝑥𝑥𝜑 𝑥 𝐴1𝑀 𝐴 𝑀 𝐴𝐴 for some 𝐴 𝑥 ℕ. We say that 𝑇𝑇 is
admissible if there exists 𝜂𝜂 𝑡 𝑡 such that for all 𝑥𝑥 𝑥 𝑀𝑀
and all 𝑛𝑛 𝑥 ℕ with 𝑛𝑛 + 1 𝑥 𝑛𝑛(𝑥𝑥𝜑 we have

1𝑡 𝑇𝑇𝑛𝑛+1(𝑥𝑥𝜑 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑 𝑥 𝜂𝜂

2𝑡 𝑇𝑇𝑛𝑛(𝑥𝑥𝑡𝑡(𝑥𝑥𝜑𝜑 𝑥
{

𝑇𝑇𝑛𝑛(𝑥𝑥𝜑 𝑥 𝑡𝑡𝑀 if 𝑇𝑇𝑛𝑛𝑥1(𝑥𝑥𝜑 𝑥 𝑡𝑡 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑
𝑇𝑇𝑛𝑛+1(𝑥𝑥𝜑𝑀 if 𝑡𝑡 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑𝑡

For each admissible function 𝑇𝑇 , 𝑥𝑥 𝑥 𝑀𝑀 , 𝑡𝑡 𝑡 𝑡 and
𝑡 𝑥 𝛿𝛿 𝑥 𝜂𝜂𝛿2, we define

𝐽𝐽 𝑇𝑇
𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠 𝑥

�
𝑗𝑗𝑥𝑛𝑛(𝑥𝑥𝜑

𝑠𝑇𝑇𝑗𝑗(𝑥𝑥𝜑 𝑥 𝛿𝛿𝑀 𝑇𝑇𝑗𝑗(𝑥𝑥𝜑 + 𝛿𝛿𝑠𝑡

Observe that 𝐽𝐽 𝑇𝑇
𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠, whenever 𝑇𝑇1(𝑥𝑥𝜑 𝑡 𝑡𝑡.

Given 𝜀𝜀 𝑡 𝑡 and 𝑡𝑡 𝑥 ℝ+, we say that 𝐸𝐸 𝜑 𝑀𝑀 is
(𝑥𝑥𝑀 𝛿𝛿𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated if for any 𝑥𝑥𝑀 𝑥𝑥 𝑥 𝑀𝑀 with 𝑥𝑥 𝑥 𝑥𝑥
there is some 𝑠𝑠 𝑥 𝐽𝐽 𝑇𝑇

𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 so that 𝑑𝑑 (𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝑀 𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝜑 𝑡 𝜀𝜀.
Given a continuous potential 𝑓𝑓 𝜑 𝑀𝑀 → ℝ, define

𝑍𝑍𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑 𝑥

𝑥 𝑍𝑍𝑍
𝐸𝐸 {∑

𝑥𝑥𝑥𝐸𝐸
ex𝑍 (∫

𝑡𝑡

𝑡
𝑓𝑓(𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝜑 𝑑𝑑𝑠𝑠)}

𝑀

where the supremum is taken over all finite separated
sets. We also define

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑 𝑥 𝑃𝑃𝑃 𝑍𝑍𝑍
𝑡𝑡→+𝑡

1
𝑡𝑡

𝑃og 𝑍𝑍𝑇𝑇
𝑡𝑡 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑𝑀

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝜑 𝑥 𝑃𝑃𝑃
𝜀𝜀→𝑡

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑𝑡

Finally, define the 𝑇𝑇 -topological pressure of 𝑥𝑥 with re-
spect to 𝑓𝑓 as

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓𝜑 𝑥 𝑃𝑃𝑃
𝛿𝛿→𝑡

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝜑𝑡

This concept was strongly inspired by the
𝑇𝑇 𝑥topological entropy introduced in [4]. Moreover,
when 𝑓𝑓 is identically null the 𝑇𝑇 -topological pressure
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becomes the 𝑇𝑇 -topological entropy.
Note that the sequence 𝜏𝜏 𝜏 𝜏𝜏𝜏𝑛𝑛} of impulsive

times is admissible and we call 𝑃𝑃 𝜏𝜏(𝜑𝜑𝜑 𝜑𝜑𝜑 the impul-
sive topological pressure.

The next result states that for continuous semi-
flows the classical and the new notion of topological
pressure coincide [5, Theorem B].

Theorem 2.— Let 𝜑𝜑 be a continuous semiflow on a
compact metric space 𝑀𝑀 , 𝑇𝑇 an admissible sequence
and 𝜑𝜑 𝑓 𝑓𝑓 𝑓 ℝ a continuous potential. Then
𝑃𝑃 𝑇𝑇 (𝜑𝜑𝜑 𝜑𝜑𝜑 𝜏 𝑃𝑃 (𝜑𝜑𝜑 𝜑𝜑𝜑𝜑

2.2 Variational Principle

The concept of topological entropy is, a priori, purely
topological. Nevertheless it is intrinsically related to
invariant measures. For instance, given a continuous
flow, on a compact metric space, the classical vari-
ational principle [31] shows that the topological en-
tropy is the supremum over all invariant measures of
the measure theoretical entropy.

The entropy of a continuous map 𝑔𝑔 𝑓 𝑀𝑀 𝑓 𝑀𝑀
with respect to a probability measure 𝜇𝜇 is given by:

ℎ𝜇𝜇(𝑔𝑔𝜑 𝜏 ∫ ℎ𝜇𝜇(𝑔𝑔𝜑 𝑔𝑔𝜑 𝑔𝑔𝜇𝜇(𝑔𝑔𝜑𝜑 where

ℎ𝜇𝜇(𝑔𝑔𝜑 𝑔𝑔𝜑 𝜏 𝑔𝑔𝑔
𝜀𝜀𝑓𝜀

𝑔𝑔𝑔 sup
𝑛𝑛𝑓𝑛

−1
𝑛𝑛

𝑔og 𝜇𝜇 (𝐵𝐵𝑔𝑔(𝑔𝑔𝜑 𝑛𝑛𝜑 𝜀𝜀𝜑) 𝜑 and

𝐵𝐵𝑔𝑔(𝑔𝑔𝜑 𝑛𝑛𝜑 𝜀𝜀𝜑𝜏𝜏𝑥𝑥𝑥𝑀𝑀𝑓 𝑔𝑔(𝑔𝑔𝑗𝑗(𝑔𝑔𝜑𝜑 𝑔𝑔𝑗𝑗(𝑥𝑥𝜑𝜑𝑦𝜀𝜀𝜑 𝑦𝑗𝑗𝜏𝜀𝜑𝑦 𝜑𝑛𝑛 − 1}𝜑
The entropy of a semiflow 𝜓𝜓 with respect to a

probability measure 𝜇𝜇 is defined as ℎ𝜇𝜇(𝜓𝜓𝜑 𝜏 ℎ𝜇𝜇(𝜓𝜓1𝜑,
where 𝜓𝜓1 stands for the time-1 map.

A variational principle [1, Theorem II] holds for
impulsive semiflows, (see[5] a topological pressure
version).

Theorem 3.— Let 𝜑𝜑𝑓 𝑀𝑀 𝜑 ℝ+
𝜀 𝑓 𝑀𝑀 be a 𝐶𝐶1-

semiflow, 𝐷𝐷 a compact submanifold of codimension
one and 𝐼𝐼 𝑓 𝐷𝐷 𝑓 𝑀𝑀 a 1-Lipschitz map. If 𝐷𝐷 and
𝐼𝐼(𝐷𝐷𝜑 are transversal to the flow direction, then the
impulsive semiflow 𝜓𝜓 generated by (𝑀𝑀𝜑 𝜑𝜑𝜑 𝐷𝐷𝜑 𝐼𝐼𝜑 sat-
isfies

ℎ𝜏𝜏
𝑡𝑡𝑡𝑡𝑡𝑡(𝜓𝜓𝜑 𝜏 sup

𝜇𝜇𝑥𝜇(𝜓𝜓𝜑
𝜏ℎ𝜇𝜇(𝜓𝜓𝜑}𝜑

2.3 Equilibrium states

In general a dynamical system admits more than one
invariant measure, so it is important to choose a suit-
able one for analysis. One way to do this is by select-

ing measures that maximize the system’s free energy,
known as equilibrium states.

A 𝜓𝜓-invariant probability measure 𝜇𝜇 is said to be
an equilibrium state for 𝜓𝜓 with respect to a potential
function 𝜑𝜑 𝑓 𝑀𝑀 𝑓 ℝ if it satisfies:

ℎ𝜇𝜇(𝜓𝜓𝜑 + ∫ 𝜑𝜑 𝑔𝑔𝜇𝜇 𝜏 sup
𝜂𝜂 {ℎ𝜂𝜂(𝜓𝜓𝜑 + ∫ 𝜑𝜑 𝑔𝑔𝜂𝜂}

where the supremum is taken over all 𝜓𝜓-invariant
probability measures 𝜂𝜂.

Given an expansive continuous flow with the
specification property and a Hölder continuous po-
tential satisfying the Bowen property, there exists a
unique equilibrium state, as shown in [17]. To extend
this result to impulsive semiflows we first adapt the
concepts involved.

Existence and uniqueness for impulsive semiflows

In simple terms, expansiveness means that the system
has the property of pushing apart the trajectories of
nearby points in its phase space over time.

Taking into account that a suitable concept of ex-
pansiveness for impulsive semiflows should ensure
genuine separation of the trajectories rather than just
the artificial ones generated by the impulse map, we
introduce the following concept.

For a given 𝑟𝑟 𝑟 𝜀, denote the set 𝐵𝐵𝑟𝑟(𝐷𝐷𝜑 by the
𝑟𝑟-neighborhood of 𝐷𝐷 in 𝑀𝑀 . The semiflow 𝜓𝜓 is
called positively expansive on 𝑀𝑀 if for every 𝛿𝛿 𝑟 𝜀
there exists 𝜖𝜖 𝑟 𝜀 such that if 𝑔𝑔𝜑 𝑥𝑥 𝑥 𝑀𝑀 and
a continuous map 𝑠𝑠𝑓 ℝ+

𝜀 𝑓 ℝ+
𝜀 with 𝑠𝑠(𝜀𝜑 𝜏 𝜀

satisfy 𝑔𝑔 (𝜓𝜓𝑡𝑡(𝑔𝑔𝜑𝜑 𝜓𝜓𝑠𝑠(𝑡𝑡𝜑(𝑥𝑥𝜑𝜑 𝑦 𝜖𝜖 for all 𝑡𝑡 𝑡 𝜀 with
𝜓𝜓𝑡𝑡(𝑔𝑔𝜑𝜑 𝜓𝜓𝑠𝑠(𝑡𝑡𝜑(𝑥𝑥𝜑 𝑦 𝐵𝐵𝜖𝜖(𝐷𝐷𝜑, then either 𝑥𝑥 𝜏 𝜓𝜓𝑡𝑡(𝑔𝑔𝜑 or
𝑔𝑔 𝜏 𝜓𝜓𝑡𝑡(𝑥𝑥𝜑 for some 𝜀 𝑦 𝑡𝑡 𝑦 𝛿𝛿.

The specification property refers to the ability of
a dynamical system to approximate true trajectories
with high precision, using only a finite number of seg-
ments from other orbits. The fact that the concept de-
pends only on pieces of trajectories allows us to apply
the classical concept to impulsive semiflows.

The semiflow 𝜓𝜓 has the specification property on
𝑀𝑀 if for all 𝜖𝜖 𝑟 𝜀 there exists 𝐿𝐿 𝑟 𝜀 such that for any
sequence 𝑔𝑔𝜀𝜑 … 𝜑 𝑔𝑔𝑛𝑛 of points in 𝑀𝑀 and any sequence
𝜀 ≤ 𝑡𝑡𝜀 𝑦 𝑦 𝑦 𝑡𝑡𝑛𝑛+1 such that 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 𝑡 𝐿𝐿 for all
𝜀 ≤ 𝑖𝑖 ≤ 𝑛𝑛, there are 𝑥𝑥 𝑥 𝑀𝑀 and 𝑟𝑟 𝑓 ℝ+

𝜀 𝑓 ℝ+
𝜀 , which

is constant on each interval [𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1[, whose values de-
pend only on 𝑔𝑔𝜀𝜑 … 𝜑 𝑔𝑔𝑛𝑛, that also satisfy

𝑟𝑟([𝑡𝑡𝜀𝜑 𝑡𝑡1[𝜑 𝜏 𝜀 and |𝑟𝑟([𝑡𝑡𝑖𝑖+1𝜑 𝑡𝑡𝑖𝑖+𝑖[𝜑−𝑟𝑟([𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1[𝜑| 𝑦 𝜖𝜖𝜑

for which 𝑔𝑔 (𝜓𝜓𝑡𝑡+𝑟𝑟(𝑡𝑡𝜑(𝑥𝑥𝜑𝜑 𝜓𝜓𝑡𝑡−𝑡𝑡𝑖𝑖
(𝑔𝑔𝑖𝑖𝜑𝜑 𝑦 𝜖𝜖𝜑

for all 𝑡𝑡 𝑥 [𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1 − 𝐿𝐿[ and 𝜀 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝜑
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In addition, the specification is called periodic if
we can always choose 𝑦𝑦 periodic with the minimum
period in [𝑡𝑡𝑛𝑛𝑛𝑛 − 𝑡𝑡0 − 𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑛𝑛𝑛𝑛 − 𝑡𝑡0 𝑛 𝑛𝑛𝑛𝑛𝑛.

Finally, we adapt the concept of Bowen potentials
to include the action of the impulse on the poten-
tials. Let 𝑉𝑉 ∗(𝜓𝜓𝜓 be the set of all continuous maps
𝑓𝑓 𝑓 𝑓𝑓 𝑓 ℝ satisfying:

1. 𝑓𝑓(𝑓𝑓𝜓 𝑓 𝑓𝑓(𝑓𝑓(𝑓𝑓𝜓𝜓 for all 𝑓𝑓 𝑥 𝑥𝑥;

2. there are 𝐾𝐾 𝐾 0 and 𝑛𝑛 𝐾 0 such that for every
𝑡𝑡 𝐾 0 we have

|∫

𝑡𝑡

0
𝑓𝑓(𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝜓 𝑥𝑥𝑠𝑠 − ∫

𝑡𝑡

0
𝑓𝑓(𝜓𝜓𝑠𝑠(𝑦𝑦𝜓𝜓 𝑥𝑥𝑠𝑠| < 𝐾𝐾𝑛 (1)

whenever 𝑥𝑥 (𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝑛 𝜓𝜓𝑠𝑠(𝑦𝑦𝜓𝜓 < 𝑛𝑛 for all 𝑠𝑠 𝑥 [0𝑛 𝑡𝑡𝑛
such that 𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝑛 𝜓𝜓𝑠𝑠(𝑦𝑦𝜓 𝑦 𝑦𝑦𝑛𝑛(𝑥𝑥𝜓.

Sufficient conditions to the existence and unique-
ness of equlibrium states were first established in [5,
Theorem A]. Here we state [1, Theorem III] that re-
quires the following regularity and transversality of
the IDS.

Theorem 4.— Let 𝜑𝜑𝑓 𝑓𝑓 𝜑 ℝ𝑛
0 𝑓 𝑓𝑓 be a 𝐶𝐶𝑛 semi-

flow, 𝑥𝑥 a compact submanifold of codimension one
and 𝑓𝑓 𝑓 𝑥𝑥 𝑓 𝑓𝑓 a 1-Lipschitz map. If 𝑥𝑥 and 𝑓𝑓(𝑥𝑥𝜓
are transversal to the flow direction, 𝜓𝜓 is positively
expansive and it has the periodic specification prop-
erty in Ω(𝜓𝜓𝜓𝜓𝑥𝑥, then for any potential 𝑓𝑓 𝑥 𝑉𝑉 ∗(𝜓𝜓𝜓
there is an equilibrium state. Moreover, if there is
𝑘𝑘 𝐾 0 such that #𝑓𝑓−𝑛({𝑦𝑦𝑦𝜓 𝑦 𝑘𝑘 for every 𝑦𝑦 𝑥 𝑓𝑓(𝑥𝑥𝜓
then the equilibrium state is unique.

3 Periodic Orbits of typical impulsive
semiflows

Considering the space of impulsive semiflows param-
eterized by vector fields and impulse maps, a natural
question is whether a typical impulsive semiflow ad-
mits periodic points. Also, recall the so called Gen-
eral Density Theorem (see [25]) that ensures the ex-
istence of a Baire residual subset of 𝐶𝐶𝑛 vector fields
for which every element generates a 𝐶𝐶𝑛-flow 𝜑𝜑 such
that the set, 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜑𝜑𝜓, of periodic orbits is dense in the
non-wandering set Ω(𝜑𝜑𝜓𝜑

We aim to provide a description of the non-
wandering set for a generic class of Impulsive Semi-
flows. As the genericity depends on the topology
with which the space is endowed, we present our re-
sults in the 𝐶𝐶0 and 𝐶𝐶𝑛 topologies,via permanent and

hyperbolic periodic points, respectively. All through-
out let 𝑓𝑓 be a compact Riemannian manifold of di-
mension 𝑚𝑚 𝑚 𝑚. Given an IDS (𝑓𝑓𝑛 𝜑𝜑𝑛 𝑥𝑥𝑛 𝑓𝑓𝜓, where 𝜑𝜑
is a flow generated by a vector field 𝑋𝑋, we denote its
impulsive semiflow by 𝜓𝜓𝑋𝑋𝑛𝑓𝑓 to stress the dependence
on the vector field and on the impulse map.

3.1 𝐶𝐶0-topology

We now consider impulsive semiflows for which the
underlying flow is generated by Lipschitz continuous
vector fields and impulses are chosen as homeomor-
phisms onto its image. We denote by 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 the
space of Lipschitz vector fields endowed with the 𝐶𝐶0-
topology

‖𝑋𝑋 − 𝑋𝑋 ‖𝐶𝐶0 𝑓𝑓 max
𝑓𝑓𝑥𝑓𝑓

‖𝑋𝑋(𝑓𝑓𝜓 − 𝑋𝑋 (𝑓𝑓𝜓‖ < 𝑋𝑋𝜑

𝐶𝐶0-Baire generic impulses

Assume 𝜑𝜑 is a Lipschitz continuous flow generated
by a vector field 𝑋𝑋 𝑥 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 and 𝑥𝑥 is a codimen-
sion one smooth submanifold of 𝑓𝑓 , transversal to the
flow direction, such that

𝑥𝑥 Z Sing(𝜑𝜑𝜓 𝑓 𝜑𝑛 (H)

where 𝑥𝑥 stands for the closure of 𝑥𝑥 and Sing(𝜑𝜑𝜓
stands for the equilibrium points of 𝜑𝜑. Let �̂�𝑥 be a
codimension one submanifold transversal to 𝑋𝑋. Con-
sider the space

ℐ𝑥𝑥𝑛�̂�𝑥 𝑓 Homeo(𝑥𝑥𝑛 �̂�𝑥𝜓
endowed with the 𝐶𝐶0-distance. We have the follow-
ing General Density Theorem [28, Theorem A].

Theorem 5.— There exists a 𝐶𝐶0-Baire generic subset
ℛ𝑋𝑋 ⊂ ℐ𝑥𝑥𝑛�̂�𝑥 of impulses such that

𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 Z �̊�𝑥 𝑓 Ω(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 Z �̊�𝑥
for every 𝑓𝑓 𝑥 ℛ𝑋𝑋 , where 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 denotes the set
of periodic orbits of 𝜓𝜓𝑋𝑋𝑛𝑓𝑓 and �̊�𝑥 is the interior of 𝑥𝑥.

In general, one should not expect the density of pe-
riodic points in the all non-wandering set, however
this is the case when the impulsive semiflow is gen-
erated by a minimal flow. Moreover, the following
holds ([28, Corollary B]).

Corollary 6.— Let 𝜑𝜑 be a Lipschitz continuous flow
generated by 𝑋𝑋 𝑥 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 and 𝑥𝑥𝑛 �̂�𝑥 ⊂ 𝑓𝑓 be
smooth codimension one submanifolds transversal to
the flow such that assumption (H) holds. The follow-
ing hold:
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1. if 𝐼𝐼0 ∈ ℐ𝐷𝐷𝐷�̂�𝐷 is such that Ω(𝜓𝜓𝐼𝐼0
) Z 𝜕𝜕𝐷𝐷 𝜕 𝜕 then

there exist 𝛿𝛿 𝛿 0, an open neighborhood 𝒱𝒱 of
𝐼𝐼0 and a Baire generic subset ℛ ⊂ 𝒱𝒱 so that, for
every 𝐼𝐼 ∈ ℛ one can write the non-wandering
set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) as a (possibly non-disjoint) union
Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) 𝜕 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) Y Ω2(𝜑𝜑𝐷 𝐷𝐷)𝐷 where
Ω2(𝜑𝜑𝐷 𝐷𝐷) ⊂ Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) is a 𝜑𝜑-invariant set which
does not intersect a 𝛿𝛿-neighborhood of the
cross-section 𝐷𝐷. Moreover, the set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) ∖ 𝐷𝐷
is invariant under 𝜓𝜓𝑋𝑋𝐷𝐼𝐼 .

2. if 𝜑𝜑 is minimal then there exists a Baire generic
subset ℛ ⊂ ℐ𝐷𝐷𝐷�̂�𝐷 so that, for every 𝐼𝐼 ∈ ℛ, the
set of periodic orbits is dense in Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ). More-
over, the set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 )∖𝐷𝐷 is a 𝜓𝜓𝑋𝑋𝐷𝐼𝐼 -invariant sub-
set of 𝑀𝑀 .

3.2 𝐶𝐶1-topology

Let 𝜑𝜑 be the 𝐶𝐶1-flow generated by a vector field 𝑋𝑋
and let 𝐷𝐷 ⊂ 𝑀𝑀 be a compact codimension one sub-
manifold transversal to the flow direction.

We define the class of impulses ℐ𝐷𝐷 as the set of
𝐶𝐶1-embeddings maps 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 so that 𝐼𝐼(𝐷𝐷) 𝐼 𝑋𝑋
and

sup
𝑥𝑥∈𝐼𝐼(𝐷𝐷) |

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑥𝑥

(𝑥𝑥)| < +∞.

Endow the space ℐ𝐷𝐷 with the distance 𝑑𝑑𝐶𝐶1(𝐼𝐼1𝐷 𝐼𝐼2)
given by

max { sup
𝑥𝑥∈𝐷𝐷

𝑑𝑑(𝐼𝐼1(𝑥𝑥)𝐷 𝐼𝐼2(𝑥𝑥))𝐷 sup
𝑥𝑥∈𝐷𝐷

‖𝐷𝐷𝐼𝐼1(𝑥𝑥) 𝑥 𝐷𝐷𝐼𝐼2(𝑥𝑥)‖}𝐷

where the expression on the right-hand side is well-
defined after using parallel transport to identify the
corresponding tangent spaces.

In this setting [27, Theorem A] establishes:

Theorem 7.— There exists a Baire residual subset
ℛ𝑋𝑋 ⊂ ℐ𝐷𝐷 of impulses such that the impulsive semi-
flow 𝜓𝜓𝐼𝐼 determined by 𝐼𝐼 ∈ ℛ satisfies

𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) Z 𝐷𝐷 𝜕 Ω(𝜓𝜓𝐼𝐼 ) Z 𝐷𝐷
where 𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) denotes the set of hyperbolic peri-
odic orbits of 𝜓𝜓𝐼𝐼 .

We point out that the conclusion of Theorem 7 can-
not be written using the landing region 𝐼𝐼(𝐷𝐷), as there
exist 𝐶𝐶1-open sets of impulses for which the equality
𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) Z 𝐼𝐼(𝐷𝐷) 𝜕 Ω(𝜓𝜓𝐼𝐼) Z 𝐼𝐼(𝐷𝐷) fails (see [27, Ex-
ample 7.3]).

4 An invitation to the impulsive world

Despite their wide range of applications, IDS have
only recently begun to be studied through the lens
of ergodic theory. In this area, there remains vast po-
tential for exploration. We conclude by presenting a
few open questions, inviting the reader to delve into
the dynamics of impulsive semiflows.

1. As mentioned in Section 2.3, in general a dynam-
ical system admits more than one invariant measure,
therefore it is necessary to choose a suitable one to an-
alyze. While here we only focus on equilibrium states,
criteria for the existence and finiteness of the number
of absolutely continuous measures and/or physical
measures are also not available. See [2] for the study
of physical measures for a class of semiflows gener-
ated via impulsive perturbations of Lorenz flows.

2. In Theorem 6 we established the denseness of
periodic points in the impulsive non-wandering set
for a class of Baire generic impulses maps. The proof
is based on the concept of uniform hyperbolicity and
of perturbative results for discontinuous semiflows.
A key tool in the proof is the following impulsive con-
necting lemma [27, Theorem 4.1 ].

Given 𝛿𝛿 𝛿 0, we say that a sequence (𝑥𝑥𝑘𝑘𝐷 𝑡𝑡𝑘𝑘)𝑛𝑛
𝑘𝑘𝜕0 in

𝑀𝑀 𝑀ℝ+ is a 𝛿𝛿-pseudo orbit for the impulsive semiflow
𝜓𝜓𝐼𝐼 if 𝑑𝑑(𝑑𝑑𝑥𝑥𝑘𝑘

(𝑡𝑡𝑘𝑘)𝐷 𝑥𝑥𝑘𝑘+1) < 𝛿𝛿𝐷 for every 𝑘𝑘 𝜕 0 𝑘 𝑛𝑛 𝑥 1.
We say that 𝑦𝑦 is a chain iterate of 𝑥𝑥 (and write 𝑥𝑥 𝑥 𝑦𝑦) if
for any 𝛿𝛿 𝛿 0 there exists a 𝛿𝛿-pseudo orbit (𝑥𝑥𝑘𝑘𝐷 𝑡𝑡𝑘𝑘)𝑛𝑛

𝑘𝑘𝜕0
such that 𝑥𝑥0 𝜕 𝑥𝑥 and 𝑥𝑥𝑛𝑛 𝜕 𝑦𝑦.

Theorem 8 (Impulsive connecting lemma).— Let 𝜑𝜑
be a 𝐶𝐶1-flow generated by 𝑋𝑋 ∈ 𝑋𝑋1(𝑀𝑀) and let
𝐷𝐷𝐷 �̂�𝐷 be smooth submanifolds of codimension one
transversal to 𝑋𝑋 and 𝐼𝐼 ∈ ℐ𝐷𝐷𝐷�̂�𝐷 so that all 𝜓𝜓𝐼𝐼-periodic
orbits whose orbit closure does not intersect 𝜕𝜕𝐷𝐷 are
hyperbolic. If 𝑥𝑥 𝑥 𝑦𝑦 then for any 𝜀𝜀 𝛿 0 there exists
an 𝜀𝜀-𝐶𝐶1-perturbation 𝐽𝐽 of 𝐼𝐼 such that 𝑦𝑦 𝜕 𝑑𝑑𝐽𝐽𝐷𝑥𝑥(𝑡𝑡), for
some 𝑡𝑡 𝑡 0.

In the context of diffeomorphisms, connecting
lemmas were obtained by Arnaud [7, Théorème 22]
and Bonatti and Crovisier [8, Théorème 2.1], as refine-
ments of the 𝐶𝐶1-closing lemma by Pugh [25] and the
𝐶𝐶1-connecting lemma of Hayashi [18].

A natural and interesting open question is to ob-
tain a version of Theorem 6 when the vector field is
perturbed. It seems that one should first establish a
version of the last connecting lemma.

3. Considering the IDS (𝑀𝑀𝐷 𝜑𝜑𝐷 𝐼𝐼𝐷 𝐷𝐷), even if 𝜑𝜑 is
a flow, the IDS does not generate an impulsive flow,
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but only a semiflow, when the impulse map 𝐼𝐼 is not in-
jective. It is well known that certain concepts do not
present a direct adaptation from the setting of flows
to the one of semiflows. For instance, the concept of
expansiveness presented in this paper is stronger than
the one for flows introduced by Bowen and Walters
in [13] (see [19]). In [23] the concept of eventual expan-
siveness for continuous semiflows was introduced.

A continuous semiflow 𝜑𝜑 on a metric space 𝑀𝑀 is
eventually expansive if for every 𝜀𝜀 𝜀 𝜀 there is 𝛿𝛿 𝜀 𝜀
so that if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑀𝑀 and 𝑠𝑠 𝑠 𝑠𝜀𝑥 𝑠𝑠𝑠𝑠 𝑠𝜀𝑥 𝑠𝑠𝑠
is a continuous function with 𝑠𝑠𝑠𝜀𝑠 𝑠 𝜀 such that
𝑑𝑑𝑠𝜑𝜑𝑠𝑑𝑑𝑥 𝑥𝑥𝑠𝑥 𝜑𝜑𝑠𝑑𝑑𝑥 𝑥𝑥𝑠𝑠 𝑑 𝛿𝛿 for all 𝑑𝑑 𝜀 𝜀 then 𝜑𝜑𝑠𝜑𝜑𝑥 𝑥𝑥𝑠 𝑠
𝜑𝜑𝑠𝑠𝑠𝑥 𝑥𝑥𝑠 for some 𝜑𝜑𝑥 𝑠𝑠 𝑟 𝜀 with |𝜑𝜑 𝑟 𝑠𝑠| 𝑑 𝜀𝜀.

For an eventually expansive continuous semiflow
its topological entropy is bounded from below by the
growth rate of the periodic orbits [Theorem 1.5, [23]].
After adapting the concept of eventually expansive-
ness to impulsive semiflows, we would expect to be
able to bound the 𝜏𝜏-entropy introduced here by the
growth rate of the periodic orbits.
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* CEMsUL/Ciências/ULisboa. Email: jfrodrigues@ciencias.ulisboa.pt

by José Francisco Rodrigues*

report

At the beginning of the third millennium of our era, Leib-
niz’s famous expression, “Musica est exercitium arith-
meticæ occultum nescientis se numerare animi” (Music 
is a hidden arithmetical exercise of a mind unconscious 
that it is counting) can be taken in a broad sense in a 
contemporary conception of art and science. In the Eu-
ropean universities, since the middle ages, Music was 
part of the studies and Portugal was not an exception. 
The Studium Generale of Lisbon, instituted by King Di-
nis in 1290, marking the foundation of the Portuguese 
University, included the medieval version of the Liberal 
Arts of the Trivium (grammar, rhetoric and dialectic) and 
the Quadrivium (arithmetic, geometry, astronomy and 
music).

 Nowadays the classical Mathematical Physics area 
does not appear explicitly in the Mathematics Subject 
Classification, but, of course, it currently includes a wide 
variety of areas and sub-areas of mathematics that are 
contained in that classification. In contrast, the some-
how older subject Mathematics and Music has integrated 
that classification, under the reference 00A65, only since 
2010. On the other hand, the Journal of Mathematics and 
Music has been publishing articles on computational 
and mathematical approaches to music composition, 
analysis and theory since 2007.
 The European Mathematical Society (EMS) has pro-
moted the Fourth Diderot Mathematical Forum simulta-
neously in Lisbon, Paris and Vienna, on 3–4 December 

Mathematics and Music 
25 years after the Diderot Mathematical Forum
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1999, which consisting of several conferences in parallel 
and, as a main feature of that Forum, a joint teleconfer-
ence among the three cities, which took place under the 
theme “The relations between Mathematics and Music 
are natural or cultural relations?” The series of those 
EMS Forums took the name of the French philosopher 
Denis Diderot, who was the editor of the Encyclopédie, 
that he co-founded with the mathematician Jean D’Alem-
bert (who also wrote on music), where he wrote “C’est 
par les nombres et non par les sens qu’il faut estimer la 
sublimité de la musique. Etudiez le monocorde.” (It’s by 
numbers and not by the senses that one should evaluate 
the sublimity of music. Study the monochord.), in the 
very classical Pythagorean tradition.
 The contributions presented at that 1999 pioneering 
conference on Relationships between Mathematics and 
Music were published in 2002 in the influential book 
[MM] covered three complementary directions: “His-
torical Aspects”, the topic addressed in Lisbon at the 
Fundação Calouste Gulbenkian; the “Mathematical Logic 
and Music Logic in the 20th century” at the IRCAM-Cen-
tre Georges Pompidou, in Paris, and the “Mathematical 
and computational methods in Music”, at the University 
of Vienna.
 The first of five texts on the historical topic of [MM], 
Proportion in Ancient and Medieval Music, by M. P. Fer-

reira, deals with the Pythagorean theory, from the Greek 
heritage and the Latin world to the late-medieval France 
and the decline of proportional thinking. The chapter by 
E. Knobloch on The Sounding Algebra: Relations Between 
Combinatorics and Music from Mersenne to Euler highlights 
the role of the Mersenne’s Harmonia Universalis (1636) 
for the baroque music, when “to compose” was equiva-
lent with “to combine”, up to the Euler’s contributions, 
with a reference to the Mozart’s Musicaliaches Würfelspiel 
(Musical game of dice). The third article, by B. Scimemi, 
explains The Use of Mechanical Devices and Numerical Al-
gorithms in the 18th Century for the Equal Temperament of 

Book engraving from Etymologiae, by Isidore of Seville, 
belonging to the Manuscrito de Santa Cruz (12.° 17, fl.31 at 
Biblioteca Pública Municipal do Porto) with divisions of the 
monochord, in the medieval style of De Institutione Musi-
ca by Boethius (c. 475–524).
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the Musical Scale, from Zarlino and Tartini up to Strähle 
and Schröter. In the next article, J. Dhombres recalls La-
grange, “Working Mathematician”, on Music Considered 
as a Source for Science, and the last one in this first part of 
that book presents some Musical Patterns, by W. Hodg-
es and R. J. Wilson, with illustrations of mathematical 
devices, like canon, expansion, retrograde motion and 
inversion, used in music writing by composers.
 The seven contributions in [MM] from the Paris 
meeting, going in general into an anti-Pythagorean di-
rection, started with Questions of Logic: Writing, Dialectics 
and Musical Strategies, by F. Nicolas, followed with The 
Formalization of Logic and the Issue of Meaning, by M.-J. 
Durand-Richard, with Musical Analysis Using Mathemat-
ical Proceedings in the XXth Century, by L. Fichet, with 
Universal Prediction Applied to Stylistic Music Generation, 
by S. Dubnov and G. Assayag, evolving into Ethnomu-
sicology, Ethnomathematics, The Logic Underlying Orally 
Transmitted Artistic Practices, by the ethnomusicologist M. 
Chemillier, or into cognitive musicology with Expressing 
Coherence of Musical Perception in Formal Logic, by M. Le-
man. The last chapter on The Topos Geometry of Musical 
Logic, by G. Mazzola, searches for connections between 
the logic of musical composition and analysis with ab-
stract algebraic geometry and logic structures.
 In the last part of [MM], J.-C. Risset in Computing 
Musical Sound shows how mathematics is the pervasive 
tool of the computational craft of musical sound up to 
real-time musical performance, while E. Neuwirth gives 
an overview on The Mathematics of Tuning Musical Instru-
ments — a Simple Toolkit for Experiments, the computer 
musicologist X. Serra describes The Musical Communi-
cation Chain and its Modeling, using contributions from 
music, electrical engineering, psychology and physics, 
and, completing the book, G. De Poli and D. Rocchesso 
review some of the most important Computational Mod-
els for Musical Sound Sources based on physical models 
and mathematical descriptions of sound sources, which 
are natural extensions of the classical cooperation and 
interaction between science and music.
 In the comprehensive and positive review of the book 
of that fourth Diderot Forum, S. Perrine in [P] acknowl-
edges “a new alliance between music and mathematics” 
and states his conviction “that other Mathematics and 
Music initiatives need to be taken, and that there is no 
lack of topics to be covered”.
 In that year of 1999 that preceded the World Mathe-
matical Year, WMY2000, and in fact to announce it, the 
Portuguese magazine of scientific culture COLÓQUIO/
CIÊNCIAS published a series of articles dedicated to the 
interactions of Mathematics and Music. A first one [R] 
was a brief general introduction to the theme and to a se-
ries of seven conferences held in Lisbon, one per month, 
from January until July of 1998, at the Fundação Calouste 
Gulbenkian in Lisbon, organised with the collaboration 
of the Centro de Matemática e Aplicações Fundamentais 
of the University of Lisbon, which gave origin to a full 

issue of the COLÓQUIO/CIÊNCIAS magazine [CC]. Lat-
er, in 6–7 October 2006, the Centro de Matemática da 
Universidade do Porto organised a meeting on Música e 
Matemática, which included two concerts hold in Casa 
da Música of Porto and produced an interesting book [B] 
with thirteen contributions. 
 Actually, the article A Matemática e a Música [R] had 
the concept of an ambitious exhibition for the WMY2000 
behind it, which proved impossible because it had too 
high a budget. The concept was based on the historical 
and conceptual connections and required, in addition 
to instruments and physical objects, several interactive 
exhibits to be developed in collaboration with an enthu-
siastic group of international experts.
 Essentially the exhibition concept was composed 
in four movements connecting music with four math-
ematical areas: Pythagorean Arithmusic, based on the 
classical proportions and numbers related to harmonies 
(musical and celestial); Algebra of Tones, from the differ-
ent temperaments to combinatorics and the musical 
symmetries; Harmonisation of Analysis, on the nature of 
the propagation of sound and the construction of instru-
ments and Digital Musurgia, where, in the computer era, 
it is possible to produce music by calculating numbers. 
Indeed, if today we have mastered numerisation in the 
analysis and synthesis of musical sound, if we have be-
gun to outline the mathematisation of certain musical 
structures and computers allow us to hear mathematical 
calculations and structures, i.e. paraphrasing Saccheri, 
we have Pythagoras ab omni naevo vindicatus sive Conatus 
arithmeticus quo stabiliuntur prima ipsa universæ musicæ 
principia (Pythagoras freed from all taint or the arithmeti-
cal attempt to establish the first principles of all music) 
and we can continue to agree with the Greek philosopher 
of the 4th century BCE Aristoxenus of Tarentum and ac-
cept that the justification of music lies in the pleasure of 
hearing it and enjoying it.
 In this century, the increase of events, articles and 
books on mathematics and music is showing that, indeed, 

The Tonnetz explained by Andreas Matt to the author
in Heidelberg the 6 July 2019.
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there is no lack of interesting topics to be covered, as it 
was observed before in several forums. In particular, the 
recent exhibition LaLaLab–The Mathematics of Music [LLL], 
organised by the Imaginary, which has the Mathetisches 
Forschunginstitut Oberwolfach as a shareholder, was shown 
in Heidelberg (May 2019–December 2020) and has about 
two dozen of interesting interactive exhibits, free and 
available online. This successful exhibition was based over 
music theory, current research in the connection of math-
ematics and music and also over art and entertainment, 
including artworks, talks and concerts.

 Besides Music, as an artistic expression, Mathemat-
ics also interacts with other arts, like Architecture, Paint-
ing or Sculpture. An interesting recent paper [GQC], by P. 
Gervasio, A. Quarteroni and D. Cassani, using a mathe-
matical method based in Fourier and Wavelet transform 
to extract similarities between image signals and audio 
signals, allowed, by minimizing a certain distance, not 
only to associate a given painting from a specific artist 
with music tracks, with the possibility of choosing the 

“optimal” one in a certain sense, but also “to generate 
the new music, is the most similar one to the painting 
chosen, in terms of intrinsic features”. Those authors 
have also developed an original (and free) applet, which 
was applied to play some artworks of the Italian artist 
Marcelo Morandini.
 Recently, the Institute of Mathematical sciences of the 
National University of Singapore organised a conference 
at the Yong Siew Toh Conservatory of Music, during the 
week 19-23 February 2024, celebrating the seminal event 
that took place in 1999 simultaneously in Lisbon, Paris 
and Vienna. The Mathemusical Enconters in Singapore: a 
Diderot Legacy consisted of about twenty two talks on dif-
ferent topics, such as, Mathematical and Computational 
approaches (Day 1), Machine Learning, Generativity, In-
teraction (Day 2), Computational Physiology/Medicine 
(Day 3), Education, Learning and Creativity (Day 4) and 
a Student Session during the morning of the fifth day. 
In addition, there were five concerts and recitals at the 
Conservatory Concert Hall and a Round Table, in hybrid 
format, on the Diderot Forum legacy and future perspec-

P. Codognet, J. F. Rodrigues, H. Chew and G. Assayag during the round table at the Mathmu-
sical Encounters in Singapore, the 22 February 2024.

The mathematician Alfio Quarteroni showing how to
play Morandini’s pictures at Villa Toeplitz (RISM),
Varèse, in 2021.
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tives with an open online discussion with members of 
the Society for Mathematics and Computation in Music.
 Immediately after the 9th International Congress on 
Mathematics and Computation in Music (MCM2024), 
that had taken place a the University of Coimbra, the 18–
21 June 2024, the Centro de Matemática, Aplicações Fun-
damentais e Investigação Operacional, of the Faculdade de 
Ciências da Universidade de Lisboa, in collaboration with 
the Centro Internacional de Matemática, the National 
Agency for Scientific and Technological Culture – Ciência 
Viva, the Academia das Ciências de Lisboa and the Asso-
ciação Amigos da Berlenga, organised an Atlantic Journey 
on Mathematics and Music at the Berlenga island the 22 
June 2024. This small meeting was an extraordinary op-
portunity to get acquainted with some of the interactions 
of mathematics and music, not only through the six talks, 
covering from Mathematics and Music in Historical Con-
text, by J. F. Rodrigues, Music and Symmetries — from 
Bach to Jazz, by C. Simões, Symmetries and other math-
ematical beauties in music, by E. Amiot, and Conceptual-
ising Tonality: Algebraic versus Statistical Approaches, by T. 
Noll, and Around theTonnetz, by M. Andreatta, up to a 
talk and installation on The MatheMusical Virtual Muse-
um, by G. Baroin, complemented with a Round Table on 
How to make an Exhibition on Mathematics and Music?, 
moderated by C. Florentino and R. Vargas, the Director 
of Ciência Viva, and the remote participation of D. Ra-
mos, Chief Content Officer of the Imaginary. Possible 
future plans for 2026 were discussed in the Round Table.

Moreno Andreatta introducing the interactive applet Tonnetz at the Atlantic Journey 
in Berlenga Island.
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report

by Carla M. A. Pinto*

The International Conference on Mathematical Anal-
ysis and Applications in Science and Engineering (IC-
MASC’24) was held on June 20–22, 2024, at the Poly-
technic of Porto’s School of Engineering (ISEP) in Porto, 
Portugal. Dedicated to Prof. J.A. Tenreiro Machado, it 
united researchers from mathematics, science, and en-
gineering to explore advances in differential equations, 
optimization, computational mathematics, and their ap-
plications in biology, finance, and robotics.
 The program included plenary and invited talks, spe-
cial sessions, and contributed papers. Open to all partic-

ipants, the event promoted international collaboration, 
particularly benefiting the Portuguese scientific commu-
nity. Reduced registration fees encouraged student par-
ticipation, especially in applied mathematics. 
ISEP, a leader in technology and sustainability, offers an 
ideal setting in Porto, a historic city known for its wine 
and vibrant culture .
 Learn more on the ICMASC’24 website:

https://www2.isep.ipp.pt/icmasc/

* Politécnico do Porto — Instituto Superior de Engenharia

International Conference on 
Mathematical Analysis and 
Applications in Science 
and Engineering
20–22 June 2024, Porto, Portugal
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Having appeared at the end of the seventeenth cen-
tury, the calculus (differential and integral calculi for
Leibniz, method of fluxions for Newton) was un-
doubtedly the most important branch of pure math-
ematics in the eighteenth century. This importance
was recognized at the time:

“one of the most wonderful inventions in mathemat-
ics, which not only raised geometry almost to its high-
est peak, but also expanded the other disciplines to
such an extent that one would have to write entire
books if one wanted to specify the benefits of this cal-
culus” [Zedler, 1731–1754, vol. 5, col. 190].

“Of all the discoveries that have ever been made in the
sciences, there is none as important, nor as fruitful in
applications, as that of infinitesimal analysis” [Bossut,
1784, lxxii].

This is also a common view among modern-day his-
torians:

“Considered broadly, mathematical activity in the
eighteenth century was characterized by a strong em-
phasis on analysis and mechanics. The great advances
occurred in the development of calculus-related parts
of mathematics and in the detailed elaboration of the
program of inertial mechanics founded during the
Scientific Revolution” [Fraser, 2003, 305].

“The Enlightenment in Mathematics is defined by the
level achieved in the mastery of the new differential

and integral calculus […] The mark of the modernity
of a work is the use made of the calculus, and un-
doubtedly a work whose content does not include
the calculus can be said to be outdated” [Ausejo &
Medrano, 2010, 26].

For all its centrality in eighteenth-century Euro-
pean mathematics, the adoption of the calculus in
Portugal was slow [Domingues, 2021; to appear]. Be-
fore 1760, only a few isolated cases can be found of
Portuguese individuals knowing about the calculus,
and in each case one may wonder how profound was
such knowledge. In the 1760s there were a couple of
attempts at introducing the calculus into mathemati-
cal teaching, but they were not fruitful. The first suc-
cessful case of the calculus being taught in Portugal
occurred only as a result of the 1772 reform of the Uni-
versity of Coimbra, which created a Faculty of Mathe-
matics (in section 2 we will look at the textbook used
in that context).

1 Jacob de Castro Sarmento’s explanation
of fluxions (1737)

The very first text in Portuguese about the calculus
was very short and non-technical.

It was written by Jacob de Castro Sarmento (born
Henrique de Castro, 1691–1762), a “New Christian”
physician who escaped to London in 1721 fleeing the

1
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Inquisition and there converted to Judaism [Goldish,
1997]. In 1737 he published in London, but in Por-
tuguese, a book on the Newtonian theory of tides
which also includes an eulogy of Newton and a glos-
sary of scientific words. Sarmento’s treatment of tides
does not involve any calculus, but the largest entry
in the glossary is precisely “fluxions” (the Newtonian
equivalent of differentials) [Sarmento, 1737, 129–131].
In two and a half pages, Sarmento expounds the New-
tonian point of view of a line being generated by the
motion of a point, a surface being generated by the
motion of line, and a solid being generated by the mo-
tion of a surface; the velocity of each of these motions
is the fluxion of the line, surface, or solid, while the
line, surface, or solid is the fluent of that fluxion. The
Direct Method of Fluxions is used to find the fluxion
of any quantity, given the fluent (which is the quan-
tity itself); the Inverse Method of Fluxions is used to
find the fluent, given the fluxion. Finally, the direct
method is useful in drawing tangents, solving prob-
lems of maxima and minima, etc.; while the inverse
method is useful in calculating arclengths, areas and
volumes. They have also plenty of use in physics and
astronomy.

In short, this is a concise explanation for a layper-
son, not an introduction to the subject, by any means.

2 Bézout’s textbook

2.1 The first translation (1774)

It was only as a consequence of the 1772 reform of the
University of Coimbra that an introductory text on
the calculus was published in Portuguese. This was
a translation of a then recent text by the Frenchman
Étienne Bézout (1730–1783).

Bézout, an examiner of the French navy schools,
published between 1764 and 1769 a Cours de Math-
ématiques in six volumes (containing arithmetic, ge-
ometry and trigonometry, algebra, calculus, mechan-
ics, and navigation) for the students of those schools.
This course was hugely successful, and over the fol-
lowing decades either the full set or extracted parts
were reprinted numerous times and translated into
several languages.

For the new Faculty of Mathematics created in
Coimbra in 1772, José Monteiro da Rocha (1734–1819),
one of the main main people involved in the establish-
ment of the Faculty, translated the first volume of Bé-
zout’s course, on arithmetic, and the section on plane
trigonometry from the second volume — both to be

used in the first year of mathematics. He also trans-
lated a textbook on mechanics by a different French
author, to be used in the third year.

For the second year, which included algebra and
the calculus, the parts from Bézout’s course on these
subjects were adopted. Their translations were pub-
lished as volumes 1 and 2 of [Bézout, 1774]. It is
not known who translated them into Portuguese, al-
though by the 19th century it was said that the transla-
tor had been Fr. Joaquim de Santa Clara (1740–1818)
— a Benedictine who graduated in theology but who
also taught philosophy and mathematics in the early
1770s. Be as it may, there is a marked difference be-
tween this translation and those made by Monteiro
da Rocha: while the latter adapted several passages
and included additional material as he saw fit, [Bé-
zout, 1774] is a very literal translation.

The volume on the calculus, [Bézout, 1774, II],
presents a traditional Leibnizian version of the sub-
ject, with a strong geometrical tendency — particu-
larly in the differential calculus.

Bézout casually accepts the existence of infinitely
large and infinitely small quantities. His variable
quantities increase (or decrease) by infinitely small de-
grees. Thus, the differential of a quantity is defined as
the infinitely small difference between the values of
that quantity in two consecutive moments. For in-
stance, the differential of 𝑥𝑥𝑥𝑥 is 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥, because
the difference between two consecutive states of 𝑥𝑥𝑥𝑥 is
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥, and 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥
must be omitted because it is infinitely small with re-
gard to both 𝑥𝑥 𝑥𝑥𝑥𝑥 and 𝑥𝑥 𝑥𝑥𝑥𝑥. Accordingly, in order to
calculate tangents, Bézout conceives a curve as a poly-
gon with an infinite number of infinitely small sides.
The tangent is the prolongation of one of these sides.

About two thirds of the differential calculus are
taken up with geometrical applications — more pre-
cisely, applications to the study of curves: not only
tangents (subtangents, subnormals) but also topics
such as multiple points, points of inflexion, cusps,
and radii of curvature. Yet another geometrical appli-
cation is the determination of maxima and minima,
which are treated as largest and smallest ordinates, so
that the condition 𝑥𝑥𝑥𝑥𝑑𝑥𝑥𝑥𝑥 𝑥 𝑑 comes from the tangent
to a curve being parallel to the abscissas.

Another aspect of Bézout’s calculus, consistent
with this predominance of geometry, is the relative
unimportance of the concept of function: the word
“function” is first used 65 pages after “differential”, in
a section on multiple points of curves, as a mere ab-
breviation. Throughout the differential calculus, the
object of study are quantities, fully geometrical or rep-
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Figure 1.—Three figures from
[Bézout, 1794] (similar to figures
appearing in [Bézout, 1774]). In
Fig. 1, line 𝑇𝑇𝑇𝑇 is tangent to the
curve 𝐴𝐴𝑇𝑇, and is obtained
prolonging the infinitely small
side 𝑇𝑇𝑀𝑀 of this curve, regarded
as a polygon; 𝐴𝐴𝐴𝐴 is the abscissa
𝑥𝑥, 𝐴𝐴𝑇𝑇 the ordinate 𝑦𝑦,
𝐴𝐴𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃 𝑃 𝑃𝑃𝑥𝑥, 𝑀𝑀𝑃𝑃 𝑃 𝑃𝑃𝑦𝑦; 𝑇𝑇𝑃𝑃𝑀𝑀 is an
infinitely small triangle, similar
to the finite triangle 𝑇𝑇𝐴𝐴𝑇𝑇,
whence the subtangent 𝐴𝐴𝑇𝑇 is
equal to 𝑦𝑦 𝑃𝑃𝑥𝑥𝑦𝑃𝑃𝑦𝑦.

Figure 2.—A diagram for propositions 13 and 14 from book 15 of [Cunha, 1790]. 𝐴𝐴𝐴𝐴 is an abscissa and 𝐴𝐴𝐵𝐵
an ordinate (oblique coordinates!) of a curve 𝐴𝐴𝐴𝐴. In prop. 13, Cunha proves that if 𝐴𝐴𝐵𝐵 is the fluxion of
the abscissa 𝐴𝐴𝐴𝐴, then parallelogram 𝐴𝐴𝐵𝐵 (that is, the parallelogram with diagonal 𝐴𝐴𝐵𝐵) is the fluxion of
the area 𝐴𝐴𝐵𝐵𝐴𝐴; for that, he assumes that the ordinate function is monotonic and trusts the diagram to
convince the reader that area 𝐵𝐵𝐴𝐴𝐵𝐵 is contained in the parallelogram with diagonal 𝐵𝐵𝐴𝐴 (not drawn):
𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 is the height of parallelogram 𝐴𝐴𝐵𝐵 , and calling (𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵𝐵 𝐵 𝐵𝐵 the distance from 𝐴𝐴 to the axis of
abscissas, it will be 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵; this means that 𝐴𝐴𝐴𝐴 constant and 𝐴𝐴𝐵𝐵 infinitesimal would make 𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵
and (𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝑦𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵(𝑃 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵𝐵 infinitesimal, fulfilling the conditions in the definition of
fluxion.

1

resented geometrically.
This geometrical point of view was the norm at the

time, in calculus textbooks all over Europe. The only
major exception was Euler’s treatises on the calculus
(published between 1748 and 1770), where the pri-
mary object of study were functions. But these were
treatises, not textbooks.

Still, it must be said that Bézout’s integral calcu-
lus is much more analytical than his differential cal-
culus: the integral is essentially defined as what we
would call an antiderivative (which, again, was the
most common approach at the time), so that the in-
tegral calculus deals naturally with expressions from
the start; accordingly, the word “function” receives
a definition at the beginning of the integral calcu-
lus[1]. There are some geometrical applications (areas,
arc lengths and some volumes) but they occupy only
about one fifth of the integral calculus.

2.2 The second translation (1794)

[Bézout, 1774] was too much of a literal translation,
even including references to parts of Bézout’s course

that had not been translated nor adopted in Coim-
bra. In the 1790s, the same parts of Bézout’s course
were translated again, from scratch, by José Joaquim
de Faria (1759–1828), who was at the time a substitute
professor at the Faculty of Mathematics. The calculus
volume appeared as [Bézout, 1794].

Unlike the previous one, this new translation is
far from literal. There are minor adaptations to ac-
commodate the text to the series of textbooks in use
at the University, several calculations or arguments
are shortened, and there are two small but relevant
attempts to modernize the differential calculus: the
word “function” is introduced somewhat earlier and
is used more often; and a new (short) section is added,
on Maclaurin and Taylor series.

At about the same time that this second translation
came out, in France the calculus as a subject of teach-
ing was changing dramatically. A new version of the
calculus, inspired by Euler and Lagrange, and much
more analytical than Bézout’s, was being taught at the
École polytechnique, founded in 1793. The changes in-
troduced by José Joaquim de Faria were small steps in
the same direction — certainly not caused by the new

[1] After having already been used, as was noticed above.
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trends spreading from the École polytechnique; more
likely, resulting from similar motivations, namely the
growing gap between advanced, research-level works,
which were typically very much analytical, and tradi-
tional introductory texts such as Bézout’s. But Faria’s
changes were not enough to fundamentally change
what was quickly becoming an outdated textbook.

3 José Anastácio da Cunha’s fluxionary
calculus

The earliest introduction to the calculus originally in
Portuguese that is still extant[2] was written by the
most original Portuguese mathematician of the 18th
century, José Anastácio da Cunha (1744–1787), and it
contains a remarkable definition of “fluxion” that has
been described as the first rigorous analytic definition
of the differential.

Cunha’s introduction to the calculus was included
in [Cunha, 1790], a short (little over 300 pages),
very concise but very comprehensive, introduction to
mathematics, from elementary geometry to some cal-
culus of variations, organized in a logical way. This
was a posthumous publication, and its text was never
really finished, but as far as the calculus section is con-
cerned, a manuscript text dated 1780 is known con-
taining some of its main ideas.

Some of Cunha’s personal opinions (such as his
admiration for Newton, who preferred a geometrical
style over algebra, his dislike of Euler, his distrust of
conclusions drawn exclusively from analytical argu-
ments) might lead us to expect from him a geometri-
cally inclined version of the calculus. However, what
we find is mostly analytical, albeit in an original way
[Domingues, 2023]. It is certainly much more analyti-
cal than Bézout’s calculus, and betrays more influence
from Euler than Cunha would probably like to admit.

The book [Cunha, 1790] is divided into 21 “books”
(so called following the Euclidean fashion; we would
call them chapters). The calculus is introduced in
“book” 15.

Book 15 opens with a crucial definition: “if an ex-
pression can assume more than one value, while an-
other can assume only one, the latter will be called
constant, and the former variable”. This may seem
trivial to a modern reader, but it was at the very least
extremely unusual in the 18th century: a variable was

almost always regarded as a quantity (not an expres-
sion) that varied (presumably over some sort of im-
plicit time).

The second definition is built on the first one: “a
variable always capable of assuming a value smaller
than any proposed magnitude will be called infinites-
imal”. This means that, instead of infinitesimals
being infinitely small quantities, as was then com-
monly the case, they are simply expressions that can
assume arbitrarily small (but finite) values. In prac-
tice, Cunha’s statements involving infinitesimals have
the form “𝑥𝑥 infinitesimal makes 𝑓𝑓𝑓𝑥𝑥𝑓 infinitesimal”,
which is equivalent to lim𝑥𝑥𝑥𝑥 𝑓𝑓𝑓𝑥𝑥𝑓 𝑓 𝑥. Proposi-
tion 1 of book 15 states that if 𝑥𝑥 is infinitesimal then
𝐴𝐴𝑥𝑥 𝐴 𝐴𝐴𝑥𝑥2 𝐴 𝐶𝐶𝑥𝑥3 𝐴 &𝑐𝑐𝑐 is also infinitesimal, and its
proof is (as long as 𝐴𝐴𝑥𝑥𝐴𝐴𝐴𝑥𝑥2𝐴𝐶𝐶𝑥𝑥3𝐴&𝑐𝑐𝑐 is interpreted
as a polynomial) an impeccable 𝜀𝜀-𝛿𝛿 argument.

The third definition is that of function: an expres-
sion 𝐴𝐴 is a function of another expression 𝐴𝐴 if the
value of 𝐴𝐴 depends on the value of 𝐴𝐴. This is not so
remarkable, but it is worth noticing that “function”
is defined at the outset (compare with what was said
above about Bézout’s text), which allows for the cal-
culus to be about functions.

But the big highlight is the fourth definition, that
of fluxion:

“Some magnitude having been chosen, homogeneous
to an argument 𝑥𝑥, to be called fluxion of that argu-
ment, and denoted by 𝑑𝑑𝑥𝑥; we will call fluxion of Γ𝑥𝑥,
and will denote by 𝑑𝑑Γ𝑥𝑥, the magnitude that would
make 𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 constant and 𝑓Γ𝑓𝑥𝑥 𝐴 𝑑𝑑𝑥𝑥𝑓 𝑥 Γ𝑥𝑥𝑓𝑑𝑑𝑑𝑥𝑥 𝑥
𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 infinitesimal or zero, if 𝑑𝑑𝑥𝑥 were infinitesimal
and all that does not depend on 𝑑𝑑𝑥𝑥 constant”.

Notice that Cunha seems to combine the two
main traditions in the calculus: the word “fluxion” is
Newtonian, while the notation 𝑑𝑑𝑥𝑥𝑑 𝑑𝑑Γ𝑥𝑥 is Leibnizian.
However, this definition does not belong in either
tradition. Youschkevitch [1973] said of it that “it was
Cunha who, for the first time, formulated a rigorous
analytical definition of the differential, taken up again
and used later by the mathematicians of the nine-
teenth century”. Mawhin [1990] was more specific,
saying that it “corresponds to the modern definition
of differential”: 𝑑𝑑Γ𝑥𝑥 is a linear function of 𝑑𝑑𝑥𝑥 (since
𝑑𝑑Γ𝑥𝑥𝑑𝑑𝑑𝑥𝑥 is constant) such that

lim
𝑑𝑑𝑥𝑥𝑥𝑥

Γ𝑓𝑥𝑥 𝐴 𝑑𝑑𝑥𝑥𝑓 𝑥 Γ𝑥𝑥 𝑥 𝑑𝑑Γ𝑥𝑥
𝑑𝑑𝑥𝑥

𝑓 𝑥𝑐

[2] José Monteiro da Rocha is known to have written an introduction to the calculus in the 1760s, that was never published. The manuscript
was at the Academy of Sciences of Lisbon in 1825, but its present whereabouts is unknown.
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Figure 1.—Three figures from
[Bézout, 1794] (similar to figures
appearing in [Bézout, 1774]). In
Fig. 1, line 𝑇𝑇𝑇𝑇 is tangent to the
curve 𝐴𝐴𝑇𝑇, and is obtained
prolonging the infinitely small
side 𝑇𝑇𝑀𝑀 of this curve, regarded
as a polygon; 𝐴𝐴𝐴𝐴 is the abscissa
𝑥𝑥, 𝐴𝐴𝑇𝑇 the ordinate 𝑦𝑦,
𝐴𝐴𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃 𝑃 𝑃𝑃𝑥𝑥, 𝑀𝑀𝑃𝑃 𝑃 𝑃𝑃𝑦𝑦; 𝑇𝑇𝑃𝑃𝑀𝑀 is an
infinitely small triangle, similar
to the finite triangle 𝑇𝑇𝐴𝐴𝑇𝑇,
whence the subtangent 𝐴𝐴𝑇𝑇 is
equal to 𝑦𝑦 𝑃𝑃𝑥𝑥𝑦𝑃𝑃𝑦𝑦.

Figure 2.—A diagram for propositions 13 and 14 from book 15 of [Cunha, 1790]. 𝐴𝐴𝐴𝐴 is an abscissa and 𝐴𝐴𝐵𝐵
an ordinate (oblique coordinates!) of a curve 𝐴𝐴𝐴𝐴. In prop. 13, Cunha proves that if 𝐴𝐴𝐵𝐵 is the fluxion of
the abscissa 𝐴𝐴𝐴𝐴, then parallelogram 𝐴𝐴𝐵𝐵 (that is, the parallelogram with diagonal 𝐴𝐴𝐵𝐵) is the fluxion of
the area 𝐴𝐴𝐵𝐵𝐴𝐴; for that, he assumes that the ordinate function is monotonic and trusts the diagram to
convince the reader that area 𝐵𝐵𝐴𝐴𝐵𝐵 is contained in the parallelogram with diagonal 𝐵𝐵𝐴𝐴 (not drawn):
𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 is the height of parallelogram 𝐴𝐴𝐵𝐵 , and calling (𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵𝐵 𝐵 𝐵𝐵 the distance from 𝐴𝐴 to the axis of
abscissas, it will be 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵; this means that 𝐴𝐴𝐴𝐴 constant and 𝐴𝐴𝐵𝐵 infinitesimal would make 𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵
and (𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝑦𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵(𝑃 𝐵𝐵𝐴𝐴𝐵𝐵𝑦𝐴𝐴𝐵𝐵 𝐶 𝐵𝐵𝐵 infinitesimal, fulfilling the conditions in the definition of
fluxion.

1

Such correspondence is not complete: for instance,
𝑑𝑑𝑑𝑑𝑑 is not explicitly stated to be a function of 𝑑𝑑𝑑𝑑;
and the existence of 𝑑𝑑𝑑𝑑𝑑 is not questioned — like all
his contemporaries, Cunha assumed all functions to
be differentiable. However, Cunha is definitely closer
to a modern definition of differential than the usual
definitions in the 18th century.

The propositions in book 15 can be roughly di-
vided into two groups. Up to proposition 12, we
find, in a very concise way, the fundamentals of what
we call differential calculus: for instance, 𝑑𝑑𝑑𝑑𝑑𝑛𝑛) =
𝑛𝑛 𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑 (prop. 2), 𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑, 𝑑𝑑 standing for hyper-
bolic (that is, natural) logarithm (prop. 8), the Tay-
lor series of a function 𝑑𝑑𝑑 (prop. 11), and the equality
of mixed higher-order derivatives (prop. 12). All of
this is proven (not always up to modern standards of
proof, naturally) in an analytical way. For example,
prop. 8 is obtained from the power series of the ex-

ponential:

𝑑𝑑𝑑𝑑 = 𝑑𝑑(𝑛 + 𝑑𝑑𝑑𝑑 + 𝑛
2

𝑑𝑑𝑑𝑑𝑑)2 + 𝑛
6

𝑑𝑑𝑑𝑑𝑑)3+

+ 𝑛
24

𝑑𝑑𝑑𝑑𝑑)4 + 𝑛
𝑛20

𝑑𝑑𝑑𝑑𝑑)5 + &c.) =

= 𝑑𝑑𝑑𝑑𝑑𝑑 + 2
2

𝑑𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑 + 3
6

𝑑𝑑𝑑𝑑𝑑)2𝑑𝑑𝑑𝑑𝑑𝑑 + 4
24

𝑑𝑑𝑑𝑑𝑑)3𝑑𝑑𝑑𝑑𝑑𝑑+

+ 5
𝑛20

𝑑𝑑𝑑𝑑𝑑)4𝑑𝑑𝑑𝑑𝑑𝑑 + &c. =

= (𝑛 + 𝑑𝑑𝑑𝑑 + 𝑛
2

𝑑𝑑𝑑𝑑𝑑2) + 𝑛
6

𝑑𝑑𝑑𝑑𝑑)3 + 𝑛
24

𝑑𝑑𝑑𝑑𝑑)4+

+&c.)𝑑𝑑𝑑𝑑𝑑𝑑 =

= 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑥

In the rest of the book appear the simplest geomet-
rical applications: the fluxions of the area under a
curve, of the arc length of a curve, and of the volume
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of a simple solid.
Most of the following books are dedicated to ap-

plications or particular topics in the calculus. Book 16
is instead dedicated to trigonometry, but with a pecu-
liar organization (for an introductory text) that makes
the calculus central: one of the earliest propositions
gives the fluxion of the sine, from there the power se-
ries for the sine and cosine are derived, and it is from
these that comes the formula for the sine of the sum
of two arcs.

In book 17, we find topics of elementary differen-
tial geometry of curves: multiple points, asymptotes,
radius of curvature. In other words, geometrical ap-
plications similar to those that are so important in [Bé-
zout, 1774].

Book 18 gives several techniques of integration
(such as partial fraction decomposition), L’Hôpital’s
rule (proven using Taylor series expansions of the nu-
merator and of the denominator), and the Bernoulli
series of a function Γ𝑥𝑥.

Book 19 addresses very quickly (in only 6 pages)
several aspects of differential equations: “exact flux-
ions”, homogeneous equations, integrating factors,
higher-order linear equations [Baroni, 2001].

Book 20 gives an introduction to the calculus of
finite differences.

Book 21 is a miscellany, probably compiled from
several short manuscripts left by Cunha on diverse
topics, by whoever arranged for the final publication
of [Cunha, 1790]. Some of these topics are not related
to the calculus, while others are. The latter include a
couple of improper integrals, the condition 𝑑𝑑Γ𝑥𝑥 𝑑 𝑑
for a maximum of Γ𝑥𝑥 (which had not been given be-
fore), and a very short introduction to the calculus of
variations.

Summing up, as an introduction to the calculus,
the relevant sections in [Cunha, 1790] are very ambi-
tious in scope, but often too brief; it was, generally,
an up to date text at the time (more so than Bézout’s);
and, of course, its definition of fluxion (along with its
handling of infinitesimals) was very innovative, even
in an European context.

4 Early attempts at research

The Academy of Sciences of Lisbon was founded in
the final days of 1779. This was the first institution
in Portugal with the goal of promoting scientific re-
search — including mathematical research.

In the 1790s two volumes of memoirs were pub-

lished containing mathematics. In total, four of those
memoirs can be classified under “calculus”: three in
the first volume, and one in the second.

In the first volume (published in 1797 but with ar-
ticles written in the 1780s), two pieces concern an ap-
proximation method for integrals by Alexis Fontaine
(1704–1771). The Academy had proposed for 1785 a
prize for a proof of Fontaine’s method and a study of
its (rate of) convergence, which was won by Manuel
Joaquim Coelho da Maia (1750–1817), one of the first
batch of doctors in mathematics from Coimbra. The
winning entry was the subject of harsh criticism by
José Anastácio da Cunha, which prompted Monteiro
da Rocha to write some additional comments, in de-
fence of the Academy’s honour. Coelho da Maia’s so-
lution [Maia, 1797] is indeed mediocre, but [Monteiro
da Rocha, 1797] contains valuable additions about the
rate of convergence of the method [Figueiredo, 2011,
ch. 9].

Also in the first volume, there is a memoir by Fran-
cisco Garção Stockler (1759–1829) on the “true prin-
ciples of the Method of Fluxions” — like Anastácio
da Cunha, Stockler admired Newton and d’Alembert,
and his purpose was to expand on ideas that those
two mathematicians had supposedly only sketched.
But he was neither very original nor very clear.
Briefly, Stockler

1. defined “fluent” as a variable quantity, in the
traditional 18th-century sense, explicitly admit-
ting that a fluent increases or decreases in inter-
vals of time — a modern reader might interpret
Stockler’s fluents as functions of a time variable;

2. then considered “hypothetical fluxions”, which
were ratios between increments or decrements
of fluents and the corresponding time intervals,
and “proper fluxions”, which had an unclear
definition (the increments or decrements that
the fluents’ “tendency” to increase or decrease
could produce in a unit of time) but could be
calculated as limits of hypothetical fluxions;

3. and finally used power series expansions to cal-
culate those limits.

Stockler also published with the Academy a small
booklet on limits [Stockler, 1794], far less ambitious
but quite interesting. Inspired by the Swiss Simon
l’Huilier (1750–1840), Stockler assumed that there are
two cases when a variable has a limit: it can be an
increasing limit or a decreasing limit (that is, they as-
sumed that only monotonic variables could had lim-
its). But, unlike l’Huilier, Stockler devoted a great
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deal of attention to variables that decrease without
limit; in modern terms, these are variables with limit
zero. The first section of [Stockler, 1794] uses elemen-
tary but careful 𝜀𝜀-𝛿𝛿 arguments to develop an exten-
sive arithmetic of such variables. This is then used
in the second section, on variables with (non-zero)
limits, by means of a Fundamental Principle: if 𝑍𝑍 𝑍
𝐴𝐴𝐴𝐴𝐴, where 𝑍𝑍 is a variable, 𝐴𝐴 a constant, and 𝐴𝐴 a vari-
able that decreases without limit, then 𝐴𝐴 is the limit of
𝑍𝑍 . This makes Stockler’s proofs much less tiresome
than those of l’Huilier, who had mostly written in al-
gebraic language Greek-style exhaustion arguments.
The third and fourth section deal with trigonometric,
logarithmic, and exponential functions.[3] In spite of
Stockler’s careful treatment of more elementary lim-
its, his handling of infinite series is not up to modern
standards; for instance, he uses them to “prove” that
the limit of any function of a variable equals the func-
tion of the limit of the variable. However, in a time
when almost all limit arguments were vague at best,
[Stockler, 1794] is worthy of note.

The second volume of memoirs from the
Academy of Sciences (published in 1799) includes
another article by Stockler on the calculus [Stockler,
1799]. This is a quite long (100 pages) attempt at
simplifying and systematizing conditions for exact
differentials (Stockler calls them “exact fluxions”). It
is explicitly inspired by (early) works of Condorcet,
who had tried to create a general theory of integration
[Gilain, 1988], himself inspired by works of Fontaine
and Euler.

5 Final remarks

The effective introduction of the calculus in Portugal
occurred relatively late. However, in the final three
decades of the 18th century a number of texts were
published in Portuguese about the calculus, which
was by then well established as part of mathematical
curricula.

Also, the calculus had a prominent place in the
first attempts at organized mathematical research in
Portugal — partly reflecting the place it had in con-
temporary European mathematical research.

Most of the 19th century would be a period of stag-
nation in Portuguese mathematics, but that was not
foreseeable around 1800.
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mathematics anD mUsic
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In four movements — Pythagorean Arithmiusic, Tone Algebra, Harmonisation of Analysis, Digital Mu-
surgia — and through a few examples, we will present a brief introduction to the numerous interac-
tions between mathematics and music throughout history, which can help us understand the modern 
interpretation of Leibniz’s expression:

Musica est exercitium arithmeticae occultum 
nescientis se numerare animi.[+]

[+] Music is a hidden arithmetic exercise of a mind unconscious that it is counting.
[++] It’s by the numbers and not by the sense that one should evaluate the sublimity of music. Study the monochord.

Left: Bust of Pythagoras. Right: Denis Diderot (1713–1784)

1. Pythagorean arithmusic

C’est par les nombres et non par le sens qu’il faut estimer la 
sublimité de la musique. Etudiez le monocorde.[++]

—Diderot, Pythagoreanism, Encyclopédie XII (1765)

Guido d’Arezzo (992–1050?) in the Micrologus, attri-
butes to Pythagoras (6th century BCE) the fundamen-
tal discovery of the dependence of musical intervals 
on the quotients of the first integers numbers, writing:

A certain Pythagoras, on one of his journeys, happened to pass 
a workshop where an anvil was being beaten with five ham-
mers. Astonished by the pleasant harmony (concordiam) they 
produced, our philosopher approached them and, thinking at 
first that the quality of the sound and harmony (modulationis) 
lay in the different hands, exchanged the hammers. In this way, 
each hammer retained its own sound. After removing one that 
was dissonant, he weighed the others and, marvellously, by 
the grace of God, the first weighed twelve, the second nine, the 
third eight, the fourth six of I don’t know what unit of weight.

For the Pythagorean School, the harmony of sounds 
was in direct correspondence with the arithmetic of 
proportions:

unison — ratio 1 ∶ 1 octave (diapason) 1 ∶ 2
fifth (diapente) 2 ∶ 3  fourth (diatessaron) 3 ∶ 4

These ratios can be obtained from those four num-
bers, corresponding respectively to a string length 
equal to 12 units (unison), halved to 6 (octave), 8 units 
(fifth) or 9 (fourth).
 The Greek heritage, was transmited in particular 
by the Roman Boethius (6th century CE), “the great, 
astonishing and very sudden relationship (concor-
diam) that exists between music and the proportions 
of numbers (numerum proportione)”.
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Top: Franchinus Gafurius (Theorica musicae, 1492)

Bottom: Boetius; c. 480–524, De Institutione Musi-
ca. Division of intervals (Paris, Bibl Nat, 12th cent.)

 The arithmetic of proportion establishes: the prod-
uct of 2/3 (fraction associated with the fifth) by 3/4 
(fraction associated with the fourth) gives the frac-
tion 1/2 associated with the octave; its division (sub-
traction of intervals) is associated with the fraction 8/9 = (2/3) ÷ (3/4) which represents a tone, i.e. the 
difference between a fifth and a fourth. Analogous-
ly, an octave is made up of two fourths and a tone 1/2 = 3/4 × 3/4 × 8/9.
 The Sectio Canonis, or the “Division of a mono-
chord”, 300 BCE, by Euclid, has twenty propositions 
argued in the form of theorems, treatment of intervals 
as ratios between integers numbers and culminates 
with the division of the Kanon, For example, its 15th 
Proposition says “the fourth is less than two and a half 
tones and the fifth less than three and a half tones”, 
and others, like the 9 th (<= VIII.2), are consequenc-
es of the Book VIII of the Elements.
 The ancient Greeks also divided the mathematical 
sciences into four parts:

arithmetic (static discrete quantities)
music (discrete quantities in motion)
geometry (stationary magnitudes)
astronomy (dynamic magnitudes).

This classification constituted the Quadrivium, as part 
of the seven liberal arts of the medieval curriculum, 
which were complemented by the Trivium (grammar, 
dialectic and rhetoric).
 Arithmetic, geometric and harmonic proportional-
ity are present throughout medieval science and mu-
sic, where the latter is defined as number associated 
with sound—numerus relatus ad sonum. For example, 
in the speculative treatise Ars novae musicae (1319), the 
Parisian mathematician and astronomer Jean de Mu-
ris wrote: 

Sound is generated by movement, since it belongs to the class 
of successive things. It therefore exists only as long as it is 
produced, ceasing to exist once it has been produced . . . All 
music, especially measurable music, is based on perfection, 
combining in itself number and sound.

Claudius Ptolemy (2nd century, CE), author of Math-
ematike Syntaxis (Almagest) and of the treatise Har-
monica, in which he transmitted the myth of how the 
mathematical relationships underlying the structures 
of audible music constitute the forms of the essence 
and cause of harmonies both in the human soul and 

26



Neumas, Micrologus, Guido d’Arezzo
Manuscript, 12th cent. (Biblioth. Nationale, Paris)

in the movements and configurations of the stars.
 In the Boeotian terminology, this corresponded 
to musica instrumentalis (produced by the lyre, flute, 
etc.), musica humana (inaudible, produced in man by 
the interaction between body and soul), musica mun-
dana (produced by the cosmos itself, also known as 
the music of the spheres).

 The cube with 6 faces, 8 vertices and 12 edges, and 
therefore considered a harmonic solid, together with 
other more subtle parallelisms between arithmetic and 
geometry, led classical civilisation to the doctrine of 
the music of the spheres and, in Aristotle’s expression, 
to consider that the whole sky is number and harmo-
ny.
 For Joannes Kepler (1571–1630), the movement of 
the planets was still an immanent music of divine per-
fection, but this didn’t prevent him to conclude the 
three laws of motion:

1. the planets revolve around the Sun in elliptical 
orbits;

2. with the Sun as a foci and their orbital areas are 
travelled in proportion to time;

3. the squares of the periods of revolution of each 
planet are proportional to the cubes of their av-
erage distances from the Sun.

Following his third law, in 1619 Kepler wrote: musi-
cal modes or tones are reproduced in a certain way 
at the extremities of planetary movements. Consid-
ering the seven consonant intervals of the octave of 
his time, he established the following harmonies of 

Left
Johannes Kepler (1571–1630)

Right
Harmonices Mundi, 1619
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the six known planets:

Saturn 4 : 5 (a major tertia)
Jupiter 5 :6 (a minor tertia)
Mars 2 : 3 (a fifth)
Earth 5 : 16 (a half-tone)
Venus 24 :25 (a sharp)
Mercury 5 : 12 (an octave and a minor tertia);

by calculating the aphelion/perihelion ratios for each 
of them: Saturn travels an arc of 106 or 135 seconds 
per day when it is at its furthest point (aphelion) or 
closest (perihelion) to the Sun, respectively, obtaining 
the ratio 106/135 ~ 4/5.

 Kepler’s metaphysics goes so far as to states that the 
Earth sings the notes MI, FA, MI, so that from them it 
can be conjectured that misery (MIseria) and hunger 
(FAmes) prevail in our midst.

2. tone algebra

Pythagorean scales are based on the elementary “ratio-
nal” intervals (octave, fifth and fourth) and their alter-
nating successions, i.e., starting from a sound from a 
sound 𝑓𝑓0 = 𝑓𝑓  and the sound 𝑓𝑓1 = 3𝑓𝑓𝑓𝑓 located a fifth 
higher on the scale, the sound 𝑓𝑓2 = 3𝑓𝑓1/4 = 9𝑓𝑓/𝑓 will 
be one fourth below 𝑓𝑓1, the sound 𝑓𝑓3 a fifth above 𝑓𝑓2 
and so on. This gives the cycle of fifths as

𝑓𝑓𝑛𝑛 = (32)𝑛𝑛 (12)𝑝𝑝 𝑓𝑓
which isn’t a real cycle, because if it were, there would 
have to be two integers 𝑛𝑛 and 𝑝𝑝 such that 3𝑛𝑛 = 2𝑛𝑛𝑛𝑛𝑛; 
but an odd number is different from an even number, 
so it is impossible!
 In classical solfege “12 fifths correspond to 7 oc-
taves”, mathematically it would be 312 = 219, which 
is false. We have that 312

219 = 531441524288 ≈ 1.

This only translates into a certain tolerance of the ear 
to that tuning and this difference is the Pythagore-
an coma.
 A theoretical formulation of equal temperament can 
already be found in the work De musica by F. Salinas, 
published in Salamanca in 1577, which states that the 
octave must be divided into twelve equally proportional 
parts, which will be the equal semitones.

Kepler’s Mysterium cosmographicum (1596), with the embe-
ding of the cube (Saturn-Jupiter), tetrahedron (Jupiter-Mars), 
dodecahedron (Mars-Earth), icosahedron (Earth-Venus) and
octahedron (Venus-Mercury) in the sphere.
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 If 𝜏𝜏  is the interval between two consecutive tones, 
it is equal to the irrational number

𝜏𝜏 𝜏 12√2 𝜏 1, 059463094 …
and represents the ratio of the respective geometric 
progression. So the frequencies associated with the 
seven notes of the usual scale are given by Dó = 𝑓𝑓  , 
Ré = 6√2𝑓𝑓 , Mi = 3√2𝑓𝑓 , Fá = 12√25𝑓𝑓 , Sol = 12√27𝑓𝑓 , 
Lá = 4√23𝑓𝑓 , Si = 12√211𝑓𝑓  e Dó = 2𝑓𝑓 .
 Methods for mumerical approximations of equal 
temperament can be found in Zarlino in the 16th cent. 
and in M. Mersenne’s Harmonie Universelle (1636–7) 
or in A. Kircher’s Musurgia Universalis (1650).
 The theorising of equal temperament in the 17th 
century will use logarithms. C. Huygens (1629–1695) 
in Novus Cyclus Harmonicus (1691) theorised the divi-
sion of the octave into 31 equal intervals and was one 
of the first to introduce the calculation of logarithms 
into music.
 Referring to Salinas and Mersenne as authors who 
had already considered this division to be of no great 
consequence, Huygens remarked that if their prede-
cessors had been mistaken because “they hadn’t known 
how to divide the octave into 31 equal parts (. . .) for 
this the intelligence of Logarithms was necessary.” 
 In Euler (1707–1783) we find one of the most inge-
nious algebraic theories of the division of the octave 
and the degree of consonance of musical intervals.
 In the Essay on a new theory of music (Tentamen 
novae theoriae musicae, 1739), Euler develops an ar-

gument in which proportions generate musical plea-
sure, via order and perfection — music is the science 
of combining sounds in a pleasing harmony — so that, 
for this mathematician, a musical object is a simple 
arithmetical object.

Left: A spiral of fifths. Right: A 12-tone chromatic clock

Calculations of 1691 of the division of the 
octave into 31 tones by Huygens 
using logarithms
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 Euler introduced a mesure of the degree of conso-
nance (agrément) of an interval through an algebraic 
formula in which 𝑝𝑝𝑖𝑖 are prime numbers and 𝑚𝑚𝑖𝑖, inte-
ger exponents:

𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝑛𝑛
∑𝑖𝑖𝛼𝑖 (𝑚𝑚𝑖𝑖𝑝𝑝𝑖𝑖 − 𝑚𝑚𝑖𝑖) + 𝑖.

Euler also wrote other essays, such as Du véritable car-
actere de la musique moderne (On the true character of 
modern music), in Mémoires de l’Académie des Sci-
ences de Berlin (1764), 1766.
 But the algebra of tones is not limited to the prob-
lems associated with temperament, but also appears 
in the structure of sounds and in musical composition 
itself.

 Musical notes can be grouped into equivalence 
classes and hence called by the same name, i.e. two 
notes are said to be equivalent if they are separated by 
an exact number of octaves, i.e. if they have frequen-
cies 𝑝𝑝 and 𝑞𝑞, the interval between them is of the form 𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝, with 𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘 and will be denoted 
by 𝑝𝑝 𝑝 𝑝𝑝.
 In the 12-note tempered system, the interval is char-
acterised by the number of semitones and the notes 
can be associated with the set of integers

ℤ12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
which is a group for addition (mod 12).

Geometric and algebraic representations of a group

Inversion (horizontal symmetry), Petrushka by Igor Stravinsky
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 Another typical example is given in J.S. Bach’s Mu-
sical Offering of 1747, which presents three types of 
transformations: translations (upward transpositions, 
as in the canon ascendenteque Modulationem ascen-
dat gloria Regis), horizontal symmetries (melodic in-
versions, as in the canon Per Motum Contrarium) and 
vertical symmetries (retrogrades, as in the canon a 2 
which plays the same theme starting on the last note 
and moving backwards to the first). Also known as 
palindromes or crab canons: 𝑦𝑦 𝑦 𝑦𝑦𝑦.

3. harmonisation of analysis

Marin Mersenne (1588–1648) is credited with estab-
lishing the basic laws of modern string acoustics. Har-
monie universelle (1636), establishes the experimental 
laws on the proportionality of the period of vibration 
of the string, in relation to its length, to the inverse of 
the square root of its tension and to the square root 
of its thickness or cross-sectional area.
 Galileo Galilei, in Discorsi e dimostrazioni matem-
atiche . . . (1638) refers to the question of vibrating 
strings and consonance as follows:

. . . the first and immediate reason on which the ratios of mu-

sical intervals depend is neither the length of the strings nor 
their thickness, but the proportion existing between the fre-
quencies of the vibrations, and therefore of the waves which, 
propagating in the air, reach the eardrum of the ear causing 
it to vibrate at the same intervals of time.

The mathematical analysis of the sound starts with 
the modeling of the vibrating string, namely with the 
computation of its fundamental period by B. Taylor 
in 1713, with the first ODE analysis by Jean Bernoulli 
in 1727 and the famous controversy between D’Alem-
bert and Euler on the admissible initial conditions on 
the wave equation.
 It is above all with the introduction of the equation𝜕𝜕2𝑢𝑢𝜕𝜕𝜕𝜕2 = 𝑐𝑐2 𝜕𝜕2𝑢𝑢𝜕𝜕𝜕𝜕2
in D’Alembert’s 1747 memoire published by the Berlin 
Academy, Recherche sur la courbe que forme une corde 
tendue mise en vibration, and with the subsequent 
works of Euler, Daniel Bernoulli and Lagrange, that the 
mathematical theory of the “musical string” acquires 
the appropriate model for small vibrations, which will 
be decisive in the study of oscillations in continuous 
media, in particular the propagation of sound in air.
 During the course of the famous “vibrating string 
controversy”, a scientific dispute involving the lead-
ing mathematicians of the 1700s, Daniel Bernoulli, in 
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a 1753 letter, established the principle of the superpo-
sition of small harmonic oscillations as a physical law 
and not so much as a mathematical result, concluding 
that

every sounding body potentially contains an infinity of sounds 
and a corresponding infinity of ways of producing their re-
spective vibrations.

In a memoir by the Turinese mathematician Lagrange 
(1736-1813), we find a formula for the solution of the 

wave equation which, in the 19th century, after the 
work of Fourier, will allow us to demonstrate D. Ber-
noulli’s principle of superposition of waves. Lagrange 
not only sought to analyse the propagation of sound, 
he also tried to provide a scientific explanation for 
Tartini’s theory of the combination of tones, set out 
in his Treatise on Music of 1754.
 The musical string is just the first mathematical ex-
ample of sound analysis. Both the sound produced by 

Left: Ratios of frequencies of two pure tones (a) 1 :1 (b) 15:16 (c) 4 :5 (d) 2 :3 (e) 20:31 (f) 30:59 (g) 1 :2. 
Right: An excerpt of Recherches sur la nature de la propagation du son (1579) by Lagrange.

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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most musical instruments and the human ear itself re-
quire mathematical models that take into account the 
various dimensions of physical space and geometry.
 In the mathematical analysis of the sound a famous 
question arouse: is it possible to hear the shape of a 
drum? This question, which has a precise and profound 
meaning in maths, consists of knowing whether from 
the same family of eigenvalues, i.e., numbers 𝜆𝜆 𝜆 𝜆𝜆𝑛𝑛, 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛, that satisfy the equation Δ𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢 𝑢 𝑢 in 
two domains Ω1 and Ω2 it is possible to say that these 
regions are congruent in the sense of Euclidean geom-
etry. Of all the drums with the same area, the round 
one has the deepest sound.

a) Isospectral (reproducing the same sound) 
drum shapes (flat polygons) with different 
shapes ( C. Gordon and D. Webb, 1991).
b) Isospectral spatial shapes of bells 
(Riemannian surfaces) by P. Buser (1986).

M. Mersenne, Harmonie Universelle (1636–37)

4. Digital musurgia

As early as the 17th century, an obscure German math-
ematician, K. Schott, following the ideas of Mersenne 
and his teacher Kircher, author of a Musurgia Uni-
versalis (1650), argued in his Organum mathematicum 
(1668) that to compose harmonic chants it was enough 
to master the new art of music-arithmetic, which con-
sisted of combining the bacilli musurgici (the musical 
keys) and using the abaci melothetici and the tabulae 
musarithmeticae.
These ideas were based on the new combinatorial art 
of Mersenne, in Harmonie Universelle (1636), for whom 
composing was reduced to combining, he had distin-
guished permutations without repetition of a given 
number of 𝑛𝑛 notes (ordinary combinations which he 
calculated up to 𝑛𝑛 𝑛 𝑛𝑛) 𝑆𝑆𝑛𝑛 = 𝑛𝑛𝑛, from permutations 
with repetition of 𝑛𝑛 notes (𝑝𝑝 are different), which he 
used to calculate the table of chants that can be made 
from 9 notes, he also calculated arrangements with-
out repetition (𝑝𝑝 different notes among 𝑛𝑛 given) and 
also combinations without repetition.
 In the evolution of mathematics from the 17th to the 
18th century, particularly for G.W. Leibniz, the math-
ematical sciences acquired a broader role as a science 
about the representations of all possible relationships 
and dependencies of the simplest elements, seeking a 
universal language and an algebra of reasoning, perfect-
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ing calculation and creating new algorithms to which 
it became necessary to give a symbolism appropriate 
to the essence of the concepts and operations.
 In his dissertation on the art of combinatorics 
(1666), the young Leibniz already intended to reorga-
nise logic, but it was after the creation of the Calculus 
that he referred to binary notation in a 1701 letter to J. 
Bernoulli: Many years ago an original idea occurred 
to me about a type of arithmetic where everything is 
expressed with 0 and 1.
 However, this new type of binary arithmetic was 
only realised in modern computers, where each bit 

M. Mersenne,
Harmonie 
Universelle
(1636-37)

represents an electrical state: on (current) is associat-
ed with the number 1; off (no current) is associated 
with 0; and sequences of electrical impulses, such as 01000001 which represents the number 65 in the bi-
nary system, and which can also be assigned to the 
capital letter A using another code.
 Forerunners of modern calculators, the machines 
of the 17th century had a limited impact, in particular 
those of W. Schickard (1592–1635) and B. Pascal (1623–
1662), capable of adding and subtracting mechanically, 
or that of Leibniz in 1671, which could also multiply 
and divide.

Left:
G. W. Leibniz (1646–1716)

Right;
Binary system designed by 
Leibniz, which reads “one
created everything out of 
nothing” at the top and 
“one is necessary” at the 
bottom.
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 However, only C. Babbage’s (1791-1871) mechanical 
machines, namely the Difference Engine (1821) and 
the Analytical Engine (1834), are considered to be the 
forerunners of electronic computers, even though 
they were never built.
 In a passage on the conception of that machine, Ada 
Lovelace specifically states that its operative mechanism 
could act on things other than numbers, objects such 
that their fundamental reciprocal relationships could 
be expressed by the abstract science of operations and, 
as a concrete example within the framework of the 
operative notation and mechanisms of the Analyti-
cal Engine, explicitly supposes that the fundamental 
relationships of sounds determined in the science of 
harmony and musical composition could be expressed 
and adaptable to its action; the machine could com-
pose scientific and elaborate musical pieces, with any 
degree of complexity or extension.
 However, a sufficiently powerful mechanism ca-
pable of incorporating the science of operations only 
appeared with the modern computer in the second 
half of the 20th century.
 The first experiments in computer-assisted musical 
composition appeared from the start L. Hiller in 1956 
in the USA, followed by P. Barbaud and I. Xenakis in 

Left:
Ada Lovelace (1815-1852)

Right:
RCA Mark II
Electronic Music 
Synthesizer,
H. Olson e H. Belar (1957)

France and others. At Bell Laboratories, in 1957, M. 
Mathews and his collaborators made the first numer-
ical record and the first computer synthesis of sounds 
and, in 1965, J.C. Risset computer-simulated the first 
sounds of musical instruments.
 In 1973, the first numerical synthesiser was built, 
Synclavier, which was then commercialised, and about 
ten years later theten years later, the public had access 
to digital recording CD’s (compact discs).
 Since 1983, the MIDI (Musical Instrumental Digital 
Interface) standard has allowed computers to record 
and edit music.
 If today we have the mastery of numerisation in 
the analysis and synthesis of musical sound, if we have 
begun to outline the mathematisation of certain musi-
cal structures and computers allow us to hear mathe-
matical calculations and structures, i.e. to paraphrase 
Saccheri we have Pythagoras ab omni naevo vindica-
tus sive Conatus arithmeticus quo stabiliuntur prima 
ipsa universa musica principia (Pythagoras freed from 
all taint or the arithmetical attempt to establish the first 
principles of all music). we can continue to agree with 
Aristoxenus and accept that the justification of music 
lies in the pleasure of its hearing and its enjoyment.
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José Francisco Rodrigues, former President of CIM, has 
been elected President of the Lisbon Academy of Scienc-
es (ACL) for the 2025-2026 term. The election took place 
at the Academy’s plenary session on December 19, 2024.
 José Francisco Rodrigues, a Full Professor at the 
Faculty of Sciences of the University of Lisbon and a re-
searcher at its Centre for Mathematics (CMAFcIO), has 
extensive experience in mathematical research and a 
keen interest in the history and dissemination of science.
 In his acceptance speech, José Francisco emphasised 
the ACL’s role as a public utility institution and the need 
to promote scientific research, cultural enrichment, and 
collaboration with educational institutions. He also 
mentioned the upcoming 250th anniversary of the ACL 
in 2029 and the importance of celebrating this milestone 
with initiatives that promote the development of Science 
and Portuguese Culture.

Professor José Francisco Rodrigues has been elected 
President of the Lisbon Academy of Sciences

 The new President also highlighted the importance 
of interdisciplinarity in research, citing the first joint 
session of the Classes of Sciences and Letters in 2025, 
dedicated to Artificial Intelligence in Scientific Discovery 
and its Impact on Science, as an example.
 Concluding his speech, Professor Rodrigues invoked 
Mário Soares, on the centenary of his birth, sharing his 
vision that the Academy should aspire to be “the most 
expressive forum of the best Portuguese intelligence,” 
as it was at its foundation and in other high points of its 
history.
 With this election, the Lisbon Academy of Sciences 
reaffirms its commitment to society, strengthening its 
position as one of the oldest and most important scien-
tific institutions in the country.
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Professor José Francisco Rodrigues has been elected 
President of the Lisbon Academy of Sciences

report

by Telmo Peixe*,**

The LxDS Spring School 2024, organized by the LxDS-Lis-
bon Dynamical Systems Group in collaboration with 
CEMAPRE and CMAF-CIO, took place from May 27 to 
29, 2024. The event was held at the Faculdade de Ciên-
cias, Universidade de Lisboa (FCUL). This spring school 
focused on various topics of dynamical systems, pro-
viding an opportunity for participants to enhance their 
knowledge through courses delivered by internationally 
recognized experts.
 The school featured three comprehensive courses on 

* On behalf of the organizing committee.
** Dep. of Mathematics, ISEG. Universidade de Lisboa.

LxDS Spring School 2024

dynamical systems, presented by distinguished schol-
ars:

Arnold Diffusion through Geometric Methods
Professor Tere M-Seara
Universitat Politècnica de Catalunya

This course delved into the geometric methods used to 
study Arnold diffusion, a phenomenon in Hamiltonian 
systems where trajectories exhibit slow drift over long 
periods.
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Nonautonomous Dynamical Systems: Theory and Appli-
cations
Professor Peter Ashwin
University of Exeter

Professor Ashwin’s course covered the theoretical foun-
dations and practical applications of nonautonomous 
dynamical systems, which involve time-dependent 
changes in the system’s parameters.

Topological and Ergodic Properties of Hyperbolic Flows
Professor Paulo Varandas
Universidade Federal da Bahia and CMUP

This course explored the topological and ergodic charac-
teristics of hyperbolic flows, providing insights into their 
behavior and properties.

The event attracted around 20 participants, including 
speakers, organizers, PhD students from the Universi-
dade do Porto and Universidade de Aveiro, master’s stu-
dents in mathematics from FCUL, and researchers with 
an interest in dynamical systems.
 In addition to the courses, the school featured a ses-
sion for oral presentations, where participants had the 
chance to present their latest research. Notable presen-
tations included:

Qualitative Analysis of Prey Predator Model
Muhammad Ajaz
CMUP

Ajaz presented the complex dynamics of two-dimension-
al discrete-time predator-prey models, focusing on a 
modified Leslie–Gower model with prey harvesting.

A Dynamical Journey Around Double Standard Maps
Ana Rodrigues
Universidade de Évora

Rodrigues presented the results obtained so far for the 
investigation of the family of double standard maps𝑓𝑓𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥 𝑎𝑎 𝑥 𝑎𝑎𝜋𝜋 sin(𝑥𝜋𝜋𝑥𝑥𝑥 (mod 1).
from topological results to ergodic theory.

Thanks to the financial support from CIM (Centro Inter-
nacional de Matemática), the school was able to cover 
the travel, lodging, and meal expenses for the participat-
ing PhD students. This support was crucial in facilitating 
their attendance and participation in the event.
 The LxDS Spring School 2024 was a successful event 
that provided valuable learning and networking oppor-
tunities for all attendees. The collaboration between 
LxDS-Lisbon Dynamical Systems Group, CEMAPRE, and 
CMAF-CIO, along with the support from CIM, ensured 
a productive and enriching experience for everyone in-
volved. The courses and presentations highlighted some 
of the latest advancements in dynamical systems, con-
tributing to the growth and development of this field.
 More information about the event can be found at 
https://sites.google.com/view/lxds-ss-2024/

The organizing committee:

João Lopes Dias
Universidade de Lisboa, ISEG, CEMAPRE

Pedro Miguel Duarte
Universidade de Lisboa, FCUL, CMAFCIO

José Pedro Gaivão
Universidade de Lisboa, ISEG, CEMAPRE

Telmo Peixe
Universidade de Lisboa, ISEG, CEMAPRE

Alexandre Rodrigues
Universidade de Lisboa, ISEG, CEMAPRE
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Abstract.—In this note we  will review the main steps in the proof of Fermat’s Last 
Theorem and discuss Darmon’s program to tackle the generalized Fermat equation 
Axq + Byr = Czp. Finally, we discuss how combining the classical approach with 
some ideas of Darmon led to recent results for equations of the form xr+ yr= Czp.

Nicolas Billerey is supported by the ANR-23-CE40-0006-01 Gaec project. We thank the referee for a careful reading and helpful remarks.

1 Introduction

After Wiles’ proof [27] of Fermat’s Last Theorem (FLT)
attention shifted towards the so-called generalized
Fermat equation (GFE)

𝐴𝐴𝐴𝐴𝑟𝑟+𝐵𝐵𝐵𝐵𝑞𝑞 = 𝐶𝐶𝐶𝐶𝑝𝑝 with 𝒳𝒳 𝒳 1
𝑟𝑟

+1
𝑞𝑞

+1
𝑝𝑝

< 1, (1.1)

where 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 are fixed non-zero coprime integers
and 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 𝑟 𝑟 are integers. The triple (𝑟𝑟, 𝑞𝑞, 𝑝𝑝𝑟 is called
the signature of the GFE. A solution (𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑟 𝑎 ℤ3

to (1.1) is called primitive if gcd(𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑟 = 1 and non-
trivial if 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎.

The condition 𝒳𝒳 < 1 is required to guarantee
finiteness of solutions. More precisely, Darmon and
Granville [13] proved that if we fix both the coef-
ficients 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and the exponents 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 satisfying
𝒳𝒳 < 1 then there are only finitely many primitive
solutions to (1.1). But more is conjectured (see [4]):
it is expected that the number of primitive solutions
remains finite if we fix the coefficients but allow the
three exponents to vary while still verifying 𝒳𝒳 < 1.
On the other hand, if 𝒳𝒳 𝒳 1 then the set of solutions
is either empty or infinite by a result of Beukers [3]
and, for 𝒳𝒳 = 1, the problem reduces to the determi-
nation of rational points on genus-1 curves. A very
natural question is whether the strategy that proved
FLT, which is now known as the modular method, can
be used to establish more cases of the aforementioned

conjecture.
As we shall see below, to apply the modular

method to other instances of (1.1) one needs to start
with the construction of a Frey curve. However, there
are only a few choices of the exponents 𝑟𝑟, 𝑞𝑞, 𝑝𝑝 in (1.1)
for which Frey curves are known (see [10, p.14] for a
complete list of rational Frey curves). To circumvent
this issue, Darmon described in [11] a remarkable pro-
gram to study (1.1) where he replaces Frey curves by
higher dimensional abelian varieties. However, ap-
plying the rest of his program is very challenging be-
cause several of the main steps rely on open conjec-
tures.

The objective of this expository note is to briefly
discuss some recent results regarding the subfamily
of (1.1) of the shape 𝐴𝐴𝑟𝑟 + 𝐵𝐵𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑝𝑝 obtained by com-
bining the classical approach with Frey curves and
some of the ideas in the Darmon’s program. For a
brief introduction to Diophantine equations includ-
ing a quick discussion of the modular method we re-
fer the reader to [22].

2 Elliptic curves

For this section, the main reference is [24].
Let 𝐾𝐾 be a field. An elliptic curve 𝐸𝐸 over 𝐾𝐾 is a

smooth curve in ℙ𝑟 given by an equation

𝐵𝐵𝑟𝐶𝐶 + 𝑎𝑎1𝐴𝐴𝐵𝐵𝐶𝐶 + 𝑎𝑎3𝐵𝐵𝐶𝐶𝑟 = 𝐴𝐴3 + 𝑎𝑎𝑟𝐴𝐴𝑟𝐶𝐶 + 𝑎𝑎4𝐴𝐴𝐶𝐶𝑟 + 𝑎𝑎6𝐶𝐶3,

1
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with 𝑎𝑎𝑖𝑖 ∈ 𝐾𝐾 . If the characteristic of 𝐾𝐾 is not 2 or 3,
then we can transform to a much simpler model given
by the affine equation

𝑌𝑌 2 = 𝑋𝑋3 + 𝑎𝑎𝑋𝑋 + 𝑎𝑎𝑎 𝑎𝐸𝐸 = −16(4𝑎𝑎3 + 27𝑎𝑎2) ≠ 0𝑎
where 𝑎𝑎 and 𝑎𝑎 ∈ 𝐾𝐾 . There is a distinguished 𝐾𝐾-point,
the ‘point at infinity’, which we denote by ∞. Given
a field 𝐿𝐿 𝐿 𝐾𝐾 , the set of 𝐿𝐿-points on 𝐸𝐸 is

𝐸𝐸(𝐿𝐿) = 𝐸(𝐸𝐸𝑎 𝐸𝐸) ∈ 𝐿𝐿2 ∶ 𝐸𝐸2 = 𝐸𝐸3 + 𝑎𝑎𝐸𝐸 + 𝑎𝑎𝑎 Y 𝐸∞𝑎.
It turns out that the set 𝐸𝐸(𝐿𝐿) has the structure of
an abelian group with ∞ as the identity element.
The group structure is easy to describe geometrically:
three points 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 ∈ 𝐸𝐸(𝐿𝐿) add up to the identity
element if and only if there is a line ℓ defined over 𝐿𝐿
meeting 𝐸𝐸 in 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 (with multiplicities counted
appropriately). The classical Mordell–Weil Theorem
states that for a number field 𝐾𝐾 the group 𝐸𝐸(𝐾𝐾) is
finitely generated.

Now suppose 𝐾𝐾 = ℚ. There is an integer 𝑁𝑁𝐸𝐸
called the conductor of 𝐸𝐸 with the following proper-
ties. There is an algorithm to compute 𝑁𝑁𝐸𝐸 and, for all
primes 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 , the reduction modulo 𝑝𝑝 of a minimal
model for 𝐸𝐸 gives an elliptic curve ̃𝐸𝐸 over 𝔽𝔽𝑝𝑝. More-
over, if a prime 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 then it divides the discrimi-
nant of any model for 𝐸𝐸 so the reduced curve ̃𝐸𝐸𝐸𝔽𝔽𝑝𝑝
is not an elliptic curve, and we can think of 𝑁𝑁𝐸𝐸 as a
measure of how ‘complicated’ these reduced curves
are. Finally, for 𝑝𝑝 𝑝 𝑁𝑁𝐸𝐸 , the set ̃𝐸𝐸(𝔽𝔽𝑝𝑝) is necessarily
finite, and we define

𝑎𝑎𝑝𝑝(𝐸𝐸) = 𝑝𝑝 + 1 − 𝐸 ̃𝐸𝐸(𝔽𝔽𝑝𝑝).

3 Modular forms

For this section, the main reference is [14].
Let 𝑁𝑁 ∈ ℤ≥1. A modular form of weight 2 for

Γ0(𝑁𝑁) is an analytic function on the complex upper
half-plane H satisfying suitable growth conditions at
the boundary as well as the transformations

𝑓𝑓 (
𝑎𝑎𝑎𝑎 + 𝑎𝑎
𝑐𝑐𝑎𝑎 + 𝑐𝑐 ) = (𝑐𝑐𝑎𝑎 + 𝑐𝑐)2𝑓𝑓(𝑎𝑎)

for all matrices ( 𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐 ) ∈ SL2(ℤ) satisfying 𝑐𝑐 𝑝 𝑁𝑁 and

all 𝑎𝑎 ∈ H. Invariance under translation by 1 leads to
a Fourier expansion

𝑓𝑓(𝑎𝑎) =
∞

∑
𝑛𝑛=0

𝑎𝑎𝑛𝑛(𝑓𝑓)𝑓𝑓𝑛𝑛𝑎 𝑓𝑓 = 𝑞𝑞2𝜋𝜋𝑖𝑖𝑎𝑎.

The group Γ0(𝑁𝑁) acts on H via fractional linear trans-
formations and the quotient 𝑌𝑌0(𝑁𝑁) = Γ0(𝑁𝑁)𝑁H has
the structure of a non-compact Riemann surface.

This has a standard compactification denoted 𝑋𝑋0(𝑁𝑁)
and the difference 𝑋𝑋0(𝑁𝑁) − 𝑌𝑌0(𝑁𝑁) is a finite set of
points called the cusps. To the modular forms that
vanish at all the cusps we call cusp forms; in particu-
lar, they satisfy 𝑎𝑎0(𝑓𝑓) = 0.

The space of cusp forms 𝑆𝑆2(𝑁𝑁) is a finite dimen-
sional ℂ-vector space. There is a natural family of
commuting operators 𝑇𝑇𝑛𝑛 ∶ 𝑆𝑆2(𝑁𝑁) 𝑁 𝑆𝑆2(𝑁𝑁) (with
𝑛𝑛 ≥ 1) called the Hecke operators. The eigenforms
of level 𝑁𝑁 are the cusp forms that are simultaneous
eigenvectors for all the Hecke operators. An eigen-
form 𝑓𝑓 is called normalized if 𝑎𝑎1(𝑓𝑓) = 1 and thus its
Fourier expansion has the form

𝑓𝑓 = 𝑓𝑓 + ∑
𝑛𝑛≥1

𝑎𝑎𝑛𝑛(𝑓𝑓)𝑓𝑓𝑛𝑛.

Shimura-Taniyama-Weil Conjecture asserts that for ev-
ery elliptic curve 𝐸𝐸𝐸ℚ with conductor 𝑁𝑁𝐸𝐸 there is a
normalized eigenform 𝑓𝑓 of weight 2 for Γ0(𝑁𝑁𝐸𝐸), such
that for every prime 𝑝𝑝 the corresponding Fourier co-
efficient satisfies 𝑎𝑎𝑝𝑝(𝑓𝑓 ) = 𝑎𝑎𝑝𝑝(𝐸𝐸). When this is the
case we say that the curve 𝐸𝐸 is modular. In his sem-
inal paper [27] and its companion [26] ( jointly with
R. Taylor), Andrew Wiles proved the S-T-W Conjec-
ture in the case of semistable elliptic curves, i.e. el-
liptic curves with square free conductor 𝑁𝑁𝐸𝐸 . This
groundbreaking theorem was also the final step to
complete the proof of FLT.

4 Galois representations

For this section, the main references are [14, Chap-
ter 9] and (for more advanced readers) [7].

Let ℚ be the algebraic closure of ℚ inside ℂ. We
write 𝐺𝐺ℚ ≔ Gal(ℚ𝐸ℚ) for the group of field automor-
phisms of ℚ (fixing ℚ). The group 𝐺𝐺ℚ is called the ab-
solute Galois group of ℚ. The representations of 𝐺𝐺ℚ
are central objects in Arithmetic Geometry. Here we
will work only with residual Galois representations,
also known as mod 𝑝𝑝 representations.

Definition 1.— A mod 𝑝𝑝 Galois representation is de-
fined to be a group homomorphism

𝜌𝜌 ∶ Gal(ℚ𝐸ℚ) 𝑁 GL2(𝔽𝔽 𝑝𝑝)
which is continuous with respect to the profinite
topology on the left and the discrete topology on the
right. In particular, there is a finite extension 𝔽𝔽𝑓𝑓𝐸𝔽𝔽𝑝𝑝
such that the image of 𝜌𝜌 lies in GL2(𝔽𝔽𝑓𝑓).

Definition 2.— A mod 𝑝𝑝 Galois representation 𝜌𝜌 ∶
Gal(ℚ𝐸ℚ) 𝑁 GL2(𝔽𝔽 𝑝𝑝) is unramified at a prime ℓ ≠ 𝑝𝑝
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if 𝜌𝜌𝜌𝜌𝜌ℓ) = {1}, where 𝜌𝜌ℓ is an inertia group at ℓ
in Gal𝜌ℚ/ℚ). Otherwise, it is ramified at ℓ.

The reader unfamiliar with the inertia subgroups of
𝐺𝐺ℚ should simply keep in mind that there is a unique
(up to conjugation) inertia subgroup for each prime ℓ
and that a representation 𝜌𝜌 is easier to understand if
it has little ramification. Further, there is a positive
integer 𝑁𝑁𝜌𝜌𝜌), called the Serre level of 𝜌𝜌, that measures
the ramification of 𝜌𝜌 at all primes ℓ ≠ 𝑝𝑝. Moreover,
by Galois theory, the kernel of a representation 𝜌𝜌 as
above corresponds to a field extension of finite de-
gree which is ramified at a prime ℓ if and only if 𝜌𝜌 is
ramified at ℓ.

4.1 Representations from elliptic curves

Let 𝐸𝐸 be an elliptic curve over ℂ. The structure of
the abelian group 𝐸𝐸𝜌ℂ) is particularly easy to describe.
There is a discrete lattice Λ ⊂ ℂ of rank 2 (that is, as
an abelian group Λ ≃ ℤ2) depending on 𝐸𝐸, and an
isomorphism

𝐸𝐸𝜌ℂ) ≃ ℂ/Λ.

Let 𝑝𝑝 be a prime. By the 𝑝𝑝-torsion of 𝐸𝐸𝜌ℂ) we mean
the subgroup

𝐸𝐸𝐸𝑝𝑝𝐸 = {𝐸𝐸 𝐸 𝐸𝐸𝜌ℂ) ∶ 𝑝𝑝𝐸𝐸 = 𝑝}.
It follows that 𝐸𝐸𝐸𝑝𝑝𝐸 ≃ 𝜌ℤ/𝑝𝑝ℤ)2 which can be viewed
as a 2-dimensional 𝔽𝔽𝑝𝑝-vector space. Now let 𝐸𝐸 be an
elliptic curve over ℚ. Then we may view 𝐸𝐸 as an el-
liptic curve over ℂ, and with the above definitions ob-
tain an isomorphism 𝐸𝐸𝐸𝑝𝑝𝐸 ≃ 𝜌ℤ/𝑝𝑝ℤ)2. However, in
this setting the points of 𝐸𝐸𝐸𝑝𝑝𝐸 have algebraic coordi-
nates, and are acted on component-wise by Gal𝜌ℚ/ℚ).
Thus we obtain a 2-dimensional representation de-
pending on 𝐸𝐸/ℚ and the prime 𝑝𝑝:

𝜌𝜌𝐸𝐸𝐸𝑝𝑝 ∶ 𝐺𝐺ℚ → GL2𝜌𝔽𝔽𝑝𝑝)𝐸
called the mod 𝑝𝑝 representation attached to 𝐸𝐸. We say
that 𝜌𝜌𝐸𝐸𝐸𝑝𝑝 is irreducible if the image 𝜌𝜌𝐸𝐸𝐸𝑝𝑝𝜌𝐺𝐺ℚ) cannot be
conjugated into a subgroup of GL2𝜌𝔽𝔽𝑝𝑝) consisting of
upper triangular matrices.

4.2 Representations from modular forms

Let 𝑓𝑓 = ∑𝑛𝑛𝑛1 𝑎𝑎𝑛𝑛𝜌𝑓𝑓)𝑓𝑓𝑛𝑛 be a weight-2 normalized
eigenform for Γ𝑝𝜌𝑁𝑁) with 𝑁𝑁 𝑛 1. Denote by 𝐾𝐾𝑓𝑓 =
ℚ𝜌{𝑎𝑎𝑛𝑛𝜌𝑓𝑓) ∶ 𝑛𝑛 𝑛 1}) the field generated by the
Fourier coefficients of 𝑓𝑓 . It is a non-trivial theorem
that 𝑎𝑎𝑛𝑛𝜌𝑓𝑓 ) are algebraic integers and 𝐾𝐾𝑓𝑓 is a num-
ber field, which we view as a subfield of ℚ. We

denote by 𝒪𝒪𝐾𝐾𝑓𝑓
the ring of integers of 𝐾𝐾𝑓𝑓 , and we

have 𝑎𝑎𝑛𝑛𝜌𝑓𝑓 ) 𝐸 𝒪𝒪𝐾𝐾𝑓𝑓
for all 𝑛𝑛; we refer to [14, §6.5] for

details.
Let 𝑝𝑝 be a prime number, and 𝔭𝔭 a prime in 𝐾𝐾𝑓𝑓

above 𝑝𝑝. We write 𝔽𝔽𝔭𝔭 = 𝒪𝒪𝐾𝐾𝑓𝑓
/𝔭𝔭 for the residue field

at 𝔭𝔭. The following is a consequence of a deep result
proved by Eichler and Shimura.

Theorem 3 (Eichler–Shimura).— Up to isomor-
phism, there is a unique semisimple mod 𝑝𝑝 Galois
representation

𝜌𝜌𝑓𝑓𝐸𝔭𝔭 ∶ Gal𝜌ℚ/ℚ) → GL2𝜌𝔽𝔽𝔭𝔭)
satisfying the following properties: it is unramified
outside 𝑁𝑁𝑝𝑝 and for every prime ℓ ∤ 𝑁𝑁𝑝𝑝, the charac-
teristic polynomial of 𝜌𝜌𝑓𝑓𝐸𝑝𝑝𝜌Frobℓ) is the mod 𝔭𝔭 reduc-
tion of

𝑋𝑋2 − 𝑎𝑎ℓ𝜌𝑓𝑓)𝑋𝑋 𝑓 ℓ. (4.1)

Here Frobℓ denotes a choice of a Frobenius element
at ℓ in Gal𝜌ℚ/ℚ) and by semisimple we mean that
𝜌𝜌𝑓𝑓𝐸𝔭𝔭 is either irreducible or isomorphic to the sum of
two characters.

Definition 4.— A mod 𝑝𝑝 Galois representation

𝜌𝜌 ∶ Gal𝜌ℚ/ℚ) → GL2𝜌𝔽𝔽 𝑝𝑝)
is said to be modular of level 𝑁𝑁 𝑛 1 if there exists a
weight-2 eigenform 𝑓𝑓 for Γ𝑝𝜌𝑁𝑁) and a prime 𝔭𝔭 𝔭 𝑝𝑝 in
𝐾𝐾𝑓𝑓 such that 𝜌𝜌 ≃ 𝜌𝜌𝑓𝑓𝐸𝔭𝔭. In this case, we also say that 𝜌𝜌
arises from 𝑓𝑓 .

Building on the groundbreaking work of Wiles’ and
many others, Khare and Wintenberger [17, 18] have
proved the following theorem known as Serre’s Con-
jecture.

Theorem 5.— Let 𝜌𝜌 ∶ 𝐺𝐺ℚ → GL2𝜌𝔽𝔽 𝑝𝑝) be an irre-
ducible odd representation. Assume that 𝜌𝜌 arises
from a finite flat group scheme at 𝑝𝑝. Then 𝜌𝜌 is modu-
lar of level 𝑁𝑁𝜌𝜌𝜌) and weight 2.

The technical condition that 𝜌𝜌 arises from a finite flat
group scheme at 𝑝𝑝 should, for simplicity, be thought
informally as the restriction of 𝜌𝜌 to an inertia sub-
group at 𝑝𝑝 being well behaved; recall that ramification
at ℓ ≠ 𝑝𝑝 is measured by 𝑁𝑁𝜌𝜌𝜌).

5 Proof of FLT

For this section, the main references are [9] and [12].
We have introduced the minimal set of tools to

sketch the proof of FLT. We decided to organize the
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proof in three main steps because these are the steps
that we will focus on when presenting the Darmon
program in the later sections.

Step 1—Construction: Suppose 𝑝𝑝 𝑝 𝑝 is prime, and
𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are non-zero coprime integers satisfy-
ing 𝑎𝑎𝑝𝑝 + 𝑏𝑏𝑝𝑝 = 𝑐𝑐𝑝𝑝. We can reorder (𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐𝑎 so that

𝑏𝑏 𝑏 𝑏 (𝑏𝑏𝑏 𝑏𝑎 and 𝑎𝑎𝑝𝑝 𝑏 −1 (𝑏𝑏𝑏 4𝑎.
We consider the Frey–Hellegouarch curve which de-
pends on (𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐𝑎:

𝐸𝐸 𝐸 𝐸𝐸 𝑏 = 𝑋𝑋(𝑋𝑋 − 𝑎𝑎𝑝𝑝𝑎(𝑋𝑋 + 𝑏𝑏𝑝𝑝𝑎. (5.1)

From all the hypotheses on 𝑎𝑎𝑎 𝑏𝑏𝑎 𝑐𝑐, we compute the
minimal discriminant and conductor of 𝐸𝐸:

Δ = (𝑎𝑎𝑏𝑏𝑐𝑐𝑎𝑏𝑝𝑝

𝑏8 ≠ 𝑏𝑎 𝑁𝑁𝐸𝐸 = ∏
ℓ∣Δ

ℓ.

Note that the conductor is square-free and satisfies
𝑏 ∣∣ 𝑁𝑁 .

Step 2—Residual modularity: As 𝑝𝑝 𝑝 𝑝, it follows
from the work of Mazur [21] that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 is irreducible.
It is well known that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 is odd and Hellegouarch
showed that 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 arises on a finite flat group scheme
at 𝑝𝑝. Computing the Serre level we obtain 𝑁𝑁(𝜌𝜌𝐸𝐸𝑎𝑝𝑝𝑎 =
𝑏. Therefore, by Serre conjecture, we have that

𝜌𝜌𝐸𝐸𝑎𝑝𝑝 ≃ 𝜌𝜌𝑔𝑔𝑎𝑔𝑔

where 𝑔𝑔 is an eigenform of level 𝑏 and weight 2, and
𝑔𝑔 ∣ 𝑝𝑝 is a prime in 𝐾𝐾𝑔𝑔 .

Step 3—Contradiction: There are no eigenforms of
weight 𝑏 and level 𝑏, a contradiction.

Remark 1.— Note that the Frey curve construction
applies for trivial solutions as well. However, in this
case, it does not give rise to an elliptic curve (as it is
singular), therefore, there are no modular representa-
tions associated with it. This is a fortunate feature of
the classical Fermat equation. We will see below that
this is no longer the case for the GFE which obstructs
its resolution in many cases.

Remark 2.— The reader may be wondering where is
Wiles’ work used in the previous proof. Since the
original proof of FLT predates the proof of Serre’s
conjecture, modularity of the residual representation
𝜌𝜌𝐸𝐸𝑎𝑝𝑝 was instead derived as a corollary of modular-
ity of the Frey curve 𝐸𝐸. Note that 𝐸𝐸 has square-free
conductor hence it is modular by the work of Wiles.
We note also that the work of Wiles and all the ideas
around it is heavily used in the proof of Serre’s con-
jecture.

6 Darmon’s program

As we see from the proof of FLT it is the modu-
larity together with the little ramification of the 2-
dimensional residual representation 𝜌𝜌𝐸𝐸𝑎𝑝𝑝 that is key
for the contradiction. The Frey curve 𝐸𝐸 is simply a
geometric object from which we know how to extract
a 2-dimensional Galois representation with the right
properties, namely 𝜌𝜌𝐸𝐸𝑎𝑝𝑝.

There are higher dimensional generalizations of el-
liptic curves, called abelian varieties, in the sense that
there is a group structure on the set of points of an
abelian variety 𝐴𝐴. The main idea of Darmon’s pro-
gram is to put the focus directly on 2-dimensional
mod 𝑝𝑝 representations with the correct properties,
and find the abelian varieties giving rise to them.

Definition 6.— Let 𝑟𝑟𝑎 𝑟𝑟𝑎 𝑝𝑝 𝑝 𝑏 be integers. A Frey rep-
resentation of signature (𝑟𝑟𝑎 𝑟𝑟𝑎 𝑝𝑝𝑎 over a number field 𝐾𝐾
in characteristic ℓ > 𝑏 is a Galois representation

𝜌𝜌 = 𝜌𝜌(𝜌𝜌𝑎 𝐸 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 → GL𝑏(𝔽𝔽 𝑎
where 𝔽𝔽 is a finite field of characteristic ℓ such that
the following conditions hold:

(i) The restriction of 𝜌𝜌 to 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 has trivial determi-
nant and is irreducible.

(ii) The projectivization

𝜌𝜌geom 𝐸 𝜌𝜌𝐾𝐾(𝜌𝜌𝑎 → PSL𝑏(𝔽𝔽 𝑎
of this representation is unramified outside
{𝑏𝑎 1𝑎 ∞}.

(iii) It maps the inertia groups at 𝑏, 1, and ∞ to sub-
groups of PSL𝑏(𝔽𝔽 𝑎 of order 𝑟𝑟, 𝑟𝑟, and 𝑝𝑝 respec-
tively.

Here 𝐾𝐾(𝜌𝜌𝑎 is the function field over 𝐾𝐾 in the vari-
able 𝜌𝜌 and 𝐾𝐾 is an algebraic closure of 𝐾𝐾 , and 𝜌𝜌𝑘𝑘 𝐸=
Gal(𝑘𝑘𝑘𝑘𝑘𝑎 denotes the absolute Galois group of 𝑘𝑘 for
any field 𝑘𝑘.

In [11], Darmon counts the number of Frey represen-
tations up to some equivalence relation (introduced
in loc. cit.) and describes (often not in an explicitly
way) where they should arise. In particular, he proves
the following classification result.

Theorem 7 (Hecke-Darmon).— Up to equivalence,
there is only one Frey representation of signa-
ture (𝑝𝑝𝑎 𝑝𝑝𝑎 𝑝𝑝𝑎. It occurs over ℚ in characteristic 𝑝𝑝 and
is associated with the Legendre family

𝐿𝐿(𝜌𝜌𝑎 𝐸 𝐿𝐿𝑏 = 𝑥𝑥(𝑥𝑥 − 1𝑎(𝑥𝑥 − 𝜌𝜌𝑎.
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Example 1.— It is not difficult to check that the classi-
cal Frey–Hellegouarch curve

𝑦𝑦2 = 𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑝𝑝)𝑥𝑥𝑥 𝑥 𝑥𝑥𝑝𝑝)
is obtained from 𝐿𝐿𝑥𝐿𝐿) after specialization at

𝐿𝐿0 = 𝑥𝑥𝑝𝑝

𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑝𝑝

and taking quadratic twist by 𝑥𝑥𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑝𝑝).

A Frey representation 𝜌𝜌𝑥𝐿𝐿) should be seen as a family
of representations where we can specialize the param-
eter 𝐿𝐿 to obtain mod 𝑝𝑝 representations of 𝐺𝐺𝐾𝐾 as in the
previous example. We are then interested in the mod-
ularity of the mod 𝑝𝑝 representations obtained in this
way.

From now on, we restrict ourselves to the case
of 𝐾𝐾 being a totally real field, i.e., a number field such
that all embeddings into ℂ have image in ℝ. This is
a natural restriction, because modularity related ob-
jects are very poorly understood for fields with at
least one complex embedding. In contrast, for a to-
tally real 𝐾𝐾 there is a well established theory of Hilbert
modular forms (see [15]) which are the natural replace-
ment for the modular forms over ℚ; it is not our ob-
jective to discuss details of this theory here. The only
thing to keep in mind is that they satisfy the analo-
gous properties over 𝐾𝐾 to those of modular forms
over ℚ. In particular, modularity of abelian varieties
and their residual representations can be defined via
a connection to representations arising from Hilbert
eigenforms (see [25]). Therefore, we can state the fol-
lowing special case of Serre conjecture over totally
real fields.

Conjecture 1 ([11, Conjecture 3.2]).— Let 𝐾𝐾 be a to-
tally real field. Let 𝜌𝜌 𝜌 𝐺𝐺𝐾𝐾 → GL2𝑥𝔽𝔽 𝑝𝑝) be a totally
odd and irreducible representation with determinant
the mod 𝑝𝑝 cyclotomic character.

Assume that 𝜌𝜌 arises from a finite flat group
scheme at all primes 𝔭𝔭 in 𝐾𝐾 above 𝑝𝑝. Then there is a
Hilbert eigenform 𝑔𝑔 over 𝐾𝐾 for Γ0𝑥𝑁𝑁𝑥𝜌𝜌)) of (parallel)
weight 2 and a prime 𝔭𝔭 𝔭 𝑝𝑝 in the field of coefficients
of 𝑔𝑔 such that 𝜌𝜌 𝜌 𝜌𝜌𝑔𝑔𝑔𝔭𝔭.

This conjecture is still open for all 𝐾𝐾 , therefore when
applying the Darmon program in the next section
we need to derive residual modularity without it.
Also, this conjecture is concerned with 2-dimensional
representations whilst representations arising from
abelian varieties of dimension 𝑛𝑛 are naturally of di-
mension 2𝑛𝑛. We thus focus only on the subfamily of
abelian varieties giving rise to 2-dimensional repre-
sentations, as per the next definition and well known

theorem.

Definition 8.— Let 𝐴𝐴 be an abelian variety over a
field 𝐿𝐿 of characteristic 0. We say that 𝐴𝐴𝐴𝐿𝐿 is of GL2-
type (or GL2𝑥𝐹𝐹 )-type) if there is an embedding

𝐹𝐹 𝐹 𝐹𝐹𝐹𝐿𝐿𝑥𝐴𝐴) 𝐴ℤ ℚ
where 𝐹𝐹 is a number field with [𝐹𝐹 𝜌 ℚ] = 𝐹im 𝐴𝐴.

Theorem 9.— Let 𝐴𝐴𝐴𝐿𝐿 be an abelian variety of
GL2𝑥𝐹𝐹 )-type. Let 𝔭𝔭 be a prime in 𝐹𝐹 above 𝑝𝑝. Then
there is a 2-dimensional mod 𝑝𝑝 representation at-
tached to 𝐴𝐴, denoted 𝜌𝜌𝐴𝐴𝑔𝔭𝔭 𝜌 𝐺𝐺𝐾𝐾 → GL2𝑥𝔽𝔽𝔭𝔭), unram-
ified outside the primes where 𝐴𝐴 has bad reduction
and 𝑝𝑝.

Darmon also discusses the existence of Frey varieties
𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴ℚ associated to solutions 𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) of (1.1) for
any choice of exponents, and explains how these give
rise (after base changing to certain totally real num-
ber fields) to all the possible Frey representations.
However, only the varieties for exponents 𝑥𝑝𝑝𝑔 𝑝𝑝𝑔 𝑝𝑝)
and 𝑥𝑝𝑝𝑔 𝑝𝑝𝑔 𝑝𝑝) are explicit enough to work with. Finally,
he finishes with the following extremely difficult con-
jecture [11, Conjecture 4.1].

Conjecture 2 (Large image conjecture).— Let 𝐾𝐾 be
totally real field. There exists a constant 𝐶𝐶𝐾𝐾 such
that, for any abelian variety 𝐴𝐴𝐴𝐾𝐾 of GL2-type with
𝐹𝐹𝐹𝐾𝐾𝑥𝐴𝐴) 𝐴 ℚ = 𝐾𝐾 , and all primes 𝔭𝔭 of 𝐾𝐾 of norm
> 𝐶𝐶𝐾𝐾 , we have SL2𝑥𝔽𝔽𝔭𝔭) ⊂ 𝜌𝜌𝐴𝐴𝑔𝔭𝔭𝑥𝐺𝐺𝐾𝐾).
We finish this section with the description of how the
Darmon program is expected to work. We emphasize
every step that we do not know how to do, or that de-
pends on conjectures or relies on computations that
are not possible in practice with current algorithms
and hardware.

1. Let 𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽 𝑎 ℤ satisfy 𝑥𝑥𝑝𝑝 𝑥 𝑥𝑥𝑞𝑞 = 𝐽𝐽𝑝𝑝 and
gc𝐹𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) = 𝑎.

2. Let 𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴ℚ be the associated Frey variety.
Over a totally real field 𝐾𝐾 it becomes of GL2𝑥𝐾𝐾)-
type. We consider 𝐽𝐽 = 𝐽𝐽𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽)𝐴𝐾𝐾 and its
mod 𝔭𝔭 representation 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 given by Theorem 9.

3. Assume 𝑝𝑝 > 𝐶𝐶𝐾𝐾 where 𝐶𝐶𝐾𝐾 is the constant
in Conjecture 2. If 𝑥𝑥𝑥𝑔 𝑥𝑥𝑔 𝐽𝐽) is non-trivial then
SL2𝑥𝔽𝔽𝔭𝔭) is conjecturally contained in the image
of 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 by Conjecture 2. In particular, 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 is
conjecturally irreducible.

4. The representation 𝜌𝜌𝐽𝐽𝑔𝔭𝔭 is totally odd with cyclo-
tomic determinant and conjecturally arises on a
finite flat group scheme at all 𝔭𝔭 𝔭 𝑝𝑝 in 𝐾𝐾 .

5. We compute the Serre level 𝑁𝑁𝑥𝜌𝜌𝐽𝐽𝑔𝔭𝔭).
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6. The representation 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 is conjecturally modular
of level 𝑁𝑁𝑁𝜌𝜌𝐽𝐽𝐽𝐽𝐽) and (parallel) weight 2 by Con-
jecture 1, that is 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≃ 𝜌𝜌𝑔𝑔𝐽𝐽𝐽 for some Hilbert
eigenform 𝑔𝑔 of level 𝑁𝑁𝑁𝜌𝜌𝐽𝐽𝐽𝐽𝐽).

7. We compute the relevant space of eigenforms
and show that 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≄ 𝜌𝜌𝑔𝑔𝐽𝐽𝐽 except for the eigen-
forms 𝑔𝑔0 corresponding via modularity to the
Frey varieties 𝐽𝐽0 ∶= 𝐽𝐽𝑁𝐽𝐽𝐽 𝐽𝐽𝐽 𝐽𝐽) where 𝑁𝐽𝐽𝐽 𝐽𝐽𝐽 𝐽𝐽) sat-
isfies 𝐽𝐽𝐽𝐽𝐽𝐽 = 0 i.e. Frey varieties attached to triv-
ial solutions.

8. Conjecturally the varieties 𝐽𝐽0 have complex mul-
tiplication, thus SL2𝑁𝔽𝔽𝐽𝐽) is not contained in the
image of 𝜌𝜌𝑔𝑔0𝐽𝐽𝐽. Thus we also have 𝜌𝜌𝐽𝐽𝐽𝐽𝐽 ≄ 𝜌𝜌𝑔𝑔0𝐽𝐽𝐽, a
contradiction with Step 6.

In view of the three main steps in the proof of FLT,
the previous bullet points are divided as follows: Step
1 corresponds to 1–2, Step 2 corresponds to 3–6 and
Step 3 corresponds to 7–8.

To conclude this section, we note that the contra-
diction step which was trivial in the proof of FLT is
quite challenging in this more general situation. As
mentioned in Remark 1, the trivial solutions repre-
sent a major obstruction, but there are other issues.
Namely, the space of revelant Hilbert modular forms
might not be accessible with current software im-
plementations (either because it is too large, or by
lack of efficient algorithms in certain specific situa-
tions). Moreover, we miss a general method for dis-
carding isomorphisms between residual Galois rep-
resentations. In particular, it is an open problem to
show that given two non-isogenous rational elliptic
curves 𝐸𝐸𝐽 𝐸𝐸′, then for all large enough primes 𝑝𝑝, the
representations 𝜌𝜌𝐸𝐸𝐽𝑝𝑝 and 𝜌𝜌𝐸𝐸′𝐽𝑝𝑝 are not isomorphic.

7 Some recent results for signature 𝑁𝑟𝑟𝐽 𝑟𝑟𝐽 𝑝𝑝)

We now discuss our contribution to the Darmon’s
program in the case of the generalized Fermat equa-
tion

𝑥𝑥𝑟𝑟 + 𝑦𝑦𝑟𝑟 = 𝐶𝐶𝐶𝐶𝑛𝑛𝐽 (7.1)

where 𝑟𝑟 is a fixed prime ≥ 3, 𝐶𝐶 is a fixed positive
integer and 𝑛𝑛 ≥ 2 is an integer.

Throughout this paragraph, we fix the following
notation.

• 𝜁𝜁𝑟𝑟 primitive 𝑟𝑟-th root of unity

• 𝜔𝜔𝑖𝑖 = 𝜁𝜁𝑖𝑖
𝑟𝑟 + 𝜁𝜁−𝑖𝑖

𝑟𝑟 , for every 𝑖𝑖 ≥ 0

• ℎ𝑁𝑋𝑋) =
𝑁𝑟𝑟−𝑟)𝑟2

∏
𝑖𝑖=𝑟

𝑁𝑋𝑋 − 𝜔𝜔𝑖𝑖) ∈ ℤ[𝑋𝑋𝑋

• 𝐾𝐾 = ℚ𝑁𝜁𝜁𝑟𝑟)+ = ℚ𝑁𝜔𝜔𝑟) maximal totally real sub-
field of ℚ𝑁𝜁𝜁𝑟𝑟)

• 𝒪𝒪𝐾𝐾 integer ring of 𝐾𝐾

• 𝐽𝐽𝑟𝑟 unique prime ideal above 𝑟𝑟 in 𝒪𝒪𝐾𝐾 (totally ram-
ified)

Let 𝐽𝐽𝐽 𝐽𝐽 be non-zero coprime integers such that 𝐽𝐽𝑟𝑟 +
𝐽𝐽𝑟𝑟 ≠ 0. Following a construction of Kraus [19], we
consider the curve 𝐶𝐶𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) given by the equation

𝑦𝑦2 = 𝑁𝐽𝐽𝐽𝐽)
𝑟𝑟−𝑟

2 𝑥𝑥ℎ (
𝑥𝑥2

𝐽𝐽𝐽𝐽
+ 2) + 𝐽𝐽𝑟𝑟 − 𝐽𝐽𝑟𝑟.

The discriminant of this model is

Δ𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) = 𝑁−𝑟)
𝑟𝑟−𝑟

2 22𝑁𝑟𝑟−𝑟)𝑟𝑟𝑟𝑟𝑁𝐽𝐽𝑟𝑟 + 𝐽𝐽𝑟𝑟)𝑟𝑟−𝑟

which is non-zero as 𝐽𝐽𝑟𝑟 + 𝐽𝐽𝑟𝑟 ≠ 0. In particular, it
defines a hyperelliptic curve of genus 𝑁𝑟𝑟 − 𝑟)𝑟2.

Examples 1.— Here are explicit equations for Kraus’
curve with 𝑟𝑟 = 3𝐽 𝑟𝐽 𝑟.

𝑟𝑟 = 3 ∶ 𝑦𝑦2 = 𝑥𝑥3 + 3𝐽𝐽𝐽𝐽𝑥𝑥 + 𝐽𝐽3 − 𝐽𝐽3

𝑟𝑟 = 𝑟 ∶ 𝑦𝑦2 = 𝑥𝑥𝑟 + 𝑟𝐽𝐽𝐽𝐽𝑥𝑥3 + 𝑟𝐽𝐽2𝐽𝐽2𝑥𝑥 + 𝐽𝐽𝑟 − 𝐽𝐽𝑟

𝑟𝑟 = 𝑟 ∶ 𝑦𝑦2 = 𝑥𝑥𝑟 + 𝑟𝐽𝐽𝐽𝐽𝑥𝑥𝑟 + 𝑟4𝐽𝐽2𝐽𝐽2𝑥𝑥3 + 𝑟𝐽𝐽3𝐽𝐽3𝑥𝑥+
+ 𝐽𝐽𝑟 − 𝐽𝐽𝑟.

The Jacobian 𝐽𝐽𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) of the curve 𝐶𝐶𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽) is thus an
abelian variety of dimension 𝑁𝑟𝑟 − 𝑟)𝑟2. In particular,
when 𝑟𝑟 𝑟 3, it has dimension 𝑟 𝑟 and hence there is
no obvious way to attach 2-dimensional Galois repre-
sentations to 𝐽𝐽𝑟𝑟𝑁𝐽𝐽𝐽 𝐽𝐽).

To circumvent this issue we use ideas from Dar-
mon’s program as explained in the previous section.
In particular, the theorem below shows how to re-
cover Kraus’ Frey hyperelliptic curve in a similar way
as the usual Frey-Hellegouarch elliptic curve (see Ex-
ample 1). This result achieves Steps 1–2 from the de-
scription of Darmon’s program given in Section 6 in
the case of equation (7.1).

Theorem 10 ([6]).— There exists a hyperelliptic
curve 𝐶𝐶′

𝑟𝑟 𝑁𝑡𝑡) over 𝐾𝐾𝑁𝑡𝑡) of genus 𝑟𝑟−𝑟
2

such that 𝐽𝐽 ′
𝑟𝑟 𝑁𝑡𝑡) =

Jac𝑁𝐶𝐶′
𝑟𝑟 𝑁𝑡𝑡)) is of GL2𝑁𝐾𝐾)-type.

Moreover, for every prime ideal 𝐽𝐽 in 𝒪𝒪𝐾𝐾 above a
rational prime 𝑝𝑝, the representation

𝜌𝜌𝐽𝐽 ′
𝑟𝑟 𝑁𝑡𝑡)𝐽𝐽𝐽 ∶ 𝐺𝐺𝐾𝐾𝑁𝑡𝑡) → GL2𝑁𝒪𝒪𝐾𝐾𝑟𝐽𝐽)

is a Frey representation of signature 𝑁𝑟𝑟𝐽 𝑟𝑟𝐽 𝑝𝑝).
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The hyperelliptic curve 𝐶𝐶𝑟𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 is obtained
from 𝐶𝐶′

𝑟𝑟 (𝑡𝑡𝑎 after specialization at

𝑡𝑡0 = 𝑎𝑎𝑟𝑟

𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟

and taking the quadratic twist by

− (𝑎𝑎𝑎𝑎𝑎
𝑟𝑟−𝑟

2

𝑎𝑎𝑟𝑟 + 𝑎𝑎𝑟𝑟 .

In this result, it is crucial to notice that the prime 𝑝𝑝
is arbitrary. In particular, if we choose 𝑝𝑝 = 𝑟𝑟 (and
hence 𝔭𝔭 = 𝔭𝔭𝑟𝑟), then 𝜌𝜌𝐽𝐽 ′

𝑟𝑟 (𝑡𝑡𝑎𝑎𝔭𝔭𝑟𝑟
is a Frey representa-

tion of signature (𝑟𝑟𝑎 𝑟𝑟𝑎 𝑟𝑟𝑎. According to Theorem 7,
it arises in the Legendre family, allowing us to appeal
to the stronger results available for the case of elliptic
curves.

This is a key idea in Darmon’s program that as-
suming an appropriate generalization of Serre’s mod-
ularity conjecture for totally real fields (Conjecture 1),
the mod 𝔭𝔭𝑟𝑟 representation is modular and plays the
role of a ‘seed’ for modularity of all Frey varieties de-
scribed by Darmon (see diagram in [11, p. 433]).

The result below makes this argument uncondi-
tional for the Kraus Frey variety - under some irre-
ducibility assumption (which is proved to hold for
many values of 𝑟𝑟 such as 𝑟𝑟 = 𝑟 for instance) and parity
conditions - hence completing Steps 3-6 in Darmon’s
program from Section 6 for equation (7.1).

Theorem 11.— Let (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 be a non trivial primitive
solution to equation (7.1) for exponent 𝑛𝑛 = 𝑝𝑝 prime
such that 𝑝𝑝 𝑝 2𝑟𝑟𝐶𝐶 . Assume that

𝑎𝑎 𝑎 0 (𝑎𝑎𝑎 2𝑎 and 𝑎𝑎 𝑎 𝑟 (𝑎𝑎𝑎 𝑏𝑎. (7.2)

Let 𝐽𝐽𝑟𝑟 be the Jacobian of 𝐶𝐶𝑟𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎 base changed to 𝑎𝑎 .
Suppose further that 𝜌𝜌𝐽𝐽𝑟𝑟𝑎𝔭𝔭 is absolutely irreducible.
Then, there is a Hilbert newform 𝑔𝑔 over 𝑎𝑎 satisfying
the following properties:

(i) 𝑔𝑔 is of parallel weight 2, trivial character and
level 22𝔭𝔭2

𝑟𝑟 𝔫𝔫𝐶𝐶 ;

(ii) 𝜌𝜌𝐽𝐽𝑟𝑟𝑎𝔭𝔭 ≃ 𝜌𝜌𝑔𝑔𝑎𝑔𝑔 for some 𝑔𝑔 𝔓 𝑝𝑝 in the field of coeffi-
cients 𝑎𝑎𝑔𝑔 of 𝑔𝑔;

(iii) for all 𝔮𝔮2 𝔓 2 in 𝑎𝑎 , we have (𝜌𝜌𝑔𝑔𝑎𝑔𝑔 ⊗ ℚ𝑝𝑝𝑎|𝐼𝐼𝔮𝔮2
≃

𝛿𝛿 𝛿 𝛿𝛿−𝑟, where 𝛿𝛿 is a character of order 𝑟𝑟;

(iv) 𝑎𝑎 𝐾 𝑎𝑎𝑔𝑔 .

Moreover, if 𝔫𝔫𝐶𝐶 ≠ 𝑟 then 𝑔𝑔 has no complex multipli-
cation.

Note that, contrary to the case of Fermat’s last the-
orem, the 2-adic assumptions (7.2) in Theorem 11

are not valid in general; indeed, from the symmetry
of (7.1), we can only swap 𝑎𝑎 and 𝑎𝑎, so the possibility
of 𝑎𝑎 being even is excluded in the above theorem. We
shall explain in the next section how several ‘Frey va-
rieties’ can complement each other to obtain a com-
plete resolution of certain generalized Fermat equa-
tions (7.1) for specific values of 𝑟𝑟 and 𝐶𝐶 .

8 Diophantine applications

In this section, we discuss the Steps 7–8 from Sec-
tion 6 for the case 𝑟𝑟 = 𝑟 and 𝐶𝐶 = 𝐶 in the generalized
Fermat equations (7.1). In this situation, we achieve
the following complete result.

Theorem 12 ([5, Theorem 1.1]).— For all integers 𝑛𝑛 𝑛
2, there are no non-trivial primitive solutions to

𝑥𝑥𝑟 + 𝑦𝑦𝑟 = 𝐶𝑧𝑧𝑛𝑛. (8.1)

First of all, we can reduce the problem of solving 𝑥𝑥𝑟 +
𝑦𝑦𝑟 = 𝐶𝑧𝑧𝑛𝑛 for 𝑛𝑛 𝑛 2 to the case where 𝑛𝑛 = 𝑝𝑝 is prime
and 𝑝𝑝 𝑛 𝑝, 𝑝𝑝 ≠ 𝑟, using simple arithmetic consider-
ations and work of Bennett-Skinner [1] (for 𝑛𝑛 = 2),
Bennett-Skinner-Yazdani [2] (for 𝑛𝑛 = 𝐶) and Serre
[23] (for 𝑛𝑛 = 𝑟).

In [5], we actually give three different proofs
of Theorem 12 which rely on a ‘multi-Frey’ ap-
proach using a combination of Kraus’ hyperellip-
tic curve 𝐶𝐶𝑟(𝑎𝑎𝑎 𝑎𝑎𝑎 and two Frey elliptic curves 𝐸𝐸𝑎ℚ
and 𝐹𝐹 𝑎ℚ(𝜁𝜁𝑟 + 𝜁𝜁−𝑟

𝑟 𝑎 whose construction is due to Dar-
mon and Freitas, respectively.

Our first proof uses the classical modular method
outlined in the case of FLT in Section 5 with the two
aformentioned Frey elliptic curves attached to equa-
tion (8.1).

• (Darmon, [20, §4.5.1.3]) A Frey curve over ℚ:

𝐸𝐸𝑎𝑎𝑎𝑎𝑎 ∶ 𝑦𝑦2 = 𝑥𝑥𝐶 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎𝑏𝑥𝑥 + 𝑎𝑎6

where
𝑎𝑎2 = −(𝑎𝑎 − 𝑎𝑎𝑎2𝑎
𝑎𝑎𝑏 = −2𝑎𝑎𝑏 + 𝑎𝑎𝐶𝑎𝑎 − 𝑝𝑎𝑎2𝑎𝑎2 + 𝑎𝑎𝑎𝑎𝐶 − 2𝑎𝑎𝑏𝑎
𝑎𝑎6 = 𝑎𝑎6 − 6𝑎𝑎𝑝𝑎𝑎 + 𝑏𝑎𝑎𝑏𝑎𝑎2 − 𝑟𝐶𝑎𝑎𝐶𝑎𝑎𝐶 + 𝑏𝑎𝑎2𝑎𝑎𝑏−

−6𝑎𝑎𝑎𝑎𝑝 + 𝑎𝑎6.

• (Freitas, [16, p. 619]) A Frey curve over the totally
real cubic field ℚ(𝜁𝜁𝑟 + 𝜁𝜁−𝑟

𝑟 𝑎:
𝐹𝐹𝑎𝑎𝑎𝑎𝑎 ∶ 𝑦𝑦2 = 𝑥𝑥(𝑥𝑥 − 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 + 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where for 𝑖𝑖 = 𝑟𝑎 2, we have 𝜔𝜔𝑖𝑖 = 𝜁𝜁𝑖𝑖
𝑟 + 𝜁𝜁−𝑖𝑖

𝑟 and

𝑥𝑥𝑎𝑎𝑎𝑎𝑎 = (𝜔𝜔2 − 𝜔𝜔𝑟𝑎(𝑎𝑎 + 𝑎𝑎𝑎2

𝑥𝑥𝑎𝑎𝑎𝑎𝑎 = (2 − 𝜔𝜔2𝑎(𝑎𝑎2 + 𝜔𝜔𝑟𝑎𝑎𝑎𝑎 + 𝑎𝑎2𝑎.

7
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We note here that Freitas’ Frey elliptic curve 𝐹𝐹 𝐹 𝐹𝐹𝑎𝑎𝑎𝑎𝑎
is defined over a totally real field of degree > 1 and
is not base change from ℚ. In particular, its mod 𝑝𝑝
representations are not explained by Darmon’s classi-
fication of Frey representations of signature (7𝑎 7𝑎 𝑝𝑝𝑝.

The total running time for this first proof is ap-
proximately 40 minutes with around 3/4 of this
time devoted to computing the Hilbert newforms
over ℚ(𝜁𝜁7 + 𝜁𝜁−1

7 𝑝 of parallel weight 2 and level 𝔮𝔮3
2𝔮𝔮3𝔮𝔮7

(with 𝔮𝔮𝑖𝑖 the unique prime ideal above 𝑖𝑖 in ℚ(𝜁𝜁7 +𝜁𝜁−1
7 𝑝)

used to deal with the case where 𝑎𝑎𝑎𝑎 is even and 7 ∣
𝑎𝑎 + 𝑎𝑎. There are precisely 121 such newforms gener-
ating a space of dimension 818, with coefficient fields
of degree up to 18.

Our second and third proofs of Theorem 12 add
in the use of Kraus’ Frey hyperelliptic curve

𝐶𝐶7(𝑎𝑎𝑎 𝑎𝑎𝑝 𝑎 𝑎𝑎2 𝐹 𝑥𝑥7+7𝑎𝑎𝑎𝑎𝑥𝑥5+14𝑎𝑎2𝑎𝑎2𝑥𝑥3+7𝑎𝑎3𝑎𝑎3𝑥𝑥+𝑎𝑎7−𝑎𝑎7

in two different ways: the second proof uses 𝐶𝐶7(𝑎𝑎𝑎 𝑎𝑎𝑝
as much as possible whilst the third and last proof is
designed to minimize the computational time among
all proofs we give. The total running times for these
proofs are approximatively 10 minutes and 1 minute
respectively.

Our second proof is much more involved and
requires introducing many new elimination tech-
niques [6, §9] to discard the isomorphism in The-
orem 11((ii)). To illustrate the computational chal-
lenges we have faced, let us mention that we had to
compute here in the space of Hilbert newforms of
level 𝔮𝔮2

2𝔮𝔮3𝔮𝔮2
7 which has dimension 698. This dimen-

sion is comparable in size with that of the space con-
sidered in the first proof, but it turns out to be much
faster to initialize yielding only 61 newforms. Some
of these forms have coefficient field of degree as large
as 54 making the elimination procedure considerably
more difficult. Fortunately, we are able to reduce the
number of newforms to consider down to 25 using
the condition 𝐾𝐾 𝐾 𝐾𝐾𝑔𝑔 from Theorem 11((iv)). As
explained in [5] this ‘instantaneous reduction’ is only
available when working with abelian varieties of di-
mension > 1. Moreover, we also developed a collec-
tion of techniques to speed up the elimination pro-
cedure resulting in a great saving in the total running
time; see [5, §7]. While this approach a priori requires
harder and lengthier computations, it ends up allow-
ing for a faster proof than the previous one.

Our third and last proof builds on the two previ-
ous ones. Combining information about the Frey (hy-
per)elliptic curves introduced above and their twists
we manage to lower down to 104 the dimension of
the largest space we have to consider. Then we apply

the techniques explained for the second proof to deal
with the corresponding 19 newforms (whose coeffi-
cient fields are all of degree ≤ 15) yielding the most
efficient proof in less than a minute. This illustrates
how the additional structures carried by the Frey va-
rieties of dimension > 1 can be exploited to reduce
computations, despite the fact that we have to work
with Jacobians of hyperelliptic curves.

Finally, let us point out that these methods have
already been applied to other Fermat-type equations
to obtain results not within reach of the classical ap-
proach with Frey elliptic curves. In the case of 𝑟𝑟 𝐹
11 in (7.1), we refer the reader to [6] and for signa-
ture (𝑝𝑝𝑎 𝑝𝑝𝑎 5𝑝 to the recent preprint of Chen and Kout-
sianas [8].
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Luis Nunes Vicente, member of the scientific council 
of CIM, has been selected as a Fellow of the Society 
for Industrial and Applied Mathematics (SIAM). SIAM 
has over 14,000 individual members in all areas of in-
dustrial and applied math. The SIAM Fellows Program 
recognises members of SIAM who have made outstand-
ing contributions to fields served by the industrial and 
applied math community. According to his citation, 
Luis was selected for ground-breaking contributions to 
derivative-free and bilevel optimisation, and exemplary 
leadership in editorial and organisational service to the 
SIAM community.
 Luis serves as Professor and Chair at Lehigh Universi-
ty. He is a leading researcher in continuous optimisation 
and its applications to industrial engineering and opera-
tions research, he received his PhD from Rice University 

in 1996 under a Fulbright scholarship and was awarded 
the Lagrange Prize of MOS-SIAM in 2015. He has held 
visiting positions at institutions including IBM Research, 
NYU, Rice, CERFACS, and Rome Sapienza, and has 
served on the editorial boards of the SIAM Journal on 
Optimization and Mathematical Programming. He cur-
rently chairs the SIAM Activity Group on Optimization 
(2023-2025) and ACORD (2023),
 Luís commented this distinction saying: “It is a great 
honor to be elected a Fellow of SIAM. I have always had 
tremendous admiration for SIAM, from all the work done 
to promote the field and the profession to all its journals, 
conferences, and awards. I never thought I would reach 
this level, and my takeaway is to continue to work hard in 
my research and serve others in the community.”

Professor Luis Nunes Vicente has been selected as a 
Fellow of SIAM
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report

by Carlos Florentino*

The international conference Integrability and Moduli, in 
honor of Emeritus Professor and renowned mathemati-
cian Leon Takhtajan, took place this summer at the Fac-
ulty of Sciences of the University of Lisbon. From the 8th 
to the 12th of July 2024, the conference gathered many 
of Takhtajan’s collaborators and co-authors, and some 
experts from all around the globe, on the topics of his 
long research career: integrable systems, quantization, 
moduli spaces, conformal field theory, representation 
theory, quantum groups, to name just a few.
 This event had been initially scheduled for 2020, the 
year of Takhtajan’s 70th birthday, with the Euler Mathe-
matical Institute (EMI) in Saint Petersburg as the venue, 
but had to be cancelled (two years in a row) due to the 
Covid-19 pandemic. Moreover, given the unfortunate 
travel restrictions on many mathematicians coming 
from the Russian Federation, after 2022 it was clear that 
the conference would have to take place elsewhere.
 Upon contacting the initial organizers and scientific 
committee, formed by professors Samson Shatashvili 
(Trinity College Dublin, Ireland), Fedor Smirnov (Sor-
bonne University, CNRS, France) and Peter Zograf (EMI, 
Russia), my suggestion of organizing the event in Lisbon 
was accepted, and the four of us successfully submit-
ted it to the European Mathematical Society to become 
a Satellite Conference of the 9th European Congress of 

Mathematicians (ECM 2024), held this summer in Se-
ville, Spain.
 After securing support from CMAFcIO and GFM 
(U. Lisbon), CIM and FCT (Portugal) and the Hamilton 
Mathematical Institute (Ireland), whom we gratefully 
thank, we were certain that the conference would be an 
astounding success. Indeed, we counted with eighteen 
great one-hour presentations by mathematicians com-
ing from Europe, North America and Asia: A. Alekseev 
(Univ. Geneva), C. Choi (Perimeter Inst., Ontario), G. 
Cotti (Univ. Lisbon), R. Dey (ICTS Bangalore), P. Gothen 
(Univ. of Porto), A. Its (Indiana Univ.), V. Korepin (SUNY 
Stony Brook), A. Laptev (Imperial College), M. Mariño 
(Univ. Geneva), C. Meneses (Kiel Univ.), J. Park (KIAS 
Seoul), V. Pingali (IISC Bangalore), E. Sklyanin (Univ. 
York), M. Stošić (IST, Lisbon), D. Sullivan (SUNY Stony 
Brook), A. Veselov (Loughborough Univ.), L. Weng (Ky-
ushu Univ.), P. Wiegmann (Univ. Chicago).
 The conference had around 60 participants, includ-
ing some PhD students, and also served to foster further 
collaborations in the areas of Geometry, Topology and 
Mathematical Physics, and to announce new research 
lines and open problems that may result in future active 
investigations. All information (including many of the 
slides of the seminars) is available at the website:

https://sites.google.com/view/
integrabilityandmoduli2024/

* FCUL and CEMS.UL

Integrability and Moduli 
A conference in honor of Leon Takhtajan
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Jorge Buescu, a mathematician from the Faculty of 
Sciences of the University of Lisbon (FCUL), has been 
awarded the “Grande Prémio Ciência Viva 2024”. This 
prestigious award, the highest category of the Ciência 
Viva Prizes, recognises individuals and organisations for 
their outstanding contributions to scientific and techno-
logical dissemination.
 Jorge Buescu, who holds a degree in Physics from 
FCUL and a PhD in Mathematics from the University of 
Warwick (1995), is currently an Associate Professor with 
Habilitation in the Department of Mathematics at FCUL.
 He is a passionate science communicator, has au-
thored over two hundred pedagogical and outreach arti-
cles, many of which stem from his three-decade-long col-
laboration with the Ordem dos Engenheiros magazine, 
Ingenium, where he maintains a regular science column. 
Jorge emphasises the importance of sharing science, 
stating, “I have always felt the need to share science. 
Communicating, disseminating, showing others the 
beauty that exists in what we, scientists, do and which 
is often not visible from the outside.” He further adds, 

Professor Jorge Buescu was awarded the
Grande Prémio Ciência Viva 2024

“Communicating and disseminating science rigorously 
is an increasingly important task. Scientific dissemina-
tion inspires new generations, sparking curiosity and 
showing the relevance of science. But, in addition, it pro-
motes the growth of a healthier society, as well-informed 
citizens are better able to demand actions that promote 
social and environmental well-being.”
 Regarding receiving the award, Jorge expressed, “It 
is a great joy for me, for many reasons, to receive this 
Grande Prémio Ciência Viva. It is, above all, a recogni-
tion that the great passion that moves me is truly worth 
living.”
 In addition to the Grande Prémio Ciência Viva, Jorge 
Buescu has also been awarded the Rómulo de Carvalho 
Prize for Research and Dissemination, was appointed a 
Corresponding Member of the Ordem dos Engenheiros, 
was elected an honorary member of the Real Sociedad 
Matemática Española, and serves as Vice-President of 
the European Mathematical Society, the first Portuguese 
to hold this position.
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report

by Teresa Conde*, Samuel Lopes**, Ana Paula Santana***
 and Ivan Yudin***

The international conference Perspectives in Represen-
tation Theory took place at the University of Coimbra, 
July 1–3, 2024, and it was a Satellite meeting of the 9th 
European Congress of Mathematics, Sevilla 2024 (see 
https://ecm2024sevilla.com).
 The meeting was sponsored by the research centers 
CMUC (Centro de Matemática da Universidade de Coim-
bra) and CMUP (Centro de Matemática da Universidade 
do Porto), FCT (Fundação para a Ciência e a Tecnologia), 
DMUC (Departamento de Matemática da Universidade 
de Coimbra), CIM (Centro Internacional de Matemática) 
and EMS (European Mathematical Society).
 The goal of this conference was to bring together 
mathematicians working on different aspects of repre-
sentation theory and to foster collaboration, thriving to 

*  University of Bielefeld.
**  CMUP, Dep. de Matemática, Faculdade de Ciências, Universidade do Porto.
  Partially supported by CMUP, member of LASI, which is financed by national funds through FCT, under the 
  projects with reference UIDB/00144/2020 and UIDP/00144/2020.
*** CMUC, Universidade de Coimbra (funded by the Portuguese Government through FCT/MCTES, DOI 10.54499/
  UIDB/00324/2020).

Perspectives in 
Representation Theory

engage early career researchers as well as students, thus 
providing a platform for emerging mathematicians to 
showcase their work, exchange ideas, and connect with 
other experts in the field.
 The conference program included two 150-minute
Lecture Series, ten 50-minute Plenary Lectures, as
well as 25-minute Contributed Talks and a Poster
Session. The topics covered ranged from the repre-
sentation theory of groups, Lie algebras and their
deformations, to module theory of rings, homological
algebra and more categorial aspects of representation
theory.
 More information can be found at

http://www. mat.uc.pt/~crt/prt2024/
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report

by Cláudio Piedade*, Fátima Rodrigues**, Inês Rodrigues**,
 Olga Azenhas*** and Samuel Lopes*

The 14th Combinatorics Days

The Combinatorics Days is an itinerant annual conference 
series that brings together mathematicians working in 
Combinatorics, widely interpreted, and related fields 
such as Algebra, Geometry, Probability, Computer Sci-
ence or Physics.

http://www.mat.uc.pt/~combdays/14thcombday.html

The 14th edition of Combinatorics Days was hosted by Uni-
versidade NOVA de Lisboa, June 27–29, 2024. The pro-

*  CMUP, FCUP.
**  NOVA Math, NOVA FCT.
*** CMUC, UC.

gramme consisted of two mini courses, one by Mercedes 
Rosas (University of Sevilla), on Vector partition function 
in representation theory, and another by Travis Scrimshaw 
(Hokkaido University), on (K-theoretic) Schubert calculus 
and stochastic processes. Additionally, there was a plenary 
lecture by Persi Diaconis (Stanford University), on An 
Introduction to Computational Polya Theory, and twelve 
diverse thirty-minute oral presentations.
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lie theory anD the eightfolD way

by John Huerta*

* Mathematical Sciences Institute, Australian National University.
 Departamento de Matemática, Instituto Superior Técnico, Unversidade de Lisboa 
 Email: john.huerta@tecnico.ulisboa.pt

Abstract.—This short expository note aims to give the minimal amount of Lie 
theory needed to appreciate the eightfold way in particle physics. We first give a 
quick but complete account of the finite-dimensional irreducible representations 
(irreps) of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ). Then we sketch how the theory generalizes to the irreps of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), and close by gesturing at the role of these irreps in the eightfold way.

1 Introduction

Consider the space of traceless, 2 × 2 complex matri-
ces, which we denote 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ):

𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ) = {(
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑎𝑎) ∶ 𝑎𝑎𝔰 𝑎𝑎𝔰 𝑐𝑐 𝑎 ℂ} .

This is a vector space, but more importantly, it is a Lie
algebra—it is closed under the Lie bracket, defined in
this case to be the commutator:

[𝑋𝑋𝔰 𝑋𝑋 𝑋 = 𝑋𝑋𝑋𝑋 𝑐 𝑋𝑋 𝑋𝑋𝔰 for 𝑋𝑋𝔰 𝑋𝑋 𝑎 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ).
Lie algebras, like their cousins Lie groups, encode
symmetries. In the case of 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ), for instance, each
element acts on the vector space ℂ2 as a linear trans-
formation, and we think of such a transformation as
a symmetry of ℂ2. This situation, where a Lie algebra
acts on a vector space, is the subject of Lie theory. The
vector space equipped with such an action is called a
‘representation’.

The representations of 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ) on finite-
dimensional vector spaces are startling in their sim-
plicity. Though there are infinitely many such repre-
sentations, each one can be decomposed into simpler
pieces, called the ‘irreducible representations’, or ir-
reps, and each irrep is uniquely determined by the
choice of a single natural number. Curiously, we will
see that it is useful to describe the irrep associated to
the natural number 𝑚𝑚 with a diagram consisting of

2𝑚𝑚 𝑚 𝑚 dots arranged in a line, labeled from 𝑐𝑚𝑚 to 𝑚𝑚
in increments of 2:

⋯
𝑐𝑚𝑚 𝑐𝑚𝑚 𝑚 2 𝑚𝑚 𝑐 2 𝑚𝑚

This picture is our first hint that irreps are surprisingly
discrete, being determined by points in a lattice, here
just the integers. They also exhibit some hidden sym-
metry, which we see here by the symmetry between
𝑚𝑚 and 𝑐𝑚𝑚.

Passing to the next case of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), the special lin-
ear Lie algebra on ℂ𝔰, reveals even more structure.
Again, the irreducible representations, or irreps, are
determined by points in a lattice with some symme-
try:

Now, however, the lattice is two-dimensional, and
the symmetry group is bigger, generated by all the
reflection symmetries manifest in the picture. The
circle around the center dot tells us to count it with
multiplicity two.

1
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This representation theory is pure linear algebra,
but it magically appears in particle physics, where it
is part of the ‘eightfold way’. In the middle of the
20th century, experiments where physicists collided
particles together at high energies produced scores of
a new particles beyond the familiar electron, proton
and neutron that constitute atoms. Searching for or-
der in the chaos, physicists discovered that these new
particles could be organized into representations of
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ):

𝜋𝜋0

𝜂𝜂
𝜋𝜋+

𝐾𝐾+𝐾𝐾0

𝜋𝜋−

𝐾𝐾− 𝐾𝐾
0
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2 Lie algebras

To get started, let us give some precise definitions of
the objects we want to study, namely Lie algebras and
their representations. Although we could work over
any field, we choose to work over the complex num-
bers, ℂ. Thanks to ℂ being algebraically closed, every
matrix has an eigenvalue. Since computing eigenval-
ues and diagonalizing matrices will play an essential
role in our analysis, it pays to work over ℂ.

Definition 1.— A Lie algebra 𝔤𝔤 is a complex vector
space equipped with a bilinear operation called the
Lie bracket

[−𝔰 −]∶ 𝔤𝔤 𝔤 𝔤𝔤 𝔤 𝔤𝔤𝔰

satisfying the following axioms:

• skew-symmetry: [𝑋𝑋𝔰 𝑋𝑋 ] 𝑋 −[𝑋𝑋 𝔰 𝑋𝑋] for all
𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔤𝔤;

• the Jacobi identity: [𝑋𝑋𝔰 [𝑋𝑋 𝔰 𝑋𝑋]] 𝑋 [[𝑋𝑋𝔰 𝑋𝑋 ]𝔰 𝑋𝑋] +
[𝑋𝑋 𝔰 [𝑋𝑋𝔰 𝑋𝑋]], for all 𝑋𝑋𝔰 𝑋𝑋 𝔰 𝑋𝑋 𝑋 𝔤𝔤.

Example 1.— We have already met two examples of
our favorite Lie algebra in the Introduction, namely
the special linear Lie algebra of traceless 𝑛𝑛 𝑛 𝑛𝑛 com-
plex matrices:

𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ) 𝑋 {𝑋𝑋 𝑋 𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝔰ℂ) ∶ 𝑋r𝔰𝑋𝑋) 𝑋 0} 𝔰
where the Lie bracket is given by the commutator:

[𝑋𝑋𝔰 𝑋𝑋 ] 𝑋 𝑋𝑋𝑋𝑋 − 𝑋𝑋 𝑋𝑋𝔰 𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ).
It is a worthwhile if somewhat tedious exercise to
check that the Jacobi identity holds.

Example 2.— Dropping the condition on the trace,
we have the general linear Lie algebra of all 𝑛𝑛 𝑛 𝑛𝑛
complex matrices:

𝔤𝔤𝔰𝔰𝔰𝑛𝑛𝔰 ℂ) 𝑋 𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝔰ℂ).
Again, the Lie bracket is given by the commutator.

Example 3.— More abstractly, for any complex vector
space 𝑉𝑉 , we have the general linear Lie algebra on 𝑽𝑽 ,
consisting of all linear maps:

𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) 𝑋 {𝑇𝑇 ∶ 𝑉𝑉 𝔤 𝑉𝑉 ∶ 𝑇𝑇 linear} .
Once again, the Lie bracket is given by the commu-
tator. Of course, fixing a basis of 𝑉𝑉 gives us an iso-
morphism of Lie algebras, 𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) 𝔤 𝔤𝔤𝔰𝔰𝔰𝑛𝑛𝔰 ℂ), where
𝑛𝑛 𝑋 𝑛𝑛𝑛𝔰𝑉𝑉 ).

Definition 2.— Let 𝔤𝔤 be a Lie algebra. A repre-
sentation of 𝔤𝔤 is a pair 𝔰𝑉𝑉 𝔰 𝑉𝑉) where 𝑉𝑉 is a finite-
dimensional complex vector space, and 𝑉𝑉∶ 𝔤𝔤 𝔤
𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) is a homomorphism of Lie algebras. Explicitly,
this means that 𝑉𝑉 is a linear map such that

𝑉𝑉 𝔰[𝑋𝑋𝔰 𝑋𝑋 ]) 𝑋 𝑉𝑉𝔰𝑋𝑋)𝑉𝑉𝔰𝑋𝑋 )−𝑉𝑉𝔰𝑋𝑋 )𝑉𝑉𝔰𝑋𝑋)𝔰 for all 𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔤𝔤𝔰
since the bracket on 𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) is the commutator.

Example 4.— Every Lie algebra 𝔤𝔤 has a god-given rep-
resentation on itself, called the adjoint representa-
tion, 𝑋𝑛∶ 𝔤𝔤 𝔤 𝔤𝔤𝔰𝔰𝔰𝔤𝔤). An element 𝑋𝑋 𝑋 𝔤𝔤 acts on
𝑋𝑋 𝑋 𝔤𝔤 by bracketing: 𝑋𝑛𝔰𝑋𝑋)𝑋𝑋 𝑋 [𝑋𝑋𝔰 𝑋𝑋 ].

It is a useful exercise to check that this is a repre-
sentation. The Jacobi identity will play a key role.

3 The representations of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ)

We will study the representations of the complex spe-
cial linear Lie algebra, 𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ). In fact, we are mainly
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interested in 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), because of the role it plays in
particle physics. But to get started, we need to study
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ).

Definition 3.— A Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) is
a maximal abelian subalgebra such that the adjoint
action ad𝔰𝐻𝐻) on 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) can be diagonalized for all
𝐻𝐻 𝐻 𝔥𝔥.

Example 5.— Let 𝔥𝔥 be the diagonal matrices in
𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ). This subalgebra is:

• abelian, because diagonal matrices commute;

• maximal, because additional elements would
have off-diagonal entries and no longer com-
mute;

• ad𝔰𝐻𝐻) is diagonalizable for all 𝐻𝐻 𝐻 𝔥𝔥.

Let us check this last claim: let 𝐻𝐻 be the diagonal
matrix with entries 𝑎𝑎1𝔰 … 𝔰 𝑎𝑎𝔥𝔥 on the diagonal, let 𝐸𝐸𝑖𝑖𝑖𝑖
be the elementary matrix with 1 in the 𝑖𝑖𝑖𝑖th entry and
zeroes elsewhere. A quick computation shows that
[𝐻𝐻𝔰 𝐸𝐸𝑖𝑖𝑖𝑖] = 𝔰𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝐸𝐸𝑖𝑖𝑖𝑖 . For 𝑖𝑖 𝑖 𝑖𝑖 (why?), this shows
that 𝐸𝐸𝑖𝑖𝑖𝑖 is an eigenvector of ad𝔰𝐻𝐻) with eigenvalue
𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖 , and we can thus write down a basis of eigen-
vectors for 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ). This diagonalizes ad𝔰𝐻𝐻).

For 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), there’s a one-dimensional Cartan
subalgebra 𝔥𝔥 = 𝔥𝔥a𝔥𝔰𝐻𝐻), spanned by the element

𝐻𝐻 = (
1 0
0 −1) .

This matrix is part of the standard basis for 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ):

𝐸𝐸 = (
0 1
0 0) 𝔰 𝐻𝐻 = (

1 0
0 −1) 𝔰 𝐹𝐹 = (

0 0
1 0) .

These matrices satisfy the important relations:

[𝐻𝐻𝔰 𝐸𝐸] = 𝔰𝐸𝐸𝔰 [𝐸𝐸𝔰 𝐹𝐹 ] = 𝐻𝐻𝔰 [𝐻𝐻𝔰 𝐹𝐹 ] = −𝔰𝐹𝐹 .

Definition 4.— Let 𝔰𝑉𝑉 𝔰 𝑉𝑉) be a representation of 𝔤𝔤.
A subspace 𝑊𝑊 𝔥 𝑉𝑉 is called invariant under 𝔤𝔤 if
𝑉𝑉𝔰𝜌𝜌)𝜌𝜌 𝐻 𝑊𝑊 for all 𝜌𝜌 𝐻 𝔤𝔤 and 𝜌𝜌 𝐻 𝑊𝑊 . A repre-
sentation 𝑉𝑉 of 𝔤𝔤 is irreducible if the only invariant
subspaces of 𝑉𝑉 are 0 and 𝑉𝑉 . A representation 𝑉𝑉 is
called completely reducible if it is the direct sum of
irreducible representations, i.e., 𝑉𝑉 = ⨁𝜆𝜆 𝑉𝑉𝜆𝜆, where
each 𝑉𝑉𝜆𝜆 is irreducible.

To help us analyze the representations of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), we
note the following without proof:

Theorem 5.— All complex, finite-dimensional repre-
sentations of 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) are completely reducible.

This theorem says we can focus on the irreducible
representations, or irreps, since all others arise by tak-
ing direct sums. From now on, we assume 𝑉𝑉 is an ir-
reducible, finite-dimensional representation over ℂ.
The key result for understanding 𝑉𝑉 is a bit deep, and
we give it without proof:

Theorem 6.— Given any complex finite-dimensional
representation 𝔰𝑉𝑉 𝔰 𝑉𝑉) of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), 𝑉𝑉𝔰𝐻𝐻) is diagonaliz-
able.

This should be plausible, since 𝐻𝐻 itself is a diagonal
matrix, and we already know that ad𝔰𝐻𝐻) is diagonal-
izable. The remarkable thing is that 𝑉𝑉𝔰𝐻𝐻) is diago-
nalizable for any 𝑉𝑉. We use this diagonalizability as
follows: decompose the irrep 𝑉𝑉 into a direct sum of
eigenspaces

𝑉𝑉 = ⨁
𝜆𝜆

𝑉𝑉𝜆𝜆𝔰

where the direct sum is over all complex numbers 𝜆𝜆
which are eigenvalues of 𝑉𝑉𝔰𝐻𝐻), and each summand 𝑉𝑉𝜆𝜆
is an eigenspace for 𝜆𝜆. In other words, for all 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆,
we have 𝐻𝐻𝑣𝑣 = 𝜆𝜆𝑣𝑣. (Really, 𝑉𝑉𝔰𝐻𝐻)𝑣𝑣 = 𝜆𝜆𝑣𝑣, but it is
standard to suppress 𝑉𝑉.)

In Lie theory, the eigenvalues occurring here have
a special name: they are called the weights of 𝑉𝑉 . The
eigenspaces 𝑉𝑉𝜆𝜆 are called weight spaces, and an eigen-
vector 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆 is called a weight vector. Given the de-
composition of 𝑉𝑉 into weight spaces, we thus know
how 𝐻𝐻 acts—it acts diagonally, by multiplication by
the corresponding weight. Next, we would like to
determine how the other basis elements 𝐸𝐸 and 𝐹𝐹 act:

Proposition 7.— If 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆, then 𝐸𝐸𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆𝜆𝔰 and
𝐹𝐹 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆−𝔰. (Really, 𝑉𝑉𝔰𝐸𝐸)𝑣𝑣 and 𝑉𝑉𝔰𝐹𝐹 )𝑣𝑣, but we’re con-
tinuing to suppress 𝑉𝑉.)

The proof of this proposition is so important, that we
call it the fundamental calculation: fix 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆, and
compute

𝐻𝐻𝐸𝐸𝑣𝑣 = 𝐸𝐸𝐻𝐻𝑣𝑣 𝜆 [𝐻𝐻𝔰 𝐸𝐸]𝑣𝑣 = 𝜆𝜆𝐸𝐸𝑣𝑣 𝜆 𝔰𝐸𝐸𝑣𝑣 = 𝔰𝜆𝜆 𝜆 𝔰)𝐸𝐸𝑣𝑣.
Similarly, 𝐻𝐻𝐹𝐹 𝑣𝑣 = 𝔰𝜆𝜆−𝔰)𝐹𝐹 𝑣𝑣. This is what we wanted
to check.

So, we have arrived at the following picture of 𝑉𝑉 :

𝑉𝑉 = 𝑉 𝑉 𝑉𝑉𝜆𝜆−𝔰 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝔰 𝑉 𝑉
where 𝐻𝐻 multiplies by the weight, 𝐸𝐸 raises the
weight, and 𝐹𝐹 lowers the weight. We do not know
that all the weights of 𝑉𝑉 lie in this sequence—we will
see that soon!—but because 𝑉𝑉 is finite-dimensional,
we know this sequence cannot go on forever, so there
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must be a largest weight:

𝑉𝑉 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆max
.

The weight 𝜆𝜆max is called the highest weight, and a
nonzero vector 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆max

is called a highest weight
vector. A highest weight vector has the property that
𝐸𝐸𝑣𝑣 𝑉 𝐸.

Similarly, there must be a lowest weight:

𝑉𝑉 𝑉 𝑉𝑉𝜆𝜆min
𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆max

,
For any 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆min

, we must have 𝐹𝐹 𝑣𝑣 𝑉 𝐸.
Now, if we pick a highest weight vector 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆max

and keep lowering it with 𝐹𝐹 , we will eventually get a
vector in 𝑉𝑉𝜆𝜆min

. Let us suppose this happens in 𝑚𝑚 steps.
That is, 𝑚𝑚 is the natural number such that 𝐹𝐹 𝑚𝑚𝑣𝑣 𝑣 𝐸,
but 𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸.

Proposition 8.— The vectors {𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣 form
a basis of 𝑉𝑉 .

Proof.— These vectors are linearly independent be-
cause they are eigenvectors (weight vectors) with dis-
tinct eigenvalues (weights). To show they span 𝑉𝑉 , let
𝑊𝑊 𝑉 𝑊𝑊an𝑊𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣. The nonzero subspace
𝑊𝑊 is preserved by the action of 𝐸𝐸, 𝐹𝐹 , and 𝐻𝐻 . Hence,
𝑊𝑊 is invariant and we conclude 𝑊𝑊 𝑉 𝑉𝑉 , because 𝑉𝑉
is irreducible. ∎

In this basis, we know exactly how 𝐻𝐻 and 𝐹𝐹 act:

𝐻𝐻𝐹𝐹 𝑘𝑘𝑣𝑣 𝑉 𝑊𝜆𝜆max 𝜆 𝜆𝑘𝑘𝑣𝐹𝐹 𝑘𝑘𝑣𝑣, 𝐹𝐹 𝐹𝐹 𝑘𝑘𝑣𝑣 𝑉 𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣,
but it is less clear how 𝐸𝐸 acts. Let us derive a formula
for the action of 𝐸𝐸, inductively. First of all, we know
𝐸𝐸𝑣𝑣 𝑉 𝐸. For 𝐸𝐸𝐹𝐹 𝑣𝑣, we compute:

𝐸𝐸𝐹𝐹 𝑣𝑣 𝑉 𝐹𝐹 𝐸𝐸𝑣𝑣 𝜆 𝐸𝐸𝐸, 𝐹𝐹 𝐸𝑣𝑣 𝑉 𝐸 𝜆 𝐻𝐻𝑣𝑣 𝑉 𝜆𝜆max𝑣𝑣.
And for 𝐸𝐸𝐹𝐹 𝜆𝑣𝑣, we have:

𝐸𝐸𝐹𝐹 𝜆𝑣𝑣 𝑉 𝐹𝐹 𝐸𝐸𝐹𝐹 𝑣𝑣 𝜆 𝐸𝐸𝐸, 𝐹𝐹 𝐸𝐹𝐹 𝑣𝑣 𝑉 𝜆𝜆max𝐹𝐹 𝑣𝑣 𝜆 𝐻𝐻𝐹𝐹 𝑣𝑣 𝑉
𝑉 𝑊𝜆𝜆𝜆max 𝜆 𝜆𝑣𝐹𝐹 𝑣𝑣.

Continuing in this way, we can discover the pattern:

𝐸𝐸𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣 𝑉 𝑊𝜆𝜆max 𝜆 𝑊𝜆𝜆max 𝜆 𝜆𝑣 𝜆 𝑉 𝜆 𝑊𝜆𝜆max 𝜆 𝜆𝑘𝑘𝑣𝑣𝐹𝐹 𝑘𝑘𝑣𝑣,
which simplifies to 𝐸𝐸𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣 𝑉 𝑊𝑘𝑘 𝜆 𝑚𝑣𝑊𝜆𝜆max 𝜆 𝑘𝑘𝑣𝐹𝐹 𝑘𝑘𝑣𝑣.

We learn something magical from this formula
when we set 𝑘𝑘 𝑉 𝑚𝑚:

𝐸𝐸𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸 𝑉 𝑊𝑚𝑚 𝜆 𝑚𝑣𝑊𝜆𝜆max 𝜆 𝑚𝑚𝑣𝐹𝐹 𝑚𝑚𝑣𝑣.
It vanishes because 𝐹𝐹 𝑚𝑚𝑣𝑣 is in the lowest weight space,
so 𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸. But on the right hand side, the 𝑚𝑚𝜆𝑚 is
nonzero, and the vector 𝐹𝐹 𝑚𝑚𝑣𝑣 is nonzero. So the only
way this can vanish is if

𝜆𝜆max 𝑉 𝑚𝑚.

Look! The highest weight 𝜆𝜆max is a natural number!
Specifically, it is the number of times we need to ap-
ply 𝐹𝐹 to go from the highest weight vector 𝑣𝑣 to the
lowest. We have nearly proved:

Theorem 9.— For each natural number 𝑚𝑚 (including
zero), there is a unique finite-dimensional irreducible
representation 𝑊𝑉𝑉 𝑊𝑚𝑚𝑣, 𝜌𝜌𝑊𝑚𝑚𝑣𝑣 of 𝔰𝔰𝔰𝔰𝑊𝜆, ℂ𝑣 with highest
weight 𝑚𝑚. All finite-dimensional irreps of 𝔰𝔰𝔰𝔰𝑊𝜆, ℂ𝑣
have this form.

To recap, if 𝑉𝑉 is an irrep with highest weight 𝑚𝑚,
𝑉𝑉 decomposes into the weight spaces 𝑉𝑉 𝑉 𝑉𝑉𝜆𝑚𝑚 𝑉
𝑉𝑉𝜆𝑚𝑚𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝑚𝑚𝜆𝜆 𝑉 𝑉𝑉𝑚𝑚. Each weight space is one-
dimensional, spanned by one of the basis vectors in
{𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣. We summarize all of these facts in
the weight diagram of 𝑉𝑉 :

𝑉
𝜆𝑚𝑚 𝜆𝑚𝑚 𝜆 𝜆 𝑚𝑚 𝜆 𝜆 𝑚𝑚

Each dot represents a weight space. In more general
weight diagrams such as those in the next section, the
dots can have multiplicities. Here, they all have mul-
tiplicity one, telling us that each weight space is one-
dimensional.

4 The representations of 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣

The representation theory of 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣 begins the same
way: we choose a Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣. As
before, we take 𝔥𝔥 to consist of traceless diagonal ma-
trices. Thus 𝔥𝔥 𝑉 𝑊𝑊an𝑊𝐻𝐻𝑚, 𝐻𝐻𝜆𝑣 is two-dimensional,
and we pick:

𝐻𝐻𝑚 𝑉
⎛
⎜
⎜
⎝

𝑚 𝐸 𝐸
𝐸 𝜆𝑚 𝐸
𝐸 𝐸 𝐸

⎞
⎟
⎟
⎠

, 𝐻𝐻𝜆 𝑉
⎛
⎜
⎜
⎝

𝐸 𝐸 𝐸
𝐸 𝑚 𝐸
𝐸 𝐸 𝜆𝑚

⎞
⎟
⎟
⎠

.

As before, the Cartan subalgebra 𝔥𝔥 is maximal abelian,
and ad𝑊𝐻𝐻𝑣 is diagonalizable for any 𝐻𝐻 𝑣 𝔥𝔥, thanks to
the formula 𝐸𝐻𝐻, 𝐸𝐸𝑖𝑖𝑖𝑖𝐸 𝑉 𝑊𝑎𝑎𝑖𝑖 𝜆 𝑎𝑎𝑖𝑖𝑣𝐸𝐸𝑖𝑖𝑖𝑖 , where

𝐻𝐻 𝑉
⎛
⎜
⎜
⎝

𝑎𝑎𝑚 𝐸 𝐸
𝐸 𝑎𝑎𝜆 𝐸
𝐸 𝐸 𝑎𝑎𝔰

⎞
⎟
⎟
⎠

,

and 𝐸𝐸𝑖𝑖𝑖𝑖 is the matrix with 1 in the 𝑖𝑖𝑖𝑖th entry, and ze-
roes elsewhere.

To analyze representations, we need a version of
Theorem 6 for 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣:
Theorem 10.— For any complex finite-dimensional
representation 𝑊𝑉𝑉 , 𝜌𝜌𝑣 of 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣, and any choice of
Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣, 𝜌𝜌𝑊𝐻𝐻𝑣 is diagonaliz-
able for all 𝐻𝐻 𝑣 𝔥𝔥.
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In analogy with 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), we use this to write any rep-
resentation as a direct sum over weights:

𝑉𝑉 𝑉 ⨁
𝜆𝜆

𝑉𝑉𝜆𝜆.

For 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), there was only one 𝐻𝐻 , and a weight
was simply an eigenvalue of 𝐻𝐻 . But now 𝔥𝔥 is two-
dimensional, and there are many 𝐻𝐻 𝐻 𝔥𝔥. In this in-
stance, what is a weight?

Definition 11.— Given a representation 𝔰𝑉𝑉 𝔰 𝑉𝑉), a
nonzero vector 𝑣𝑣 𝐻 𝑉𝑉 is a weight vector if 𝑉𝑉𝔰𝐻𝐻)𝑣𝑣 𝑉
𝜆𝜆𝔰𝐻𝐻)𝑣𝑣 for all 𝐻𝐻 𝐻 𝔥𝔥 and some linear map 𝜆𝜆𝜆 𝔥𝔥 𝜆 ℂ.
Here, 𝜆𝜆 is called a weight of the representation 𝑉𝑉 .

Weights are a generalization of eigenvalues, and
weight vectors are a generalization of eigenvectors
that allow us to diagonalize all the 𝐻𝐻 𝐻 𝔥𝔥 at once.
And we really can diagonalize all the 𝐻𝐻 𝐻 𝔥𝔥 simulta-
neously, because they commute!

To get a feel for the weights of a representation of
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), let us consider an example:

Example 6.— We already know the weight vectors—
they are the elementary matrices 𝐸𝐸𝑖𝑖𝑖𝑖 , at least when
𝑖𝑖 𝑖 𝑖𝑖. This is because of the formula:

ad𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 𝑉 𝔰𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝐸𝐸𝑖𝑖𝑖𝑖.
(For 𝑖𝑖 𝑉 𝑖𝑖, 𝐸𝐸𝑖𝑖𝑖𝑖 has trace 1 and is not in 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ).)

So let us define the weight 𝛼𝛼𝑖𝑖𝑖𝑖 𝜆 𝔥𝔥 𝜆 ℂ by the for-
mula 𝛼𝛼𝑖𝑖𝑖𝑖𝔰𝐻𝐻) 𝑉 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖 , where 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖 are the 𝑖𝑖th
and 𝑖𝑖th entries of the diagonal matrix 𝐻𝐻 . Then we
have ad𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 𝑉 𝛼𝛼𝑖𝑖𝑖𝑖𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 .

To get a feel for the weights of the adjoint repre-
sentation, note that we have the relations:

𝛼𝛼𝑖𝑖𝑖𝑖 𝑉 −𝛼𝛼𝑖𝑖𝑖𝑖𝔰 𝛼𝛼𝑖𝑖𝑖𝑖 𝑉 0𝔰 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑗𝑗 𝑉 𝛼𝛼𝑖𝑖𝑗𝑗.
These imply that all the weights of the adjoint can
be expressed as a linear combination of two such
weights. Let us pick 𝛼𝛼 𝑉 𝛼𝛼1𝔰 and 𝛽𝛽 𝑉 𝛼𝛼𝔰𝔰 as a ba-
sis. Then the other nonzero weights are 𝛼𝛼1𝔰 𝑉 𝛼𝛼 + 𝛽𝛽,
𝛼𝛼𝔰1 𝑉 −𝛼𝛼, 𝛼𝛼𝔰𝔰 𝑉 −𝛽𝛽, and 𝛼𝛼𝔰1 𝑉 −𝛼𝛼 − 𝛽𝛽 . To really get
a picture, we plot these weights:

𝛼𝛼

𝛼𝛼 + 𝛽𝛽
𝛽𝛽

−𝛼𝛼

−𝛼𝛼 − 𝛽𝛽
−𝛽𝛽

In the plot, we draw one dot for each weight space
in the adjoint representation, except in the middle:
the weight space of weight zero is two-dimensional—
it is 𝔥𝔥!—and we depict this by adding the extra circle
around the zero weight. We have six dots around the
outside and two in the middle. The total is eight, as
it must be: dim𝔰𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ)) 𝑉 8.

This picture is usually drawn with more symme-
try, as a regular hexagon with two dots in the middle:

𝛼𝛼

𝛼𝛼 + 𝛽𝛽𝛽𝛽

−𝛼𝛼

−𝛼𝛼 − 𝛽𝛽 −𝛽𝛽

This is the weight diagram of the adjoint representa-
tion.

Remarkably, all the irreps of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ) have similar
weight diagrams. For instance, here is the weight dia-
gram of a 10-dimensional irrep:
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𝛼𝛼

𝛽𝛽

We have indicated 𝛼𝛼 and 𝛽𝛽 on this diagram to show
how it compares to the adjoint.

5 The eightfold way

In the 1940s and 1950s, physicists built particle accel-
erators and began to collide protons together at high
energies. Protons are strongly interacting particles, in
the sense that they feel the strong nuclear force that
binds them together in the atomic nucleus. Collid-
ing protons produced many new, hitherto unknown
particles, likewise strongly interacting. In physics,
strongly interacting particles are called hadrons—the
Greek root hadros means strong.

No one expected such a zoo of new particles, and
so a search was on for some kind of order, some
system to classify the hadrons. Many properties of
the particles were measured. Each particle 𝑋𝑋 had an
electric charge 𝑞𝑞𝑞𝑋𝑋𝑞, which is an integer in suitable
units. But several other kinds of “charge” were dis-
covered. It turned out each particle had a property,
called strangeness 𝑠𝑠𝑞𝑋𝑋𝑞, which was also an integer.

When you plot the charge and the strangeness of
hadrons on a plane, certain patterns emerge. For in-
stance, here is the spin-0 meson octet (mesons are a
type of hadron):

𝜋𝜋0

𝜂𝜂
𝜋𝜋+

𝐾𝐾+𝐾𝐾0

𝜋𝜋−

𝐾𝐾− 𝐾𝐾
0

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 −𝑞

𝑠𝑠 𝑞 0

𝑠𝑠 𝑞 𝑞

And here is the spin-1/2 baryon octet. (Baryons are
another type of hadron, which includes the proton
and neutron. In fact, the proton and neutron are the
particles 𝑛𝑛 and 𝑝𝑝 at the top):

Σ0

Λ
Σ+

𝑝𝑝𝑛𝑛

Σ−

Ξ− Ξ0

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 𝑠

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 0

As you can clearly see, both of these are pictures
of the adjoint representation of 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞! This led the
American physicist Murray Gell-Mann and the Israeli
physicist Yuval Ne’emann to propose independently
the eightfold way hypothesis. The name comes from
appearance of eight particles in the octets, and was
Gell-Mann’s allusion to the eightfold path to enlight-
enment in Buddhism. Here is the hypothesis:

Hypothesis (The eightfold way).— Hadrons are
classified by representations of 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞. ∎

In its original form, the eightfold way used the Lie
group SU𝑞𝔰𝑞 in place of the Lie algebra 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞. It is a
marvelous result of Lie theory that these objects have
equivalent representation theory, so we have substi-
tuted 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞 to ease exposition.

The vindication of the eightfold way came with
the prediction of new particles. This followed not
from the octets above, but from the spin-3/2 baryon
decuplet:
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Σ∗0 Σ∗+

Δ+Δ0

Σ∗−

Ξ∗− Ξ∗0

Δ++Δ−

Ω−

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 𝑠

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 0

The particle at the bottom, the Ω−, was previously un-
known. Gell-Mann predicted it in 1962 on the basis
of the eightfold way, and it was discovered in 1964.

6 Further reading

The best reference for the Lie theory we have dis-
cussed is the book by Fulton and Harris [1], to which
our treatment of 𝔰𝔰𝔰𝔰𝔰𝑞𝔰 ℂ) owes everything. Of course,
Lie algebras are closely related to Lie groups, and a
good first introduction can be found in the book of

Hall [2]. For the eightfold way, a wonderful treatment
can be found in Sternberg [3], who frames the ques-
tion in terms of the representations of the Lie group
SU𝔰𝑠), rather than the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝑠𝔰 ℂ) we used
here.
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